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Protein aggregation occurs through a variety of mechanisms,

initiated by the unfolded, non-native, or even the native state

itself. Understanding the molecular mechanisms of protein

aggregation is challenging, given the array of competing

interactions that control solubility, stability, cooperativity and

aggregation propensity. An array of methods have been

developed to interrogate protein aggregation, spanning

computational algorithms able to identify aggregation-prone

regions, to deep mutational scanning to define the entire

mutational landscape of a protein’s sequence. Here, we review

recent advances in this exciting and emerging field, focussing

on protein engineering approaches that, together with

improved computational methods, hold promise to predict and

control protein aggregation linked to human disease, as well as

facilitating the manufacture of protein-based therapeutics.
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Introduction
It has been long been recognised that protein aggregation

pervades human morbidity and mortality [1] and

impinges on our ability to produce life-saving and life-

changing protein therapeutics both rapidly and economi-

cally [2]. It is now widely understood that as well as

adopting soluble, functional structures, many proteins

can also self-assemble forming structured aggregates such

as amyloid fibrils [3,4], or to undergo liquid-liquid phase-

separation [5,6]. The later process drives the formation of

membraneless organelles that can be functional (such as

in the nucleolus [7]), or causative of cellular dysfunction
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and disease (such as in virus replication [8] or in protein

aggregation disorders [9]) (Figure 1). The ability of

proteins to catalyse reactions, to form stable scaffolds,

and to bind ligands tightly and with high specificity, has

enormous potentials for the use of proteins in industry

[10,11]. However, a major challenge in the use of proteins

for such applications lies in their instability, conforma-

tional dynamics and inherent tendency to aggregate.

There is thus an important and currently unmet need

to be able to identify protein sequences that may have

undesired properties and to engineer their sequences to

improve their properties.

While aggregation-prone regions (APRs) can be readily

identified in short peptide segments using computer algo-

rithms [12–15], for intrinsically disordered proteins (IDPs)

and globular proteins it is still difficult, if not impossible, to

identify aggregation-prone and aggregation-resistant

sequences under a given set of conditions. This is because

aggregation (taken here to be any non-native oligomeric

state) can proceed through diverse mechanisms, driven by

distinct physico-chemical mechanisms (Figure 1). In addi-

tion, the observed aggregation propensity of each protein

sequence/structure on each pathway results from a com-

plex convolution of the effects of its sequence on thermo-

dynamic stability, structure, cooperativity and dynamics,

which all also depend on the solution conditions (pH,

temperature, ionic strength, solvent, nature of surfaces,

etc.). For each and all of the pathways traversed, detailed

understanding of the molecular mechanisms of the early

stages of aggregation remain elusive. By linking changes in

sequence to changes in biophysical and cellular behaviour,

powerful new approaches in protein engineering are now

able to provide a wealth of insight into this process, which

can then be used to enhance the performance of computer

algorithms so they are better able to predict protein

behaviour. Here we discuss how the integration of protein

engineering approaches with orthogonal methods includ-

ing computational and high-throughput phenotypic

screening methods, is now set to tackle this difficult

problem.

Delineating aggregation mechanisms using
rational protein engineering methods
Rational redesign (i.e. the substitution of a small number

of residues in a protein sequence with those having the

desired physico-chemical or spatial properties) is an

attractive approach to modulate protein aggregation
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Figure 1
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Schematic illustration of aggregation pathways.

The precursor of aggregation may be the unfolded, partially folded or native state of a protein. During amyloid formation, oligomeric species

formed from the initial aggregation-prone monomer, can then assemble further to form higher-order oligomers, one or more of which can form a

nucleus, which, by rapidly recruiting other monomers, can nucleate assembly into protofibrils and amyloid fibrils. As fibrils grow, they can

fragment, yielding more fibril ends that are capable of elongation by the addition of new aggregation-prone species [86]. Alternatively, amorphous

aggregation can occur via one or more aggregation-prone species growing into larger species, by Ostwald ripening or other self-association

mechanisms [87].
when there is prior knowledge of the mechanism of

aggregation (Figure 2) (e.g. by altering a protein–protein

interface required for aggregation [16–18]). Approaches

such as alanine scanning can also be used to identify or

confirm predictions of residues key to the control of

aggregation [19,20]. The ability to identify ‘aggregation

hotspots’ has been facilitated by the development of at

least 40 different algorithms [12–15]. While differing in

their metrics, these programs generally consider three

characteristics which control protein aggregation: solu-

bility, thermodynamic stability and aggregation propen-

sity. These computational tools, summarised in Table 1,

provide powerful information with which to start any

study of protein aggregation by portraying the inherent

aggregation propensity of the protein sequence. How-

ever, some consider local protein sequences (generally 4-

6 residues in length), leaving open the important ques-

tions of how this inherent insolubility/aggregation poten-

tial is realised in the context of the entire protein

sequence, whether disordered (as in the unfolded state

or for IDPs) or when ‘hidden’ by the native 3D structure

of the protein.

Detecting aggregation-prone regions in
primary sequences
More than 80 % of proteins possess at least one region in

their sequence that has a propensity to aggregate (i.e.
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APRs [21]), calculated based on hydrophobicity, charge

patterning, aromatic content and b-sheet propensity [12].

These algorithms use the primary amino acid sequence to

predict APRs via empirical training sets or/and calculation

based in the known physicochemical properties of the

20 canonical amino acids [12]. One of these algorithms,

TANGO [22] (Table 1), identifies APRs by calculating

the propensity of penta-peptide sequences to form buried

b-sheets, using an algorithm trained on experimental

measurement. In an exciting recent application of this

algorithm, Khodaparast et al. [23�] identified APRs

enriched in the Escherichia coli proteome, and used the

resulting information to develop new antibacterial agents

by expression of redundant APRs (that were not sequence

unique in the genome). Expression of 125 of these

sequences resulted in cell death by inducing widespread

aggregation of 541 proteins (identified using mass spec-

trometry) into cross b-structure-enriched inclusion bod-

ies. In marked contrast, overexpression of unique APR

sequences within the proteome had no effect. Antimicro-

bial amyloid-nucleating peptides were bactericidal for a

large number of Gram-negative bacteria, suggesting that

the approach may have therapeutic potential. Similar

approaches from the same groups have also been used

as anti-cancer strategies [24], suggesting the general

utility of this method to exploit protein aggregation for

beneficial purposes.
www.sciencedirect.com
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Figure 2

Current Opinion in Structural Biology

Summary of different methods for measuring and predicting protein aggregation.

Computational methods can predict aggregation-prone regions using sequence or structure input. Rational design involves introducing specific

mutations into a protein and subsequent analysis of the mutational effect in comparison to the behaviour of the wild-type protein. Directed

evolution and in vivo screening methods obviate protein purification and large numbers of variants can be screened to identify proteins with

enhanced properties. Finally, deep mutational scanning can potentially samples every possible mutation and enables quantification of the effect on

protein stability or aggregation to be determined in vivo.

www.sciencedirect.com Current Opinion in Structural Biology 2020, 60:157–166
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Table 1

Computational methods to predict and modulate protein aggre-

gation. Methods are grouped by calculated metric and are sub-

divided into methods that use primary or tertiary sequence data.

Algorithms denoted with ‘P’ represent those specific to Prion

formation.

Protein solubility

Sequence Structure

Aggrescan [88]

CamSol intrinsic [89]

Protein-Sol [90]

Proso II [91]

Aggrescan3D 2.0 [39]

CamSol [89]

SAP [92]

SOLart [93]

Aggregation propensity

Sequence Structure

Zyggregator [94]

TANGO [22]

Pafig [95]

SALSA [96]

WALTZ-DB 2.0 [97]

AmyCoP [98]

pWALTZP [99]

PrionWP [100]

PLAACP [101]

pRANKP [102]

PAPAP [103]

PASTA 2.0 [104]

Solubis [42]

FoldAmyloid [105]

NetCSSP [106]

BETASCAN [107]

STICHER [108]

Zipper DB [109]

AmyloidMutants [110]

AMYLPRED2 [111]
Effect of ‘order’ in intrinsically disordered
proteins
Transient structure formed within IDPs and short peptides

can profoundly affect the observed aggregation rate of

APRs. For example, the aggregation of Tau, a largely

unstructured 441-residue protein which is associated with

severalneurodegenerativediseases, includingAlzheimer’s,

Pick and chronic traumatic encephalopathy [25–27], is

thought to be largely driven by the amyloidogenic six-

residue peptide sequence 306VQIVYK311 [28��]. Perplex-

ingly, mutations genetically linked to tauopathies such as

P301L/S are found outside this sequence. This is similar to

the positional relationship between point variants of

a-synucleinassociated withearlyonset familialParkinson’s

disease and the non-amyloid component (NAC) region

shown to be necessary and sufficient for aggregation

[29,30]. Cross-linking studies, together with molecular

dynamics (MD) simulations, showed that residues 295-

311 of Tau form a b-hairpin, sequestering the APR, and

slowing aggregation. Accordingly, destabilising the b-hair-
pin (by substitution of P301 with a bulky leucine residue)

wastofoundtospeedupaggregation,whilestabilisingit (via

adding a Trp-zip motif to the termini of theb-hairpin, in the
P301Lbackground)sloweddownaggregation[28��].These

elegant protein engineering experiments were thus able to

confirm b-hairpin formation as a controlling mechanism of

aggregation, in which the aggregation potential of the APR

is modulated by specific structure formation in a region that

both flanks and overlaps with the APR.
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The transient and often promiscuous intra-molecular

and inter-molecular interactions that control aggregation

of both IDPs and initially structured proteins are chal-

lenging to study, but are necessary to understand and

map because of their central importance in initiating

aggregation. As a consequence of their dynamic and

heterogeneous nature, high resolution structural techni-

ques to map these important protein–protein interac-

tions (Figure 1) are difficult, if not impossible to perform.

However, these sequences can be engineered to allow

site-specific introduction of specific reagents or reporters

to gain low resolution information. These include cross-

linking reagents, such as diazirines [31�], ruthenium

complexes (PICUP) [32] and disuccinimidyl suberate

(DSS) [33], which when coupled with mass spectromet-

ric techniques [34], allow identification of pairs of resi-

dues that are spatially localised within the dynamic

ensemble, even if only transiently populated [35]. Other

reagents allow spectroscopic analyses. For example,

introduction of spin labels (introduced via unique Cys

residues) at single sites across proteins allows identifica-

tion of transient interactions between sequence-distant

residues, or between protein molecules using NMR

(using an approach known as Paramagnetic Relaxation

Enhancement [36]) or EPR (using Pulsed electron dou-

ble resonance (PELDOR)/double electron-electron res-

onance (DEER) EPR spectroscopy [37]. These methods

have been applied to a-synuclein, revealing that this

IDP makes extensive intra-molecular and inter-molecu-

lar contacts which are highly sensitive to environmental

conditions [29,37]. Such properties are reminiscent of

those described above for Tau, especially as early onset

familial missense variants occur outside of the main

amyloid core for both proteins, suggestive of similar

mechanisms at work that control the aggregation of these

IDPs in vitro and possibly also in vivo. Similarly to Tau,

formation of a b-hairpin structure (residues 37 to 54) in a

region upstream to NAC (residues 61-95) in a-synuclein,
induced upon complexation with a b-wrapin engineered

binding protein, resulted in inhibition of amyloid forma-

tion [38]. These methods often yield low resolution,

relatively sparse structural information, but by integrat-

ing the outputs from different approaches, remarkably

precise molecular mechanisms of aggregation can result,

especially when complemented with MD simulations.

For example, Bunce et al. [31�] used fluorescence

quenching of an extrinsic fluorophore (TAMRA-Ahx)

and cross-linking studies to determine how the peptide

Ab16-22 (a fragment of Ab40/42 associated with

Alzheimer’s disease) aggregates and is able to catalyse

self-assembly of Ab40 via secondary surface nucleation.

Effect of ‘disorder’ in the aggregation of
globular proteins
Understanding the effect of protein dynamics, sequence

and solution conditions is also critically important for

determining, and hence predicting, the potential of
www.sciencedirect.com
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globular proteins to aggregate. Given that aggregation can

occur from the native state, or from partially or globally

unfolded species (Figure 1), our ability to predict aggre-

gation requires understanding of the local and global

unfolding properties of the protein and how this depends

on sequence and solution conditions. Simulation (and

quantification) of protein dynamics in silico offers a solu-

tion to this problem, but requires greater computational

resources and, in some cases, development of force fields

able to accurately simulate protein behaviour. Aggres-

can3D 2.0 [39] (Table 1) addresses this issue by using

CABS-flex [40,41] for rapid simulations (10 nanoseconds

length) of near-native dynamics of globular proteins. This

‘dynamic mode’ of Aggrescan3D 2.0 yielded higher

aggregation propensity estimates for 80 % of the proteins

tested relative to the value obtained from static struc-

tures. An alternative approach is to integrate rapid compu-

tational methods to predict protein solubility with algo-

rithms able to predict thermodynamic stability. Solubis

[42,43] (Table 1), for example, combines TANGO [22]

(to identify APRs) with FoldX [44] (to compute the effect

of amino acid substitutions on thermodynamic stability).

Solubis [42,43] can be used to identify positions in a

protein structure able to accommodate gatekeeper resi-

dues (i.e. residues with low b-sheet propensity (e.g. Pro)

and high solubility such as the charged amino acids (Arg,

Lys, Glu and Asp) with minimal changes in protein

stability (DG�
UN). This allows the redesign of proteins

to retain stable and native folds, but to reduce aggregation

propensity. This approach has been used successfully to

decrease the aggregation kinetics of the Protective Anti-

gen protein from B. anthracis [42], a key component in

Anthrax vaccines [45], while preserving the native struc-

ture and function. This highlights the power of utilising

the interdependency of solubility, stability and aggrega-

tion propensity to determine and re-engineer a protein’s

aggregation potential.

Understanding the diverse effects of
electrostatics on protein aggregation
Proteins containing low complexity prion-like domains

(PRDs), typically IDPs enriched in glycine and hydrophilic

residues, play an important role in the formation of liquid-

liquid phase separated membrane-less organelles such as the

nucleolus, stress granules and P-bodies [46], and may allow

generation of selectable genetic variability akin to that

previously reported for prions [47]. Despite the relative

depletion of hydrophobic residues in PRDs, reversible amy-

loid fibril formation can occur upon liquid-liquid phase

separation of such sequences, and hence these sequences

are known as LARKS (low-complexity aromatic-rich kinked

segments) [48]. One such example is hnRNPA1 [49��], an

RNA binding protein in which missense mutations are

associated with neurodegenerative diseases [50]. Scanning

the low complexity (LC) domains for segments containing

(Asn)-Asp-(Asn) and (Gly)-Phe/Tyr-(Gly)  motifs identified

three peptides which formed a hydrogel composed of
www.sciencedirect.com 
amyloid fibrils that dissociated upon an increase in temper-

ature [49��]. The structure of the first reversible amyloid core

(termed hnRAC1) revealed the cross-b architecture

expected for an amyloid fibril, but with notable differences,

thought to be important for their function. Firstly, the inter-

sheet interface was composed of hydrophilic Asn residues

compared with the dry steric zipper typical of amyloid [3,4].

The fibre was further destabilised by the stacking of an

aspartic acid (D214) along the exterior face of its parallel in-

register b-sheets. Finally, the structure revealed a kink at

G211, thought to allow hydrogel formation by sterically

facilitating inter-fibrillar cross-linking via p-p stacking of

the adjacent Phe and other residues. Accordingly, an

hnRAC1 peptide containing G211V, or F210A, or F216A

displayed reversible fibril formation, but impaired hydrogel

formation. Conversely substituting the destabilising aspartic

acid residue (D214V/N) in hnRAC1 resulted in irreversible

fibril formation. Interestingly, Asp, Val or Asn substitutions

are also found in familial amyotrophic lateral sclerosis (ALS)

patients and result in irreversible fibril formation [51]. Taken

together, the results provide a structural rationale for

‘maturation’ of irreversible amyloid fibrils within liquid-

liquid phase separated low complexity PRDs. The recogni-

tion that the aggregation propensity (and liquid-liquid de-

mixing) of PRDs is driven by sequences that are chemically

and sterically distinct to those involved in amyloid formation

[52]has ledtothedevelopmentofAMYCO[53]analgorithm

specialised for the prediction of PRDs (Table 1).

Electrostatic interactions are also important drivers and

modulators of the aggregation of globular proteins, with

pH and ionic strength being important determinants of

aggregation both by increasing the probability of proteins

unfolding, and by changing the probability of productive

protein–protein interactions between transiently exposed

APRs in non-native states [54–56]. The aggregation of

natively structured proteins can also be problematic for

proteins producedat scale, such as in the biopharmaceutical

industry in which proteins are manufactured in high vol-

ume and at high concentration [2]. In these cases, aggrega-

tion is reversible (at least in the initial stages) and is driven

by intermolecular contacts mediated by the presence of

hydrophobic or charge-complemented patches on the pro-

tein surface, via a mechanism referred to as ‘colloidal

aggregation’ [57] (Figure 1). ‘Supercharging’ proteins by

introductionofan excessof acidicor basic residues through-

out the protein [58–60] has been shown to reduce aggrega-

tion induced by such pathways. Alternatively, introducing

defined clusters of specific charged residues that enhance

protein stability and reduce protein–protein interactions

has been shown to be an effective strategy to reduce

aggregation [59,61–63].

Using directed evolution and in vivo screening
to define aggregation landscapes
Directed evolution (DE) methods involve generating

diversity in the gene of interest and then isolating variants
Current Opinion in Structural Biology 2020, 60:157–166
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with improved characteristics from this library using

phenotypic selection [64] (Figure 2). DE approaches have

been used to develop aggregation-resistant biopharma-

ceuticals by screening for thermal resistance [65,66], or by

utilising three selection methods (temperature, reduction

and hydrophobicity) in parallel [67]. A potential disad-

vantage of optimising a protein’s sequence in this manner

is that function is ignored, which can result in proteins

with enhanced biophysical properties, but reduced activ-

ity, akin to sequence-stability trade-offs [68]. To counter

this, Wang et al. described a soluble expression phage

assisted continuous evolution method (SE-PACE) [69�].
Here, the protein of interest (POI) is linked in-frame to

the N-terminal fragment of a split T7 RNA polymerase

(to select for soluble POIs), as well as to the omega

subunit of RNA polymerase (RNAP) to select for POIs

with high target binding affinity using a bacterial two

hybrid approach (using 434 phage cI repressor as the

DNA-binding domain). Linking expression of soluble

and functional POI to these distinct polymerases allowed

both traits to be selected for simultaneously by only

allowing expression of the minor coat protein III (pIII)

required for progeny phage upon expression and comple-

mentation of both the N-terminal and C-terminal frag-

ments of an intein transcribed by RNAP and T7 poly-

merase, respectively. Using this approach, a fivefold

enhancement of expression, but unchanged target affinity

was achieved for single-chain antibody fragments (scFvs),

as well as enhancement of both expression and activity for

the enzyme cytidine deaminase.

If aggregation occurs via a partially folded protein structure,

the propensity to aggregate may not always correlate with

protein thermal stability. For such proteins, it is necessary

to develop alternative screens to create proteins with

enhanced solution behaviour. One route to achieve this

has recently been developed, in which an E. coli b-lacta-
mase folding reporter links the innate ability of a protein to

aggregate to antibiotic sensitivity by fusing the POI

between two domains of b-lactamase [70,71]. The system

has been shown to be able to differentiate between aggre-

gation-prone and aggregation-resistant variants of diverse

protein sequences and structures, including the aggrega-

tion-prone peptides Ab1-42 and amylin, the aggregation-

prone protein b2 microglobulin, and single domain anti-

bodies. The system has also been used to screen for small

molecule inhibitors of protein aggregation in the periplasm

of E. coli [71] and for the selection of excipients able to

suppress aggregation [72]. Other screens that link survival

to dihydrofolate reductase (DHFR) activity have also been

developed and used to identify peptide inhibitors of

a-synuclein aggregation [73] and to characterise the phe-

notypes of 99 % of all the possible single-site substitutions

of Ab1-42 (see below) [74].

Screening peptides in vivo has also been used to gain

deeper insight into the pathways by which toxic
Current Opinion in Structural Biology 2020, 60:157–166 
aggregates are formed [75�]. A combinatorial library of

>10 million short cyclic peptides (S/T/C-X1-Xn, where X

is any amino-acid and n = 3-5) was produced in bacteria

using split intein-mediated circular ligation of peptides

and proteins [76]. The peptides were then screened for

their ability to reduce aggregation monitored by a reduc-

tion in fluorescence of an Ab1-42-GFP fusion reporter by

fluorescence-activated cell sorting [75�]. Biochemical

analysis of clones that increased fluorescence revealed

penta-peptides that halt Ab1-42 aggregation by stabilising

b-sheet-like structures. These peptides also reduced

toxicity measured in primary neuronal cell lines and in
vivo.

Developing enhanced understanding of
protein behaviour using deep mutational
scanning
Deep mutational scanning (DMS) can be used to reveal

the effect of thousands of different single amino-acid

substitutions on a protein’s properties by quantifying

the relative change of abundance of each member of

the library under a suitable selective pressure using next

generation sequencing methods [77]. This approach is

extremely powerful as it combines the strengths of both

‘traditional’ protein engineering methods (quantifiable

sequence-phenotype relationships) and DE methods

(the ability search vast areas of sequence space without

protein purification) (Figure 2). DMS has thus found

broad application from structure determination [78,79]

to developing a better understanding of the determinants

of protein thermodynamic stability [80] and even the

utility of alanine scanning [81].

Two studies have recently used DMS to gain a broader

understanding of the relationship between sequence and

aggregation mechanism. Firstly, to investigate the molec-

ular determinants of Ab1-42 aggregation Gray et al., [74],

used selective growth pressure in yeast cells, by fusing Ab1-

42 to DHFR and growing a library of Ab1-42 variants using

methotrexate as a selective pressure for DHFR function.

This screen evaluated 791/798 of all possible single amino

acid substitutions of Ab1-42. Remarkably, 25 % of the

variants were more soluble than Ab1-42, with the others

showing unchanged or increased aggregation propensity.

Substitutions to Asp and Pro enhanced solubility the most

(presumably by increasing charge or decreasing b-strand
propensity, respectively), whereas substitutions with Trp

or Phe were associated with greater aggregation (presum-

ably by increasing hydrophobicity). This mutational infor-

mation revealed residues 17-20, 31-32, 34-35, 39 and 41 as

‘hotspots’ important for Ab1-42 aggregation, which most

likely form buried b-strands. Interestingly, these concur

with predictions of APRs, for example, using TANGO and

Zyggregator [82]. In the second example, Bolognesi et al.
exploited the ability to measure the sequence-function

relationships of thousands of variants in parallel to under-

stand the relationship between aggregation and toxicity
www.sciencedirect.com
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focussing on the PRD of the TAR DNA-binding domain 43

(TDP-43), the aggregation of which is linked to ALS [83��].
Comparison of the relative change in the population of

>50 000 variants of yeast cells containing one or two

substitutions in TDP-43 before and after induction

revealed a 31 residue ‘toxic hotspot’, which correlates with

the region of the protein in which mutations occur in

ALS patients. Surprisingly, substitutions in this hotspot

that increase hydrophobicity decreased toxicity, whereas

substitutions that increase charge or polarity increased

toxicity. Variants with increased hydrophobicity produced

larger, stable aggregates that are less toxic than the small

liquid-like loci found at the nuclear periphery for the more

toxic variants. Furthermore, epistatic analysis of variants

containing two substitutions suggested the presence of

secondary structure in this apparently disordered domain.

This powerful method can thus be used to identify the

structural properties of IDPs in vivo and, further, to inter-

rogate the relationship between the function and toxicity of

amyloid versus protein assemblies in liquid-liquid phase

separation.

Future perspectives
The synergy between protein engineering and biophys-

ical measurements in vitro with cellular approaches has

been integral to developing our understanding of pro-

tein aggregation (Figure 2). The diversity of aggregates

and aggregation mechanisms, together with the emerg-

ing realisation that even IDPs contain transient struc-

ture crucial to their function and aggregation potentials,

and the finding that native state dynamics are crucial to

understanding aggregation propensity, pose enormous

current challenges to our ability to predict and modu-

late aggregation. The ability to rapidly survey the

aggregation propensity of large numbers of highly

homologous sequences using DMS methods together

with statistical and machine learning methods, is now

able to guide protein engineering [84,85] and, in the

future, is sure to guide the development of new predic-

tive algorithms. These large datasets, when integrated

with detailed spectroscopic and cross-linking studies

(all made possible by protein engineering approaches),

MD simulations and cellular insights, will allow us in

the future to define the relationship between sequence,

structure, function and aggregation. This will allow

genome engineering or the development of small mole-

cules or biomolecules able to control protein aggrega-

tion and to develop and manufacture biotherapeutics

more rapidly and economically. What is clear is that

there is still much to learn, but the powers of modern

protein engineering methods, combined with the abil-

ity to harness the information that results through

machine learning, promises a step change into our

ability to understand protein behaviour and to capital-

ise on the new knowledge to capture the complexity

and powers of proteins for the benefits of humankind.
www.sciencedirect.com 
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