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Summary 

Multisite protein phosphorylation plays a critical role in cell regulation [1–3]. It is widely 
appreciated that the functional capabilities of multisite phosphorylation depend on the 
order and kinetics of phosphorylation steps, but kinetic aspects of multisite 
phosphorylation remain poorly understood [4–6]. Here we focus on what appears to be 
the simplest scenario, when a protein is phosphorylated on only two sites in a strict, well-
defined order. This scenario describes the activation of ERK, a highly conserved cell 
signaling enzyme. We use Bayesian parameter inference in a structurally identifiable 
kinetic model to dissect dual phosphorylation of ERK by MEK, a kinase which is mutated 
in a large number of human diseases [4–6]. Our results reveal how enzyme processivity 
and efficiencies of individual phosphorylation steps are altered by pathogenic mutations. 
The presented approach, which connects specific mutations to kinetic parameters of 
multisite phosphorylation mechanisms, provides a systematic framework for closing the 
gap between studies with purified signaling enzymes and their effects in the living 
organism. 

Results and Discussion 

Multisite protein phosphorylation plays a critical role in signaling cascades regulating key 
cellular events, including the cell cycle and circadian rhythms [1–3]. Functional 
capabilities of multisite phosphorylation reactions depend on the order and kinetics of 
different phosphorylation steps [7,8]. Nevertheless, quantitative understanding of 
multisite phosphorylation kinetics remains elusive, even for the best studied examples [4–
6]. This is largely due to the combinatorial complexity of multisite phosphorylation. Indeed, 
a protein with n phosphorylation sites can be found in 2n possible phosphostates, which 
may be connected by n! alternative pathways [9]. Here we focus on what appears to be 
the simplest multisite case, when a protein is phosphorylated on only two sites, and when 
the unphosphorylated and dually phosphorylated forms are connected by an ordered 
mechanism. Simple as it is, this case corresponds to the activation of the Extracellular 
Signal Regulated Kinase (ERK), a highly conserved signaling enzyme in metazoans [10].  

ERK is activated when it is dually phosphorylated by MEK, a kinase that phosphorylates 
first the tyrosine and then the threonine within the TEY sequence in the regulatory loop 
of ERK [11]. Upon activation, ERK phosphorylates a broad spectrum of substrates 
including regulators of the cell cycle, cytoskeleton, and transcription. Mutations affecting 
either MEK or ERK are commonly associated with diseases, most notably cancers and 
developmental defects [12–17]. As a consequence, processes leading to ERK activation, 
such as ERK phosphorylation by MEK, or phosphorylation and activation of MEK itself, 
serve as successful drug targets in oncology [18]. While multiple mutations in MEK are 
known to affect the overall levels of dually phosphorylated ERK in vivo, their effects on 
the mechanism of ERK activation remain unknown [19–23]. Here we address this 
question using kinetic studies and Bayesian parameter inference.  

Our approach relies on transient kinetic analysis of ERK phosphorylation by MEK, using 
phostag gels to separate the unphosphorylated (S0), monophosphorylated (S1), and 



dually phosphorylated (S2) forms of ERK (Figures 1A, B) [24,25]. Kinetic data were 
analyzed via a mathematical model that describes ordered dual phosphorylation (Figure 
1C). This is consistent with previous kinetic and structural studies showing that the 
tyrosine is phosphorylated before the threonine (Figures S3A-C) [26]. The species of this 
model correspond to the three phosphostates of ERK (S0–unphosphorylated ERK, S1–
ERK phosphorylated on tyrosine, and S2–dually phosphorylated ERK), free enzyme (E), 
and two enzyme-substrate complexes (ES0 and ES1). The complex of MEK with 
monophosphorylated ERK can either dissociate or continue to dually phosphorylated 
product. Thus, this model contains both distributive and processive pathways, in which 
the two phosphorylations are carried out by either two separate enzyme molecules or the 
same molecule, respectively.  

With two sets of association, dissociation, and catalysis rate constants for two sequential 
phosphorylations, the model has six parameters. We established that this model is 
structurally identifiable: given enough measurements, the values of these parameters can 
be identified from kinetic data (see SI). In practice, however, identifying parameters is 
extremely challenging, due to measurement noise and differences in the time scales of 
individual reactions [27,28]. As a consequence, parameter estimation commonly lead to 
ensembles of parameters that are equivalent in describing the data but are not readily 
suitable for mechanistic interpretation of the underlying dynamics. We ran into this 
challenge when we attempted to identify the six parameters of our model (Figure S2A).  

We noticed, however, that the ratio of total substrate to the Michaelis constant (𝐾𝑀 =(𝑘𝑟 + 𝑘𝑐𝑎𝑡)/𝑘𝑓) for each phosphorylation was below 1 (Figure S2B), indicating that we 
were not using a saturating substrate concentration. This observation agrees with 
previous biophysical measurements of MEK/ERK interactions in vitro that established that 
MEK and ERK bind with ~25 μM affinity, which is indeed greater than the maximal 
substrate concentration used in our experiments (5 μM) [29]. In this regime, the free 
enzyme concentration can be considered constant and equal to the total enzyme 
concentration (see SI). This justifies model reduction and leads to a simpler model with 
only three effective parameters (Figure 2A): 

   

The first two parameters are products of enzyme concentration, which is controlled by 
experimental design, and kinetic efficiencies (𝑘𝑐𝑎𝑡,1(2)/𝐾𝑀,1(2)) of the first and second 
phosphorylations. The third parameter can be interpreted as the probability that both 
phosphorylations are carried out by the same enzyme molecule, without an intervening 
dissociation step. This is a measure of processivity: the 𝜋 = 0 limit corresponds to the 
fully distributive regime, when monophosphorylated ERK necessarily dissociates from 
MEK following the first phosphorylation step. When 𝜋 = 1, monophosphorylated ERK 
remains associated with MEK and proceeds directly to the second phosphorylation step.  



While the full model is nonlinear and must be solved numerically, the reduced model is 
linear and can be solved analytically, leading to compact expressions for the time-
dependent concentrations of the three ERK phosphostates:  𝑆0(𝑡) = 𝑆𝑡𝑜𝑡𝑒−𝜅1𝑡,   𝑆1(𝑡) = 𝑆𝑡𝑜𝑡 𝜅1(1 − 𝜋)𝜅1 − 𝜅2 (𝑒−𝜅2𝑡 − 𝑒−𝜅1𝑡),   𝑆2(𝑡) = 𝑆𝑡𝑜𝑡 − 𝑆0(𝑡) − 𝑆1(𝑡), 
where 𝑆𝑡𝑜𝑡 is the total substrate concentration. We established that the reduced model is 
also structurally identifiable (see SI). Based on this result, we used a Bayesian approach 
to parameter inference. This approach naturally accounts for measurement noise and 
yields a posterior distribution of parameters instead of their point or interval estimates 
[30]. We performed Bayesian inference of the three model parameters assuming a broad 
prior and used the Markov Chain Monte Carlo algorithm to sample from the posterior 
distribution (see SI). As a result, the kinetic data gave rise to a sample from the posterior 
distribution in the three-dimensional parameter space (Figure 2B, Figure S1A). This 
approach is readily applicable for inferring kinetic parameters of mutants that are used in 
basic research or are associated with diseases (Figure 3A).  

In particular, the first phosphorylation step is commonly studied using ERK in which the 
threonine for the second phosphorylation is changed to alanine [31]. When we performed 
our analysis with this ERK mutant, we observed that the kinetic efficiency of the first 
phosphorylation is ~2-times higher when the second phosphorylation site is disrupted 
(Figures S1B-C). This highlights the importance of working with the wild type ERK to 
obtain biologically relevant rate constants. Furthermore, multiple studies have used 
phosphomimetic MEK variants rather than the wild type MEK activated by Raf [31–36]. In 
one of these variants (S218D,S222D), the two serines in the activation loop are changed 
to aspartates, mimicking the negative charge introduced by phosphorylation [31,37]. This 
variant is known to be less active than phosphorylated MEK, but its use simplifies 
experimental design. Indeed, when we repeated our Bayesian analysis of kinetic data 
obtained using this phosphomimetic MEK (Figure S4), we found that kinetic specificities 
for both phosphorylation steps are significantly lower than those for the dually 
phosphorylated wild type MEK (Figure 3C). However, the processivities of the wild type 
and phosphomimetic enzymes are essentially the same and significantly greater than 
zero, indicating that ~1/3 of ERK molecules are dually phosphorylated in a single 
enzyme/substrate encounter. This result can be understood by examining the definitions 
of 𝜅1, 𝜅2, and 𝜋. By decreasing the rate at which MEK binds to unphosphorylated and 
monophosphorylated ERK, the SSDD mutation could decrease the catalytic efficiencies 
of both phosphorylations while keeping the processivity constant.  

Next, we analyzed the kinetic parameters of three MEK variants associated with human 
diseases. Each of these variants is characterized by a single amino acid substitution that 
disrupts the intramolecular contacts with the N-terminal negative regulatory region of MEK 
(Figure 3A) [38,39]. In parallel with the phosphorylation of serines within the activation 
loop, this region provides allosteric control of MEK activation. The E203K variant was 
identified in a human cancer, while the F53S and Y130C variants were found in humans 



with a broad spectrum of developmental abnormalities, including congenital heart defects 
and stunted growth [12,40]. Studies in fly and fish embryos suggest that the E203K 
substitution results in the most active MEK, based on the severity of disruptions to ERK-
dependent morphogenetic processes [21,41]. For example, using ectopic veins in fly 
wings as an indicator for ERK pathway overactivation, Jindal et al. found that E203K 
causes a phenotype that is much stronger than the phenotypes caused by the F53S and 
Y130C variants (Figure 3B) [41]. Can these phenotypic differences be attributed to 
corresponding changes in the kinetic parameters of the mutant enzymes?  

Our analysis of E203K MEK kinetic data (Figure S4) revealed that the catalytic efficiency 
of the first phosphorylation step is indeed strongly increased for E203K MEK, almost 2-
fold when compared with the wild type enzyme (Figures 3C, E). This increase is 
accompanied by a pronounced reduction in the efficiency of the second phosphorylation 
step and a dramatic increase of processivity, indicating that more than half of ERK 
molecules are dually phosphorylated by the same enzyme. Thus, the processivity of MEK 
can be increased not only by crowded conditions and scaffolding proteins, as was 
suggested by earlier studies [35,36], but also by activating mutations (Figures 3C, E). 
Notably, however, the E203K mutation did not affect the ordering of the dual 
phosphorylation mechanism (Figures S3A-C).   

In contrast to the effects observed for E203K, kinetic parameters of ERK phosphorylation 
by the F53S and Y130C variants remain largely unchanged from the wild type MEK 
(Figures 3C, F, G, Figure S4). This is puzzling as these mutants show clear phenotypes 
in vivo and are associated with diseases (Figure 3B). To test if the phenotypic effects 
stem from changes in other processes, such as the activation of MEK itself, we analyzed 
the kinetics of MEK phosphorylation by Raf. This analysis revealed that both F53S and 
Y130C are activated significantly faster than wild type MEK (Figure 4). Interestingly, the 
activation kinetics of E203K MEK, are indistinguishable from those of the wild type MEK. 
Thus, our analysis reveals which of the multiple processes involved in multisite 
phosphorylation are affected by each mutation.  

Together, this study takes a step towards closing the gap between work with purified 
signaling enzymes and their effects in the living organism. In particular, it has been 
proposed that distributive regime of ERK phosphorylation by MEK plays a key role in the 
emergence of switchlike responses in larger biochemical networks that contain the ERK 
phosphorylation reaction [42–45]. Our results establish that both distributive and 
processive pathways must be considered in analyzing the emergence of these systems-
level effects for both wild type enzymes and their pathogenic variants.  

While kinetic parameters may be estimated using a wide variety of approaches [46], we 
used model reduction and Bayesian inference because they are well-suited to our 
particular goals of systematic comparison of MEK variants. Specifically, our attempts to 
estimate parameters of the original model failed to constrain the values of individual rate 
constants and identified a large ensemble of six-dimensional parameter vectors that 
provide equivalent fit to data (Figure S2A). Importantly, the values of the effective 



parameters computed on the basis of this ensemble were highly constrained, which gave 
us the ability to compare the kinetics of the various MEK mutants using Bayesian 
inference with the analytically solvable reduced model. We believe that rationally reduced 
models will continue to play a key role in establishing a deeper understanding of cell 
regulation systems, including their quantitative responses to mutations of constituent 
proteins. 
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Figure Legends 

Figure 1. Determining kinetic parameters for MEK activation of ERK. A) Kinetics of 
ERK phosphorylation by active wild type MEK. The three different ERK phosphostates 
were quantified via phostag gels. S0, S1, S2 represent unphosphorylated, 
monophosphorylated, and dually phosphorylated ERK respectively. B) Model fit to the 
kinetic data. The error bars indicate the standard deviation of the 12 replicates. The lines 
show a fit to the reduced model (Figure 2A) obtained using Bayesian inference. C) 
General model describing the mechanism by which a kinase phosphorylates a substrate 
with two ordered phosphorylation sites.  

Figure 2. Bayesian analysis of ERK activation by wild type MEK. A) The reduced 
three parameter model. The species S0, S1 and S2 correspond to different phosphostates 
of the substrate. The arrows and their labels denote rates of phosphorylation. The 
parameters 𝜅1 and 𝜅2 are the kinetic efficiencies of the first and second phosphorylation 
step, respectively, multiplied by the total amount of enzyme. The parameter 𝜋 is the 
probability that both phosphorylations are carried out by the same enzyme. B) A scatter 
plot of 2000 parameter values sampled from the posterior distribution of Bayesian 
inference of the parameters corresponding to wild type MEK (grey). Accompanying the 
plot are heatmaps of the kernel density estimations of the 2D marginal distributions of the 
respective parameter pairs. C) Histograms of the Bayesian posterior samples for the three 
parameters (from left to right: 𝜅1 (min)-1, 𝜅2 (min)-1 and 𝜋). 

Figure 3. Mutations in MEK can be categorized based on kinetic parameters. A) 
Positions of the mutations on MEK1 (PDB 3EQI [39]). The residues F53, Y130, and 
E203 are located between the interface of the negative regulatory helix and the kinase 
domain. S218 and S222 are located in the activation loop. B) Illustration of MEK mutant 
quantification of phenotype severity from previous study [41]. Overactivation of the ERK 
pathway leads to ectopic veins in fly wings. Shown are the number of ectopic veins in 
flies expressing the different MEK variants. C) A scatter plot showing parameter values 
sampled from the posterior distribution of the Bayesian inference for each MEK variant. 
The catalytic efficiency of the first phosphorylation is plotted on the front horizontal axis, 
the catalytic efficiency of the second phosphorylation on the right horizontal axis, and 
the processivity 𝜋 on the vertical axis. Colors correspond to MEK variants. While the 
parameter values of the wild type MEK, F53S, and Y130C are indistinguishable, the 
parameter values for E203K and S218D, S222D are distinct. D-G) Histograms of the 
Bayesian posterior samples for the three parameters. Each histogram contains values 
for the parameter indicated by the column label and was obtained using Bayesian 
inference. Each histogram color corresponds to a MEK variant (cyan for S218D,S222D; 
orange for E203K; green for Y130C; blue for F53S). The grey histograms correspond to 
parameters for the wild type MEK. 𝜅1 and 𝜅2 are normalized by enzyme concentration to 
obtain 𝑘𝑐𝑎𝑡,1/𝐾𝑀,1 (min·μM)-1 and 𝑘𝑐𝑎𝑡,2/𝐾𝑀,2 (min·μM)-1 . 
 
Figure 4. Quantification of MEK activation by Raf via Western Blot. Raf activates the 
F53S and Y130C variants faster than it activates the wild type MEK and the E203K 



variant. The normalized dually phosphorylated (dp) MEK signal is an average of three 
experimental replicates and the error bars represent the standard error of the mean. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



STAR Methods 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for materials, resources and reagents, including the 
plasmids generated in this study, should be directed to and will be fulfilled by the Lead 
Contact, Martin Wühr (wuhr@princeton.edu).  

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Plasmids 

The pET-28a plasmid containing N-terminally His6-tagged human MEK (His6-MEK) was 
obtained as a gift from E. Goldsmith (UT Southwestern). This plasmid is under the T7 
promoter and is under the control of the lac operon. All plasmids containing MEK 
mutations were mutagenized from the His6-MEK plasmid. For site-directed mutagenesis, 
His6-MEK was PCR amplified with forward and reverse primers containing the desired 
mutations (Table S1). For the PCR, high fidelity Pfu Ultra II Fusion HS DNA polymerase 
(Agilent Technologies) was incubated with 10ng His6-MEK plasmid, 1µM each of the 
primers, 250µM dNTP, and 1x PFU Ultra II buffer (Agilent Technologies). The solution 
underwent 25 polymerase chain reaction cycles at 55°C denaturing temperature and 2 
minutes extension time. The PCR product was digested with DpnI, then transformed into 
competent DH5α cells, prepared using the Mix & Go! E.coli Transformation Kit (Zymo). 
Individual colonies were picked and grown in 5mL LB medium supplemented with 50 
μg/ml Kanamycin at 37°C overnight. The plasmid was purified via QIAprep Spin Miniprep 
Kit (Qiagen). Mutations were confirmed via Sanger sequencing (Genewiz). 

Recombinant protein purification 

Rat His6-ERK was purified as previously described [21]. Plasmids containing the desired 
mutations were transformed into BL21 DE3 cells (NEB BioLab) for protein expression. 
50mL cultures of E. coli BL21 cells expressing His6-ERK were grown in LB supplemented 
with 100µg/uL Ampicillin overnight at 37oC and inoculated into 2L of terrific broth with 100 
µg/uL Ampicillin at 37oC and 250 r.p.m. After the OD600 reached ~0.8, protein expression 
was induced by adding 0.5mM final concentration of isopropyl β-D-1- 
thiogalactopyranoside (IPTG). The growth temperature was reduced to 20°C and the 
agitation lowered to 180 r.p.m. for overnight expression. The culture was harvested the 
next morning by centrifugation at 4°C at 3000g with Beckman J2-MI centrifuge with JA-
10 rotor. Cells were lysed on ice using 0.25mg/mL lysozyme in 40mL lysis buffer (50mM 
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 7.2, 500mM NaCl and 
1x protease inhibitor (Sigma Aldrich) for 30 minutes. After lysozyme digestion, the lysate 
was tip sonicated using Fisher Scientific Model FB50 with CL-18 tip at 35% output on ice 
with 1 min on and 1 min off for 15 times for further lysis. The lysate was centrifuged at 
8000 g with a Beckman Coulter Allergra 25R centrifuge with TA-10-250 rotor for 10 min 
at 4°C. The supernatant was applied to 1mL His-FF crude column (GE) using the ÄKTA  
pure protein purification system (GE) with a 0.5mL/min flow rate.  The column was 
washed with 15% elution buffer (50mM HEPES pH 7.2, 500mM NaCl, 250mM imidazole) 
for 3 column volumes. Then 1.5mL fractions were collected as the proteins were eluted 
with a 15-100% gradient over 20 column volumes. The purities of the proteins were 



confirmed to be greater than 90% by Coomassie-stained SDS-PAGE gels. The purified 
protein was exchanged into the phosphorylation buffer (50mM HEPES pH 7.2, 100mM 
NaCl, 20mM MgCl2, 5% glycerol) and concentrated using the Vivaspin 20, 30kDa 
concentrator (Satorius) to 1.5mg/mL. Protein concentrations were determined to be 
1.50mg/mL ±0.05mg/mL by determining the A280 using Nanodrop (Thermo Scientific 
Nanodrop lite) with an extinction coefficient of 42230 cm-1M-1. 25µL aliquots were flash-
frozen using liquid N2 and stored at -80oC until use. 

Human His6-MEK variants were expressed in E. coli BL21 DE3 cells supplemented with 
50 µg/uL Kanamycin and purified using the same procedure as described above except 
that the MEK variants were determined to be 0.50mg/mL±0.05mg/mL by determining the 
A280 using Nanodrop with an extinction coefficient of 23620 cm-1M-1. All protein 
measurements were expressed as mean±SD from 4 measurements. All exctinction 
coefficeints were calcualted using the protein sequence and Northwestern Center for 
Biotechnology’s Peptide Property Calculator. 

METHOD DETAILS  

ERK phosphorylation by MEK 

To prepare activated MEK, 6.5µM of MEK was added to a master mix containing the 
phosphorylation buffer, 5mM ATP, and 0.05µM of active human c-Raf (Millipore). The 
reaction mixture was incubated in a 30°C for 1.5 hours. To ensure that MEK was fully 
activated, we took aliquots throughout the 1.5 hours and ran the samples using phos-tag 
gel electrophoresis as described below to ensure that the non-phosphorylated form had 
fully disappeared. We performed Western Blot against dually phosphorylated MEK 
(1:4000 dilution, Cell Signaling Technology, Cat#9121, RRID: AB_331648) with Alexa 
Fluor 647 conjugates as the secondary antibody (1:2000 dilution, Invitrogen Cat#A-
31573, RRID: AB_2536183) to ensure complete phosphorylation. To initiate the MEK-
ERK reaction, 0.67µM of activated MEK was then added to a master mix containing 
phosphorylation buffer, 5mM ATP, and 5µM ERK. The enzyme to substrate ratio was 
chosen to ensure that the reaction ran to completion within a reasonable timeframe. Time 
points were chosen to best capture the dynamics of the peak concentration of the 
monophosphorylated form. Time point samples were collected by adding 4uL of the 
reaction to 1.5uL of 4x SDS loading buffer (250mM Tris-HCl pH 6.8, 10% SDS, 0.01% 
bromophenol blue, 40% glycerol, 2.86M β-mercaptoethanol) at 0.0, 0.5, 2.0, 3.3, 3.7, 5.0, 
10.0, and 20.0 minutes. The samples were heated at 60°C for 10 minutes to break the 
disulfide bonds. For phosphomimetic MEK (S218D,S222D MEK), 2.5µM of 
phosphomimetic MEK was added and aliquots were taken out at 0.0, 1.0, 2.0, 3.3, 5.0, 
10.0, 20.0, and 40.0 minutes. 

Phos-tag gel 

5uL of each sample was loaded onto Wako SuperSep Phos-tag 12.5% 17 well gel (Wako, 
Cat#195-17991) and ran at 175V for 160 minutes with Tris/Glycine/SDS running buffer 
(Bio-Rad). To visualize the gel bands, the gel was stained with Coomassie R staining 
solution (0.05% w/v Coomassie Brilliant Blue R, 25% isopropanol and 10% acetic acid) 
for 30 minutes before destaining with 10% acetic acid until the bands were clearly visible. 
The phos-tag gels were imaged using the Bio-Rad ChemiDoc MP Imaging System. The 



intensities of the bands were quantified using ImageJ’s (ImageJ, RRID: SCR_003070) 
‘gels’ tool to measure the area of the peak.  

MEK activation by Raf-1 

0.05µM of active human c-Raf (Millipore) was added to 6.5µM of MEK in the 
phosphorylation buffer containing 5mM ATP. The reaction mixture was incubated in a 
30°C water bath and 4µL aliquots were taken at 0.0, 1.0, 2.5, 5.0, 10.0, 20.0 and 40.0 
minutes and added to 1.5µL of 4x SDS loading buffer to quench the reaction. The samples 
were heated at 60°C for 10 minutes to break the disulfide bonds. 5µL of each sample was 
loaded onto a 15-well Any kD Mini-PROTEAN TGX Precast Protein Gel (Bio-Rad) and 
ran at 200V for 45 minutes. The proteins were transferred onto a TransBlot Turbo LF 
PDVF membrane (Bio-Rad) using the TransBlot Turbo system (Bio-Rad). The membrane 
was then pre-incubated in 4% w/v milk powder in PBST (1x PBS + 0.1% Tween-20) for 
one hour. The membrane was then incubated in 4% milk containing primary antibody 
against dually phosphorylated MEK (1:4000 dilution, Cell Signaling Technology) 
overnight. After three 15-minutes washes in PBST, the membrane was switched into 4% 
milk containing the secondary antibody donkey Alexa Fluor 647 anti-rabbit conjugate 
(1:2000 dilution, Invitrogen) for 1 hour. After another three 15-minutes washes in PBST, 
the membrane was imaged using the Bio-Rad ChemiDoc MP Imaging System. The 
intensities of the bands were quantified using ImageJ’s ‘gels’ tool to measure the areas 
under the peaks.  

Phosphorylation ratio by mass spectrometry 

From a reaction of ERK phosphorylation by activated MEK E203K, 20μL of sample was 
collected at 3 minutes 15 seconds. The reaction was stopped by adding the sample to 60 
μL 10M Urea. To remove salts and glycerol, a TCA precipitation was performed with the 
following procedure: 8 μL of chilled 0.15% N-Laurylsarcosine sodium and 8 μL of chilled 
100% TCA were added to the sample on ice and mixed by inverting the tube a few times. 
After 15 minutes, the sample was centrifuged at 4oC for 10 minutes and the supernatant 
was removed. 0.4mL of 100% methanol was added and the solution was vortexed for 10 
seconds. The supernatant was removed after centrifugation and another 0.4mL of 100% 
methanol was added, the solution vortexed, centrifuged and the supernatant removed. 
The resulting protein pellet was air dried and subsequently resolubilized in 10 μL of 6M 
guanidine hydrochloride (GuHCl).  

Synthetic AQUA peptides were ordered from JPT Peptide Technologies. These peptides 
have heavy arginine incorporated (+10.00826859 Da) and correspond to the tryptic 
peptides of the pY-phosphorylated, and the pT-phosphorylated forms of ERK. 3uL of each 
AQUA (14μM in HPLC water) was added to the sample and the sample was diluted to 
2M GuHCl with 10mM EPPS ph8.5 and digested overnight at 22°C with 10ng/ μL lysC 
(Wako, 2μg/ μL stock in HPLC water). The next morning, the sample was further diluted 
to 0.5M GuHCl with 10mM EPPS pH 8.5 and an additional 10ng/ μL LysC and 20 ng/ μL 
Trypsin (Promega) were added. The sample was incubated overnight at 37°C. All solvent 
was removed in vacuo and resuspended in 5% phosphoric acid. To desalt, stage-tip was 



performed, and the sample was resuspended in 40 μL 10% TFE, 1% TCA. 1μL was 
analyzed by LC-MS. 

The Orbitrap Fusion Lumos (Thermo Fisher) was coupled with an Easy nLC 1200 high 
pressure liquid chromatography HPLC (Thermo Fisher) with an autosampler. For each 
run, injected peptides were separated on a 100µm inner diameter microcapillary column 
with ~0.5cm of 5µm BEH C18 beads (Waters) and 30cm of ~1.7µm BEH C18 beads 
(Waters).  A 16-36% ACN gradient in 0.125% formic acid and 2% DMSO was applied 
over 40 minutes at 350nL/min. Ion transfer tube was maintained at 300°C and 
electrospray ionization was enabled by applying a voltage of 2.6 kV through a microtee 
at the inlet of the microcapillary column. The mass spectrometer was operated in data 
dependent mode with a survey scan using the Orbitrap at a resolution setting of 120k with 
a scan range of 500 – 850 m/z with an RF Lens (%) of 30, AGC target of 1.0E6 and a 
maximum injection time of 100 ms. Charge states between 2+ and 6+ were included. A 
dynamic exclusion window of 5 seconds with a mass tolerance of +/- 10 ppm was used. 
Peptides were fragmented using 30% HCD collision energy. MS2 spectrum was acquired 
using the Orbitrap at a resolution of 15k with an AGC target of 5.0e4 and a maximum 
injection time of 250 ms.  

The Gygi Lab GFY software licensed from Harvard was used to convert mass 
spectrometric data from the Thermo RAW file to the mzXML format, and to correct 
erroneous assignments of peptide ion charge state and monoisotopic m/z. We used 
RawFileReader libraries from Thermo, version 4.0.26 to convert the raw files into mzXML 
file format. Assignment of MS2 spectra was performed using the SEQUEST algorithm by 
searching the data against the appropriate proteome reference dataset acquired from 
UniProt (Homo sapiens with Proteome ID UP000005640, Organism ID 9606, Protein 
count 74349; Escherichia coli (strain K12) with Proteome ID UP000000625, Organism ID 
83333, Protein count 4391; both downloaded in June,2017) including 114 common 
contaminants like human Keratins and Trypsin [47,48]. The target-decoy strategy was 
used to construct reversed sequences in order to estimate the false discovery rate on the 
peptide level [49]. SEQUEST searchers were performed using a 20ppm precursor ion 
tolerance where both n and c-termini were required to be consistent with the protease 
specificity of Lys-C and Trypsin. Fragment ion tolerance in the MS2- spectrum was set at 
0.02 Th.  N-ethyl maleimide (+125.047679 Da) was set as a static modification on 
cysteine residues. Oxidation of methionine (+ 15.99492 Da), heavy arginine 
(+10.00826859 Da), and phosphorylation at serine, tyrosine, and threonine 
(+79.9663304104 Da) were set as variable modifications. A peptide level MS2 spectral 
assignment false discovery rate (FDR) of 0.5% was obtained by applying the target decoy 
strategy with linear discriminant analysis. The linear discriminant analysis used the 
following features: SEQUEST parameters XCorr and ΔXCorr, charge state, peptide 
length and absolute peptide mass accuracy. Forward peptides within three standard 
deviation of the theoretical m/z of the precursor were used as the positive training set. All 
reverse peptides were used as the negative training set. Peptides of at least seven amino 



acids were rank ordered by linear discriminant analysis score and were filtered to the 
desired cutoff. Peptides were assigned to proteins and filtered with 0.5% FDR on the 
protein level using the “picked” protein FDR approach [50]. Protein redundancy was 
removed by assigning peptides to the minimal number of proteins which can explain all 
observed peptides. 

The elution profiles of the pT and the pY tryptic peptides were extracted using Xcalibre 
Qual Browser (Thermo), focusing on the base peak with m/z of range 741.99-742.00 
(sample) and 745.32-745.34 (AQUA). The 3+ tryptic peptide of the mono phosphorylated 
ERK has a theoretical m/z of 741.99507 and the corresponding AQUA with heavy arginine 
has a theoretical m/z of 745.33116. The extracted information was processed in Excel 
(Microsoft). Despite an equal amount of the pY- and pT- phosphorylated AQUA were 
spiked into the sample, the two peptides have different detection signal because of their 
difference in flyability. We therefore normalized the peak intensity of the sample to the 
corresponding maximum peak intensity of the AQUA and smoothen the chromatogram 
by taking the 5-point moving average. The area under the curve for each of the four peaks 
was calculated using the trapezoidal method and the ratio between the sample and the 
AQUA calculated for both the pT- and the pY-phosphorylated peptides. The MS2 
spectrum corresponding to the pY- and the pT-phosphorylated peptides with labeled 
information were extracted using the SuperDig tool from the Gygi Lab GFY software. The 
mass spectrometry proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE partner repository with the dataset identifier PXD016580 
[51,52]. 

Kinetic modeling 

Equations 1-6 describe the kinetics of dual phosphorylation of a substrate 𝑆 by an enzyme 𝐸 . The substrate exists in 3 different phosphostates, 𝑆0 , 𝑆1, and 𝑆2 , where the index 
indicates whether the substrate has been phosphorylated 0, 1, or 2 times. Both 𝑆0 and 𝑆1 
bind reversibly to the enzyme 𝐸, forming complexes 𝐸𝑆0 and 𝐸𝑆1, respectively.  At 𝑡 = 0, 
all substrate is in the 𝑆0 state and all enzyme molecules are free.  𝑑𝑆0𝑑𝑡 = −𝑘𝑓,1𝐸 ∙ 𝑆0 + 𝑘𝑟,1𝐸𝑆0, 𝑆0(𝑡 = 0) = 𝑆𝑡𝑜𝑡 (1) 

𝑑𝐸𝑆0𝑑𝑡 = 𝑘𝑓,1𝐸 ∙ 𝑆0 − ൫𝑘𝑟,1 + 𝑘𝑐𝑎𝑡,1൯𝐸𝑆0, 𝐸𝑆0(𝑡 = 0) = 0 
(2) 

𝑑𝐸𝑆1𝑑𝑡 = 𝑘𝑐𝑎𝑡,1𝐸𝑆0 − ൫𝑘𝑟,2 + 𝑘𝑐𝑎𝑡,2൯𝐸𝑆1 + 𝑘𝑓,2𝐸 ∙ 𝑆1, 𝐸𝑆1(𝑡 = 0) = 0 
(3) 

𝑑𝑆1𝑑𝑡 = −𝑘𝑓,2𝐸 ∙ 𝑆1 + 𝑘𝑟,2𝐸𝑆1, 𝑆1(𝑡 = 0) = 0 
(4) 



𝑑𝑆2𝑑𝑡 = 𝑘𝑐𝑎𝑡,2𝐸𝑆1, 𝑆2(𝑡 = 0) = 0 
(5) 

𝑑𝐸𝑑𝑡 = −𝑘𝑓,1𝐸 ∙ 𝑆0 + 𝑘𝑟,1𝐸𝑆0 − 𝑘𝑓,2𝐸 ∙ 𝑆1 + 𝑘𝑟,2𝐸𝑆1 + 𝑘𝑐𝑎𝑡,2𝐸𝑆1, 𝐸(𝑡 = 0) = 𝐸𝑡𝑜𝑡 (6) 

 

Equations 7-8 describe the conservation laws for substrate and enzyme, respectively.  𝑆𝑡𝑜𝑡 = 𝑆0(𝑡 = 0) = 𝑆0 + 𝑆1 + 𝑆2 + 𝐸𝑆0 + 𝐸𝑆1 (7) 𝐸𝑡𝑜𝑡 = 𝐸(𝑡 = 0) = 𝐸 + 𝐸𝑆0 + 𝐸𝑆1 (8) 

 

Reduced model  

Since 𝑆𝑡𝑜𝑡 << (𝑘𝑟,1 + 𝑘𝑐𝑎𝑡,1)/𝑘𝑓,1 and 𝑆𝑡𝑜𝑡 << (𝑘𝑟,2 + 𝑘𝑐𝑎𝑡,2)/𝑘𝑓,2, we  can use the 
pseudosteady-state approximation to get the following system of three linear equations:  𝑑𝑆0𝑑𝑡 = −𝐸𝑡𝑜𝑡 𝑘𝑐𝑎𝑡,1𝐾𝑀,1 ∙ 𝑆0, 𝑆0(𝑡 = 0) = 𝑆𝑡𝑜𝑡 (9) 

𝑑𝑆1𝑑𝑡 = 𝐸𝑡𝑜𝑡 𝑘𝑐𝑎𝑡,1𝐾𝑀,1 ∙ 𝑘𝑟,2൫𝑘𝑟,2 + 𝑘𝑐𝑎𝑡,2൯ ∙ 𝑆0 − 𝐸𝑡𝑜𝑡 𝑘𝑐𝑎𝑡,2𝐾𝑀,2 ∙ 𝑆1, 𝑆1(𝑡 = 0) = 0 
(10) 

𝑑𝑆2𝑑𝑡 = 𝐸𝑡𝑜𝑡 𝑘𝑐𝑎𝑡,1𝐾𝑀,1 ∙ 𝑘𝑐𝑎𝑡,2൫𝑘𝑟,2 + 𝑘𝑐𝑎𝑡,2൯ ∙ 𝑆0 + 𝐸𝑡𝑜𝑡 𝑘𝑐𝑎𝑡,2𝐾𝑀,2 ∙ 𝑆1, 𝑆2(𝑡 = 0) = 0 
(11) 

  

where 𝐾𝑀,1 = ൫𝑘𝑟,1 + 𝑘𝑐𝑎𝑡,1൯/𝑘𝑓,1 and 𝐾𝑀,2 = ൫𝑘𝑟,2 + 𝑘𝑐𝑎𝑡,2൯/𝑘𝑓,2.  

To simplify notation, we introduce 𝜅1 = 𝐸𝑡𝑜𝑡𝑘𝑐𝑎𝑡,1/𝐾𝑀,1, 𝜅2 = 𝐸𝑡𝑜𝑡𝑘𝑐𝑎𝑡,2/𝐾𝑀,2, and 𝜋 =𝑘𝑐𝑎𝑡,2/൫𝑘𝑟,2 + 𝑘𝑐𝑎𝑡,2൯. Eqs. 9-11 become: 𝑑𝑆0𝑑𝑡 = −𝜅1 ∙ 𝑆0, 𝑆0(𝑡 = 0) = 𝑆𝑡𝑜𝑡 (12) 

𝑑𝑆1𝑑𝑡 = 𝜅1(1 − 𝜋) ∙ 𝑆0 − 𝜅2 ∙ 𝑆1, 𝑆1(𝑡 = 0) = 0 
(13) 

𝑑𝑆2𝑑𝑡 = 𝜅1𝜋 ∙ 𝑆0 + 𝜅2 ∙ 𝑆1, 𝑆2(𝑡 = 0) = 0 
(14) 

 

and have the following solutions: 



𝑆0 = 𝑆𝑡𝑜𝑡𝑒−𝜅1∙𝑡 (15) 

𝑆1 = 𝑆𝑡𝑜𝑡 𝜅1(1 − 𝜋)𝜅1 − 𝜅2 (𝑒−𝜅2∙𝑡 − 𝑒−𝜅1∙𝑡) (16) 

𝑆2 = 𝑆𝑡𝑜𝑡(1 − 𝑒−𝜅1∙𝑡 − 𝜅1(1 − 𝜋)𝜅1 − 𝜅2 (𝑒−𝜅2∙𝑡 − 𝑒−𝜅1∙𝑡)) 
(17) 

 

Identifiability 

To determine if the parameter values of the reduced model (Equations 12-14) could be 
recovered from data, we tested their structural identifiability using the time course data 
consisting of multiple trials of the measurable output (𝑆0, 𝑆1, 𝑆2). A model is structurally 
identifiable if there is a subset of the parameter space such that any parameter can be 
uniquely determined from noise-free measurable output. Establishing structural 
identifiability is a first step before inferring parameters. We found that the model is 
structurally identifiable using the differential algebra method [53] as implemented in the 
software DAISY [54]. 

Bayesian parameter inference 

This posterior distribution is proportional to the likelihood times the prior distribution of the 
parameters before any data is observed. We assumed that the distribution of the given 
measurements is governed by Equations 15-17 convoluted with Gaussian white noise. 
Thus, we infer 𝜅1, 𝜅2, and 𝜋, the three parameters in Equations 15-17, and the standard 
deviation 𝜎, which is constant across observations. Measurements of the three states, 𝑆0∗, 𝑆1∗and 𝑆2∗, are taken from 𝑛 different replicates at 7 time points, so our sample space 
is 𝛸 = ℝ3∗7∗𝑛 for each of the MEK variants; the number of replicates was equal to 12 for 
wild type MEK and 5 for MEK variants with phosphomimetic or activating mutations.  

If 𝑆 is the analytic solution of Equations 15-17, a three dimensional real vector depending 
on the parameters, as well as on time 𝑡 , gives rise to the likelihood via (𝑆0∗, 𝑆1∗, 𝑆2∗)𝑡,𝑖~𝒩(𝑆(𝜅1, 𝜅2, 𝜋, 𝑡), 𝜎2𝐼3), where 𝑖 indicates the replicate of the measurement, 𝒩  denotes the multivariate normal distribution with mean vector 𝑆(𝜅1, 𝜅2, 𝜋, 𝑡)  and 
covariance matrix 𝜎2𝐼3.  We chose the prior distributions, 𝜅1,  𝜅2 , 𝜎~𝑈𝑛𝑖𝑓(0,10) , and  𝜋~𝑈𝑛𝑖𝑓(0,1)𝑎𝑠𝜋 can only take parameters in this range.  

We used PyStan distribution of the STAN software for Bayesian Analysis [55], which 
allows us to sample approximately from the posterior distributions using Markov Chain 
Monte Carlo methods. In our implementation, we used four chains with 500 warm-up 
draws and 500 post-warm-up draws, respectively. 

QUANTIFICATION AND STATISTICAL ANALYSIS 



MATLAB version R2016a was used for least squares fitting. The differentiable algebra 
method using the software DAISY was used to verified that the model is structurally 
identifiable [53,54]. The reduced ODE model was described in detail in the Reduced 

model section of the Method Details. Priors and likelihood of Bayesian inference are 
described in detail in the Bayesian parameter inference section of the Method Details. 
PyStan version 2.19 distribution of the statistical software STAN was used to access 
information on the posterior distribution via approximate sample. STAN used Hamiltonian 
Markov Chain Monte Carlo to approximately sample from the posterior distribution. 
N=2000 samples were drawn from four Markov chains. From each chain, 500 warm-up 
draws were performed and discarded before drawing 1000 samples. For each of the four 
mutant MEK variants, we checked that the chains are sufficiently burnt in after the warm 
up phase by looking at trace plots and output statistics, in particular, the Rhat parameter 
and the effective sample size estimates. Resulting histograms for the marginal 
distributions for the three parameters of interest in Figure 3D. 

The parameter means reported by PyStan are as follows: 
 
Mutant Wild Type Y130C F53S E203K SSDD 
kappa1 0.29 0.36 0.41 0.64 0.17 
kappa2 0.19 0.16 0.16 0.10 0.03 
pi 0.30 0.30 0.28 0.55 0.35 
sigma 0.10 0.07 0.09 0.11 0.12 
 

Error bar definitions can be found in figure legends. The number of experimental 
replicates for the dual phosphorylation of ERK by wild type MEK is reported in the legend 
of Figure 1. The number of experimental replicates for the dual phosphorylation of ERK 
by the four mutant MEK variants is reported in the Bayesian parameter inference section 
of the Method Details.  The number of experimental replicates for the phosphorylation of 
monophosphorylatable ERK by wild type MEK is reported in the legend of Figure S1. The 
number of experimental replicates for the activation of MEK by Raf is reported in the 
legend of Figure 4.  

DATA AND CODE AVAILABILITY 

Least squares fitting was performed using the lsqcurvefit routine in MATLAB version 
R2016a with the objective function described in the legend of Figure S2. Bayesian 
parameter inference was performed using PyStan version 2.19 distribution with the 
Hamiltonian Markov Chain Monte Carlo algorithm with the details described in the Method 
Details. The mass spectrometry data for the phosphorylation ratio of ERK is available via 
ProteomeXchange with identifier PXD016580 [52]. 
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