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Abstract 

This work contributes to the improvement of glucose quantification using near-infrared (NIR), mid-

infrared (MIR), and combination of NIR and MIR absorbance spectroscopy by classifying the spectral data 

prior to the application of regression models. Both manual and automated classification are presented based 

on three homogeneous classes defined following the clinical definition of the glycaemic ranges 

(hypoglycaemia, euglycaemia, and hyperglycaemia). For the manual classification, partial least squares and 

principal component regressions are applied to each class separately and shown to lead to improved 

quantification results compared to when applying the same regression models for the whole dataset. For the 

automatic classification, linear discriminant analysis coupled with principal component analysis is 

deployed, and regressions are applied to each class separately. The results obtained are shown to outperform 

those of regressions for the entire dataset. 
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1. Introduction 

The importance of the development of non-invasive glucose monitoring in diabetes management has 

spurred research into the quantification of glucose through in vivo and in vitro experiments [1], [2]. The 

underlying modalities pursued in these studies can be listed as; near-infrared (NIR), mid-infrared (MIR), 

Raman and bio-impedance spectroscopy, electromagnetic sensing, fluorescence technology, optical 

coherence tomography, optical polarimetry, reverse iontophoresis, and ultrasound technology [3]. Of all 

the techniques mentioned above, NIR and MIR spectroscopy are promising and commonly used methods 

[4], [5]. 

NIR and MIR spectroscopy use light beams in the wavelength range of 750–2500nm (13333–4000cm-

1) and 2500–10000nm (4000–1000cm-1), respectively [6]. These technologies are not expensive for frequent 

measurements as it does not use any specific reagent [7].  One advantage of the MIR method is decreased 

scattering phenomena and increased absorption because of higher wavelengths compared with NIR 

spectroscopy [8]. Moreover, the peaks of glucose are sharper in the MIR region [9]. NIR light, on the other 
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hand, possesses a deep penetration length [10] and could traverse through different skin layers to reach the 

subcutaneous area [11]. 

While travelling through a sample, some frequencies of NIR/MIR light are absorbed and scattered 

because of the interaction with the physiological compounds of the skin [12]. These absorption and 

scattering measures are used for the quantification analysis of the glucose or other chromophores in the 

sample [6]. 

For extracting glucose-related information from the NIR and MIR spectra, multivariate calibration 

methods such as partial least squares regression (PLSR), principal component regression (PCR), multiple 

linear regression, artificial neural networks, and support vector machine regression are typically applied to 

the recorded signals [13]. For improving the accuracy of the analyses, many pre-processing methods have 

also been proposed [14], such as multivariate scatter correction (MSC), smoothing, and digital band-pass 

filtering. However, accurate quantification results remain a challenge [15]. 

This paper proposes a classification-before-regression methodology to improve glucose measurement 

using NIR, MIR and a combination of NIR and MIR (hereafter referred to as NIR-NIR) spectroscopy. Both 

manual and automatic classification are carried out by classifying the dataset into three more homogeneous 

groups following the clinical definition of the glycaemic ranges (hypoglycaemia, euglycaemia, and 

hyperglycaemia). Partial least squares and principal component regressions are applied with the manual 

classification; for the automatic classification, linear discriminant analysis coupled with principal 

component analysis in both cases are deployed, and regressions are created for each class. The results 

obtained using the same data for both cases are shown to outperform the results obtained when no 

classification-before-regression is used. 

Classification of spectral data before regressions has been previously used in other research areas, such 

as rapid analysis of coal properties using NIR spectroscopy [16], [17]. However, this is the first paper to 

our knowledge that correlates spectral data using a pre-classification approach in order to improve the 

accuracy of glucose measurement. 

2. Data collection 

2.1. Sample preparation 

Two aqueous solutions (A and B), both with a volume of 0.5 litres, were prepared. Solution A contained 

glucose, human serum albumin, and phosphate with concentrations of 500mg/dl, 5g/dl, 0.01M/dl, 

respectively, and had a pH of 7.4. Solution B had the same properties as solution A, but without glucose. 

5 ml solution A was removed and stored in a tube as the first sample. The removed amount from 

solution A was then replaced with 5 ml solution B so that the glucose concentration of solution A is lowered 

to 495mg/dl. Then, 5 ml solution A was again collected as the second sample, and it was replaced again 

with 5 ml solution B. Repeating the same steps, 100 samples were obtained with the glucose concentrations 

ranging from 5mg/dl to 500mg/dl, at intervals of 5mg/dl. The samples were prepared in the laboratories of 

the Department of Chemistry, University of Sheffield, Sheffield, UK. 

2.2. Spectra acquisition 

Spectra collection was performed under uncontrolled environmental conditions in the laboratories of 

the Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK. A Fourier 



transform infrared (FTIR) spectrometer (PerkinElmer Inc., USA) was utilised to collect the absorption 

spectra of the samples by attenuated total reflection technique. 

The spectrometer sensing lens was cleaned using ethanol before placing each sample to avoid 

inaccurate readings. A few drops of the sample were then added so that it covered the whole lens surface. 

For obtaining more accurate spectral data, the spectrum of each sample was constructed by averaging four 

scans of the spectrometer readings [18]. The recorded spectra covered wavelength range of 2100–8000nm 

(4761–1250cm-1) with a resolution of 1.7nm. Wavelengths from 2100 to 2500nm (4761–4000cm-1) of the 

collected spectra belonged to NIR region, and from 2500 to 8000nm (4000–1250cm-1) to MIR. Fig. 1 shows 

all the raw spectra observed. 

  

Fig. 1. Original spectra collected from chemical samples (A) NIR spectra, (B) MIR spectra 

3. Methods 

3.1. Quantification methods 

As shown in Fig. 2, three methods were developed in this work for glucose quantification from the 

collected NIR, MIR, and NIR-NIR spectral data. For data analysis in these quantification methods, we used 

Python (3.6.7), scikit-learn (0.15.2), and SciPy (0.12.0). 



 

Fig. 2. Quantification methods applied in this paper for glucose measurement using NIR, MIR, and NIR-MIR spectroscopy 

Method 1 

In this method, regression models were implemented for the raw and pre-processed spectra of the whole 

sample set to predict the relevant glucose concentrations. 

Method 2 

In this method, the spectral data were divided into the three groups shown in Table 1. Pre-processing 

and regression methods were then implemented for each group individually. By performing this method, 

the idea was to investigate the effect of categorising the dataset as being in the hypoglycaemic range 

(70mg/dl), euglycaemic range (70-180mg/dl), and hyperglycaemic range (180mg/dl) [19] on the 

accuracy of the measurements. 

As shown later in the paper, Method 2 improved the measurement results as compared to Method 1. 

This improvement led us to proceed to Method 3, which as Method 1 used only the spectral data without 

further information (Method 2 used the labels in addition to the spectral data). 

Table 1. Division of the dataset into three groups following the clinical definition of the glycaemic ranges 

 
Label 

Class 1 Class 2 Class 3 

Glucose concentration range 5–70 mg/dl 75–180 mg/dl 185–500 mg/dl 

Corresponding glycaemic range Hypoglycaemia Euglycaemia Hyperglycaemia 

Quantity of data in the class 14 22 64 

Method 3 

This method had the same principles as Method 2 but automated the grouping process using PCA-LDA 

classifier. 



3.2. Pre-processing methods 

In spectroscopic analyses, pre-processing techniques are generally applied to the raw spectra to curtail 

adverse effects from elements other than the analyte of interest and environmental conditions [20]. In this 

work, three pre-processing techniques applied to assess the effectiveness of the proposed pre-classification 

approach when it is coupled with conventional pre-processing methods.  

Smoothing (S) 

Savitzky-Golay smoothing is a pre-processing method to diminish the effect of noise on the raw spectra 

[17]. The method is an averaging algorithm that fits a polynomial with successive subsets of adjacent data 

points based on the least-squares [21]. For the Savitzky-Golay filter in this work, a five-point window and 

a second-order polynomial were implemented. 

Multivariate scatter correction (MSC) 

The scattering phenomenon is the most significant obstacle when attempting quantitative measurements 

using NIR spectroscopy [22]. MSC is a useful pre-processing technique to eliminate the effect of light 

scattering [23]. In this method, the scattering of each spectrum is estimated relative to a reference spectrum 

[14]. In this work, the average of the all signals in the calibration set was considered as the reference 

spectrum; each signal was then adjusted using the reference so that they all had the same scatter level [17]. 

Smoothing coupled with MSC (S-MSC) 

Applying different pre-processing techniques together is a common approach to deal with spectroscopic 

data [15]. In this paper, a combination of the smoothing and MSC methods was also applied as a third pre-

processing technique [24]. 

3.3. Regression methods 

For constructing predictive models for selected analytes such as glucose, multivariate calibration 

methods are applied to spectroscopic data [12], [25]. Linear models such as PLSR and PCR are generally 

preferred since they are easy to apply and amenable to Physico-chemical interpretation [26]. Likewise, in 

this paper, PLSR and PCR are selected for glucose quantification using absorbance spectroscopy. 

For optimising the PLS and PCR components quantity, different numbers ranging from 1 to 10 were 

examined; and each time, the sum of squares of differences between reference and predicted glucose levels, 

based on ten-fold cross-validation analysis, was calculated to form the predicted residual sum of squares 

(PRESS). The model minimising the value of PRESS/(N-A-1) is then selected; where N is the size of the 

calibration set and A is the number of components [27]. 

3.4. Classification method 

Principal component analysis (PCA) reduces the dimensionality of data while retaining most of the 

information present in the dataset [28]. Linear discriminant analysis (LDA) is a technique that maximises 

the variance between groups while minimising the variance within groups based on the determination of 

linear discriminant functions [29]. In this work, PCA coupled with LDA (PCA-LDA) is employed to 

classify the dataset, a method which was shown to be useful in this regard [30]. Different values from 1 to 



10 were considered as the number of PCA components and the model resulting in the best classification 

accuracy, based on ten-fold cross-validation results,  was then selected [17]. 

3.5. Evaluation method 

The maximisation of the training data size is a basic approach for dealing with small datasets, and cross-

validation is suitable for this purpose [31]. Ten-folds cross-validation was applied in this work to evaluate 

the regression and classification models [32]. 

3.6. Evaluation Metrics 

Root mean square error of prediction (RMSEP) 

In this work, RMSE was calculated as follows to measure the actual error of quantifications [33]. 
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N : the size of the calibration set 

iy : reference value 

ˆ
iy : predicted value 

Percentage error around the mean (PEM) 

PEM was used to analyse the performance of the quantification methods for each class of data [17] 

(“quantification methods” and “classes” are discussed in section 3.2). 

( / ) 100PEM RMSECV Y=    

Y : the average of reference values 

Correlation coefficients (r) 

r is a statistical measure indicating correlations between the reference and predicted glucose 

concentrations [34]. 
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Y : reference values 

ˆY : predicted values 

ˆCov (Y , Y) : covariance between Y and Ŷ  

Yσ : standard deviation of Y  

Ŷ
σ : standard deviation of Ŷ  



Clarke error grid analysis (EGA) 

EGA considers the relative difference between reference and predicted glucose level and the clinical 

significance of this difference [35]. In this paper, EGA was performed to assess the clinical accuracy of the 

measurements, a method which can be used to evaluate in vitro quantitative analysis of glucose[36]. 

4. Results 

4.1. Classification results

It was mentioned earlier that the proper number of PCA components in the PCA-LDA classifier, 

implemented in the third quantification method, was chosen based on the examination of varying values. 

Classification results based on ten-fold cross-validation for a different number of PCA components ranging 

from 1 to 10 is illustrated in Fig. 3. As the figure shows, in the NIR region, the classification accuracy 

improved significantly when the number of components rose from 1 to 5 but remained steady afterwards. 

Therefore, we set the number of PCA component at 5 for this region. Similarly, the number of PCA 

elements for when using MIR and IR spectral data were both set at 4. 

 

Fig. 3. The Accuracy of the PCA-LDA classifier for different number of PCA components 

The detailed classification results after setting the number of PCA component at the values mentioned 

above are presented in Table 2. Overall, the best and the lowest classification accuracy were found when 

using the MIR and NIR spectral data, respectively. 

Table 2. The PCA-LDA classification results based on ten-fold cross-validation in different spectral regions 

Spectral 

region 

Class 1 data 

(Hypoglycaemia range) 

Class 2 data 

(Euglycaemia range) 

Class 3 data 

(Hyperglycaemia range) 

All data together 

(whole glycaemic 

range) 

No. of 

Errors 

Classificatio

n Accuracy 

(%) 

No. of 

Errors 

Classification 

Accuracy (%) 

No. of 

Errors 

Classification 

Accuracy (%) 

No. of 

Errors 

Classification 

Accuracy (%) 

NIR 3 78.5 15 31.8 5 92.1 23 77 

MIR 0 100 4 81.8 0 100 4 96 

NIR-MIR 0 100 4 81.8 2 96.8 6 94 



4.2. Quantification results 

This section is partitioned into three parts, each of which reports the quantification results belonged to 

the analyses in one of the spectral regions (NIR, MIR, and NIR-MIR region). In this way, the capability of 

the proposed method to improve the analysis precision in either of the three spectral regions could be shown 

more effectively. 

4.2.1. Quantification results in the NIR region 

Table 3 lists the results of RMSE, PEM and correlation coefficient (r) of the three quantification 

methods in the NIR region, and in addition, the improvement of RMSE for Methods 2 and 3 compared to 

Method 1. The values in bold indicate the best results of each quantification method based on the lowest 

RMSE of the whole dataset; these results are considered for EGA analysis, as discussed later.  For 

comparison purposes, the results of each class and also for that of all classes together are presented 

separately.  

Methods 2 and 3 possessed smaller calibration sets than Method 1, a characteristic that might have 

harmed the results of these methods. However, they provided more accurate quantification results than 

Method 1. The accuracy of predictions obtained by Method 2 outweighed those of Method 3. The reason is 

that the weak classification accuracy in the NIR region (discussed in section 4.1) negatively affected the 

measurements of Method 3. For Method 2, the improvements in the quantification results in comparison to 

Method 1 were more pronounced for data in Classes 1 and 2; for Method 3, it happened for data in Class 1. 

Table 3. Results of ten-fold cross-validation for the quantification methods in the NIR region 

PM RM QM 

 Class 1 data 

(Hypoglycaemia range) 

Class 2 data 

(Euglycaemia range) 

Class 3 data 

(Hyperglycaemia range) 

All data together 

(Whole glycaemic range) 
RMSEP 

(mg/dl) 

Im 

 (%) 

PEM 

(%) 

RMSEP 

(mg/dl) 

Im 

 (%) 

PEM 

(%) 

RMSEP 

(mg/dl) 

Im 

 (%) 

PEM 

(%) 

RMSEP 

(mg/dl) 

Im 

 (%) 

r 

 

NP 

PLSR 

1 63.5 –– 181.4 100.0 –– 80.0 76.6 –– 22.3 81.1 –– 0.82 

2 11.8 +81.4 31.5 19.4 +80.6 15.2 53.2 +30.5 15.5 43.7 +46.1 0.95 

3 39.5 +37.7 113.4 97.0 +3.0 77.6 69.7 +9.0 20.3 74.0 +8.7 0.85 

PCR 

1 64.3 –– 183.9 98.4 –– 78.7 77.7 –– 22.6 81.4 –– 0.82 

2 12.4 +80.7 33.0 19.3 +80.3 15.1 53.0 +31.7 15.4 43.6 +46.4 0.95 

3 42.4 +34.0 121.3 98.1 +0.3 78.5 69.2 +10.9 20.2 74.2 +8.8 0.85 

S 

PLSR 

1 60.5 –– 173.0 100.8 –– 80.7 76.3 –– 22.2 80.9 –– 0.82 

2 11.9 +80.3 31.8 19.4 +80.7 15.2 53.0 +30.5 15.4 43.6 +46.1 0.95 

3 39.1 +35.3 11.9 97.1 +3.6 77.6 68.8 +9.8 20.0 73.4 +9.2 0.83 

PCR 

1 60.8 –– 173.9 97.9 –– 78.3 76.3 –– 22.2 80.0 –– 0.83 

2 12.2 +79.9 32.6 19.3 +80.2 15.1 52.8 +30.7 15.4 43.4 45.7 0.95 

3 42.1 +30.7 120.4 98.1 -0.2 78.5 68.7 +9.9 20.6 73.9 +7.6 0.85 

MSC 

PLSR 

1 63.5 –– 181.4 100.0 –– 80.0 76.6 –– 22.3 81.1 –– 0.82 

2 11.8 +81.4 31.5 19.4 +80.6 15.2 53.2 +30.5 15.5 43.7 +46.1 0.95 

3 39.5 +37.7 113.0 97.0 +3.0 77.6 69.7 +9.0 20.3 74.0 +8.7 0.85 

PCR 

1 64.3 –– 183.9 98.4 –– 78.7 77.7 –– 22.6 81.4 –– 0.82 

2 12.4 +80.7 33.0 19.3 +80.3 15.1 53.0 +31.7 15.4 43.6 +46.4 0.95 

3 42.4 +34.0 121.3 98.1 +0.3 78.5 69.2 +10.9 20.3 74.2 +8.8 0.85 

S-

MSC 

PLSR 

1 175.0 –– 500.0 136.2 –– 109.0 95.4 –– 27.8 118.6 –– 0.57 

2 12.1 +93.0 32.3 32.6 +76.0 25.6 56.2 +41.0 16.4 47.7 +59.7 0.94 

3 79.3 +54.6 226.6 115.4 +15.2 92.3 71.0 +25.5 20.7 84.3 +28.9 0.81 

PCR 

1 179.5 –– 512.9 137.7 –– 110.2 96.2 –– 28.1 120.3 –– 0.55 

2 11.3 +93.7 30.2 38.8 +71.8 30.4 55.7 +42.0 16.2 48.3 +59.8 0.94 

3 78.1 +56.4 223.3 114.8 +16.6 91.8 71.0 +26.1 20.7 83.9 +30.2 0.81 

Abbreviations: PM = pre-processing method; RM = regression model; QM = quantification method; RMSEP = root mean square error of prediction; Im 

= improvement of RMSEP in comparison to that of Method 1; PEM = percentage error around the mean; r = correlation coefficient; NP = no pre-

processing; S = smoothing; MSC = multivariate scatter correction, S-MSC = smoothing couples with multivariate scatter correction. 



As mentioned earlier, EGA was performed to evaluate the accuracy of the measurements further. The 

EGA comparison between the best prediction results of the three quantification methods in the NIR region 

(results in bold in Table 3)  is shown in Fig. 4(A); and the percentage of predictions located in Zone A—
the most clinically desired measurement—is presented in Fig. 4)B(. As shown in the figures, using Methods 

2 and 3, a higher ratio of predictions located in zone A, especially for data in Classes 1 and 2. 

  

Fig. 4. (A) EGA of the quantification methods in the NIR region (Some predictions of the first calibration method had negative 

values, so have not appeared in the graph.), (B) the statistics of the EGA graph

4.2.2. Quantification results in the MIR region 

Table 4 presents the quantification results of the three methods in the MIR region. Methods 2 and 3 

were more accurate than Method 1, especially for data with lower glucose concentrations (Classes 1 and 2 

data). The results of Methods 2 and 3 were comparable in the MIR region, which was due to the acceptable 

classification accuracy in this region. 

Table 4. Results of ten-fold cross-validation for the quantification methods in the MIR region 

PM RM QM 

 Class 1 data 

(Hypoglycaemia range) 

Class 2 data 

(Euglycaemia range) 

Class 3 data 

(Hyperglycaemia range) 

All data together 

(Whole glycaemic range) 

RMSEP 

(mg/dl) 
Im 

 (%) 
PEM 

(%) 
RMSEP 

(mg/dl) 
Im 

 (%) 
PEM 

(%) 
RMSEP 

(mg/dl) 
Im 

 (%) 
PEM 

(%) 
RMSEP 

(mg/dl) 
Im 

 (%) 
r 

 

NP 

PLSR 

1 73.8 –– 211.0 38.2 –– 30.5 32.5 –– 9.5 41.5 –– 0.95 

2 17.0 +76.9 45.4 14.4 +62.3 11.3 31.5 +3.0 9.2 26.6 +35.9 0.98 

3 15.0 79.6 42.9 23.3 +39.0 18.6 31.2 +4.0 9.1 27.9 +32.7 0.98 

PCR 

1 81.1 –– 231.9 33.2 –– 26.6 32.3 –– 9.4 42.1 –– 0.95 

2 7.1 +91.2 19.1 13.1 +60.5 10.3 27.2 +18.3 7.9 22.8 +45.8 0.98 

3 16.2 +80.0 46.3 21.4 +35.5 17.19 28.5 +14.4 8.3 25.7 +38.9 0.98 

S 

PLSR 

1 73.9 –– 211.2 37.9 –– 30.3 32.5 –– 9.5 41.4 –– 0.95 

2 17.0 +76.9 45.4 14.3 +62.2 11.2 31.4 +3.3 9.1 26.8 +35.2 0.98 

3 15.0 +79.7 42.9 23.2 +38.7 18.5 31.2 +4.0 9.1 27.9 +32.6 0.98 

PCR 

1 81.2 –– 232.1 33.2 –– 26.6 32.3 –– 9.4 42.2 –– 0.95 

2 7.1 +91.2 19.0 13.1 +60.5 10.2 27.2 +15.7 7.9 22.8 +45.9 0.98 

3 16.2 +80.0 46.3 21.4 +35.5 17.1 28.5 +11.7 8.3 25.7 +39.0 0.98 

MSC 

PLSR 

1 73.8 –– 211.0 38.2 –– 30.5 32.5 –– 9.5 41.5 –– 0.95 

2 17.0 +76.9 45.4 14.4 +62.3 11.3 31.5 +3.0 9.2 26.9 +35.1 0.98 

3 15.0 +79.6 42.9 23.2 +39.2 18.6 31.2 +4.0 9.1 27.9 +32.7 0.98 

PCR 

1 81.1 –– 231.9 33.2 –– 26.6 32.3 –– 9.4 42.1 –– 0.95 

2 7.1 +91.2 19.1 13.1 +60.5 10.3 27.2 +15.7 7.9 22.8 +45.8 0.98 

3 16.2 +80.0 46.3 21.4 +35.5 17.1 28.5 +11.7 8.3 25.7 +38.9 0.98 

S-

MSC 
PLSR 

1 65.9 –– 188.3 37.2 –– 29.8 32.5 –– 9.4 39.5 –– 0.96 

2 9.3 +85.8 24.9 11.9 +68.0 9.4 27.8 +14.4 8.1 23.2 +41.2 0.98 



3 10.2 +84.5 29.2 17.9 +51.8 14.3 26.6 +18.1 7.7 23.2 +41.2 0.98 

PCR 

1 77.0 –– 220.0 36.3 –– 29.0 30.6 –– 8.9 40.9 –– 0.95 

2 8.2 +89.3 21.9 9.5 +73.8 7.4 28.7 +6.2 8.3 23.6 +42.2 0.98 

3 13.1 +82.9 37.5 16.8 +53.7 13.4 26.8 +12.4 7.8 23.4 +42.7 0.98 

Abbreviations: PM = pre-processing method; RM = regression model; QM = quantification method; RMSEP = root mean square error of prediction; Im 

= improvement of RMSEP in comparison to that of Method 1; PEM = percentage error around the mean; r = correlation coefficient; NP = no pre-

processing; S = smoothing; MSC = multivariate scatter correction, S-MSC = smoothing couples with multivariate scatter correction. 

EGA for the best result of the quantification methods in the MIR region and the percentage of 

measurements distributed in Zone A for each method are displayed in Fig. 5. As the figures show, more 

accurate prediction results were obtained using Methods 2 and 3 rather than Method 1, notably for lower 

glucose levels.  

  

Fig. 5. (A) EGA of the quantification methods in the MIR region, (B) the statistics of the EGA graph

4.2.3. Quantification results in the NIR-MIR region  

Table 5 reports the prediction results in the NIR-MIR region for all the quantification methods. Overall, 

in all cases, Methods 2 and 3 provided more accurate prediction results. All results obtained in the NIR-

MIR region were generally comparable to those of the MIR region, which indicates that our proposed 

classification-before-regression methodology, still maintains its effectiveness over a wider range of spectra. 

 

Table 5. Results of ten-fold cross-validation for the quantification methods in the NIR-MIR region 

PM RM QM 

 Class 1 data 

(Hypoglycaemia range) 

Class 2 data 

(Euglycaemia range) 

Class 3 data 

(Hyperglycaemia range) 

All data together 

(Whole glycaemic range) 

RMSEP 

(mg/dl) 
Im 

 (%) 
PEM 

(%) 
RMSEP 

(mg/dl) 
Im 

 (%) 
PEM 

(%) 
RMSEP 

(mg/dl) 
Im 

 (%) 
PEM 

(%) 
RMSEP 

(mg/dl) 
Im 

 (%) 
r 

 

NP 

PLSR 

1 67.5 –– 193.1 40.9 –– 32.7 32.0 –– 9.3 40.4 –– 0.95 

2 18.0 +73.3 48.1 13.2 +67.7 10.3 28.3 +11.5 8.2 24.4 +39.6 0.98 

3 16.5 +75.5 47.2 24.6 +39.8 19.7 28.2 +11.8 8.2 26.2 +35.1 0.98 

PCR 

1 82.1 –– 234.8 37.6 –– 30.0 33.1 –– 9.6 43.6 –– 0.95 

2 8.1 +90.1 21.6 12.3 +67.2 9.7 26.2 +20.8 7.6 21.9 +49.7 0.98 

3 14.1 +82.8 40.5 14.7 +60.9 11.7 24.9 +24.7 7.2 21.7 +50.2 0.98 

S 

PLSR 

1 67.6 –– 193.2 41.0 –– 32.8 32.1 –– 9.3 40.5 –– 0.95 

2 18.0 +73.3 48.1 13.0 +68.2 10.2 28.2 +12.1 8.2 24.3 +40.0 0.98 

3 16.5 +75.5 47.3 24.5 +40.2 19.6 28.1 +12.4 8.2 26.1 +35.5 0.98 

PCR 

1 82.0 –– 234.3 37.6 –– 30.0 33.1 –– 9.6 43.6 –– 0.95 

2 8.0 +90.2 21.3 12.3 +67.2 9.6 26.2 +20.8 7.6 21.9 +49.7 0.98 

3 14.2 +82.6 40.5 14.6 +61.1 11.6 24.9 +24.7 7.2 21.7 +50.2 0.98 



MSC 

PLSR 

1 67.5 –– 193.1 40.9 –– 32.7 32.0 –– 9.3 40.4 –– 0.95 

2 18.0 +73.3 48.1 13.2 +67.7 10.3 28.3 +11.5 8.2 24.4 +39.6 0.98 

3 16.5 +75.5 47.2 24.6 +39.8 19.7 28.2 +11.5 8.2 26.2 +35.1 0.98 

PCR 

1 82.1 –– 234.8 37.6 –– 30.0 33.1 –– 9.6 43.6 –– 0.95 

2 8.1 +90.1 21.6 12.3 +67.2 9.7 26.2 +20.8 7.6 21.9 +49.7 0.98 

3 14.1 +82.8 40.5 14.7 +60.9 11.7 24.9 +24.7 7.2 21.7 +50.2 0.98 

S-

MSC 

PLSR 

1 75.6 –– 216.0 37.1 –– 29.7 32.8 –– 9.5 41.8 –– 0.95 

2 9.7 +87.1 26.0 11.5 +69.0 9.0 26.0 +20.7 7.6 21.8 +47.8 0.98 

3 10.6 +85.9 30.4 16.5 +55.5 13.2 26.9 +19.9 7.8 23.28 +44.3 0.98 

PCR 

1 76.6 –– 218.8 37.8 –– 30.2 34.6 –– 10.1 43.1 –– 0.95 

2 8.5 +88.9 22.8 9.1 +75.9 7.1 26.4 +28.9 7.7 21.8 +49.4 0.98 

3 16.0 +79.1 45.8 13.2 +65.0 70.6 26.4 +28.9 7.7 22.8 +47.0 0.98 

Abbreviations: PM = pre-processing method; RM = regression model; QM = quantification method; RMSEP = root mean square error of prediction; 

Im = improvement of RMSEP in comparison to that of Method 1; PEM = percentage error around the mean; r = correlation coefficient; NP = no pre-

processing; S = smoothing; MSC = multivariate scatter correction, S-MSC = smoothing couples with multivariate scatter correction. 

The EGA graph for the best result of the quantification methods in the NIR-MIR region, a comparison 

of the predictions occurred in Zone A for each method are presented in Fig. 6. Based on the figure, it is 

clear that Methods 2 and 3 are more accurate than Method 1, also in the NIR-MIR region. 

  

Fig. 6. (A) EGA of the quantification methods in the NIR_MIR region, (B) the statistics of the EGA graph

5. Discussion 

All the quantification methods, as well as the PCA-LDA classifier applied in the third quantification 

method, showed a significantly better performance in the MIR and NIR-MIR regions than the NIR region. 

The reason is that the MIR and NIR-MIR signals contained a more extensive range of wavelengths; these 

can possess more informative wavebands for glucose monitoring compared to the NIR spectra in the 

experiment. 

Methods 2 and 3 resulted in more accurate measurements than Method 1. Riley et al. showed that 

informative wavebands for the quantitative analysis of four chemical components, including glucose, 

becomes narrower by a decrease in the concentration range of these analytes [37]. It can be inferred that, in 

our dataset, informative wavebands for glucose measurement are possibly homogenous for signals in each 

class, and are different from the optimal spectral range of data in other classes. These similarities between 

spectra in each calibration set, using Methods 2 and 3, could improve the accuracy of the regression 

analyses.  



As shown in Table 1, in our dataset, the 3 classes occupy different glycemic ranges dominated by 

samples within the hyperglycaemia range. However, datasets from in vivo experiments on humans 

generally tend to have the majority of data in the euglycaemia range; to show that our proposed 

methodology still applies in this case, the same analysis is repeated after adapting the step size in the 

hyperglycaemia range to allow for the majority of the data to be placed in the euglycaemia range. The step 

size for the hyperglycaemia range was increased from 5mg/dl to 20mg/dl; this lowered the number of 

samples by three quarters for this class as illustrated in Table 6, the other two classes remained unchanged. 

The new corresponding analysis results are shown in Table 7, which confirm the effectiveness of the pre-

classification methodology for this distribution too. 

Table 6. Division of the dataset after the step size adaptation 

 
Label 

Class 1 Class 2 Class 3 

Glucose concentration range 5–70 mg/dl 75–180 mg/dl 185–500 mg/dl 

Corresponding glycaemic range Hypoglycaemia Euglycaemia Hyperglycaemia 

Quantity of data in the class 14 22 16 

 

Table 7. Best results of ten-fold cross-validation for the quantification methods in all spectral region for modified data 

distribution 

SR QM 

 Class 1 data 

(Hypoglycaemia range) 

Class 2 data 

(Euglycaemia range) 

Class 3 data 

(Hyperglycaemia range) 

All data together 

(whole glycaemic range) 
RMSEP 

(mg/dl) 

Im 

 (%) 

PEM 

(%) 

RMSEP 

(mg/dl) 

Im 

 (%) 

PEM 

(%) 

RMSEP 

(mg/dl) 

Im 

 (%) 

PEM 

(%) 

RMSEP 

(mg/dl) 

Im 

 (%) 

r 

 

NIR 

1 115.1 –– 328.9 72.2 –– 57.8 164.8 –– 49.1 118.2 –– 0.42 

2 12.4 +89.2 33.0 19.3 +73.2 15.1 60.6 +63.2 18.1 29.9 +74.7 0.94 

3 54.1 +52.9 154.6 76.1 -5.1 60.9 129.8 +21.2 38.7 92.1 +4.1 0.72 

MIR 

1 78.1 –– 223.1 34.0 –– 27.2 50.8 –– 14.7 53.1 –– 0.92 

2 7.1 +90.0 19.1 13.1 +61.4 10.3 49.5 +2.5 14.3 22.6 +57.4 0.97 

3 11.0 +85.9 31.7 20.6 +39.4 16.5 74.3 -46.2 21.5 44.6 +16.0 0.94 

NIR-

MIR 

1 62.8 –– 179.5 46.7 –– 37.4 51.1 –– 14.5 52.1 –– 0.92 

2 9.7 +84.5 26.0 11.5 +75.3 9.0 50.8 +0.5 15.0 23.1 +55.6 0.97 

3 15.8 +74.8 45.1 20.2 +56.7 16.2 53.6 -4.8 15.5 34.1 +34.5 0.96 

Abbreviations: SR = spectral region QM = quantification method; RMSEP = root mean square error of prediction; Im = improvement of RMSEP 

in comparison to that of Method 1; PEM = percentage error around the mean; r = correlation coefficient 

6. Conclusion 

Glucose measurement using NIR and MIR absorbance spectroscopy improved by manually grouping 

the dataset into three categories according to the clinical definition of the glycaemic ranges and then 

applying regressions for each class separately. A PCA-LDA classifier was therefore implemented to assign 

each spectrum into the respective class automatically. Creation of regression models for different classes 

improved the results of glucose prediction as compared to regressions for the whole dataset. The 

improvements in the prediction results were more significant for lower glucose concentrations. 

The performance of the proposed pre-classification approach was evaluated for two common regression 

methods, three pre-processing techniques, and also for a broader range of spectra by merging the NIR and 

MIR data. A primary evaluation of the proposed methodology was carried out by repeating the analysis for 

a modified version of the dataset to account for the distribution of data that is more representative of human 

in vivo experiments scenarios. For future work, determination of informative wavebands for glucose 

measurement could be investigated in each glycaemic range individually. 
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