This is a repository copy of Inactivation of tumor suppressor genes and cancer therapy : an evolutionary game theory approach.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/155748/
Version: Supplemental Material

Article:

Khadem, H. orcid.org/0000-0002-6878-875X, Kebriaei, H. and Veisi, Z. (2017) Inactivation of tumor suppressor genes and cancer therapy : an evolutionary game theory approach. Mathematical Biosciences, 288. pp. 84-93. ISSN 0025-5564
https://doi.org/10.1016/j.mbs.2017.03.001

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

In this supplementary detailed calculations are provided for equations that have been presented in table 5.

First, our analysis in ''first step'' for $\mathrm{x}_{1}=0$ and $\mathrm{x}_{2}=0$ boundaries are carried out and then the steps 2-4 are applied to the remaining 15 cases in the game. Related proposed conditions are discussed for each case.

Step 1

Sub-Case A2: $\mathrm{p}_{22}>\mathrm{p}_{32}>\mathrm{p}_{23}>\mathrm{p}_{33}$

Location of equilibrium points in this case is depicted in figure (1).

Figure 1. Location of the system equilibrium points on the $x_{1}=0$ boundary for different values of bifurcation parameter in case A2

Therefore, the figure 1(a) would be the desired situation. Our proposal in this case is:

$$
\begin{equation*}
\text { Our suggestion: }\left(\left(\mathrm{r}_{22} \mathrm{r}_{33}\right) / \mathrm{r}_{23}^{2}\right)>\mathrm{k}_{1} \tag{1}
\end{equation*}
$$

Sub-Case A3: $\mathrm{p}_{22}>\mathrm{p}_{32}, \mathrm{p}_{33}>\mathrm{p}_{23}$

In this case bifurcation never happens because for any value of bifurcation parameter $s \neq 0$ in (8). Consequently, one of the solutions in equation 7 is acceptable mathematically since it is located in the range of $x_{2}=0$ to $x_{2}=1$ while the other answer is not. . The location of equilibrium points on the $\mathrm{x}_{1}=0$ border in this case is shown in figure (5).

Figure 1. Location of the system equilibrium points on the $x_{1}=0$ border before applying our proposal to
case A3

By changing the interaction rate parameters the position of red equilibrium point in figure (5) will change. When $r_{22} \rightarrow \infty$, the location of red equilibrium point moves as indicated in figure (6) which is the objective..

$$
\mathrm{r}_{22} \rightarrow \infty
$$

Figure 2. Location of the system equilibrium points on the $x_{1}=0$ border after applying our proposal to case

A3

Thus, our proposal in this case is :

Sub-Case A4: $\mathrm{p}_{32}>\mathrm{p}_{22}, \mathrm{p}_{23}>\mathrm{p}_{33}$

Bifurcation does not happen in this case as well. The Location of equilibrium points on the $\mathrm{x}_{1}=0$ boundary is shown in figure (7).

Figure 3. Location of the system equilibrium points on the $x_{1}=0$ boundary before applying our proposal to case A4

By altering the interaction rate parameters the red equilibrium point in figure (7) will move to a new position. When, $\mathrm{r}_{33} \rightarrow \infty$, the location of red equilibrium point will move to a desired point as illustrated in figure 8..

Figure 4. Location of the system equilibrium points on the $x_{1}=0$ border after applying our proposal to case

A4

Thus, the proposition for this case is:

$$
\begin{equation*}
\text { Our - Proposal : } \mathrm{r}_{33} \rightarrow \infty \tag{3}
\end{equation*}
$$

Boundary $\mathrm{x}_{2}=0$

On the $x_{2}=0$ border, the general idea of finding different equilibrium points of the system and stability analysis is similar to the previous section but in this case we define the bifurcation parameter as $r_{11} r_{33} / r_{13}^{2}$ and k_{2} as follows:

$$
\begin{aligned}
& \mathrm{k}_{2}=\frac{1}{\left(\mathrm{p}_{11}-\mathrm{p}_{33}\right)^{2}}\left(\mathrm{p}_{11}\left(\mathrm{p}_{13}+\mathrm{p}_{31}-2 \mathrm{p}_{33}\right)+\mathrm{p}_{13}\left(\mathrm{p}_{33}-2 \mathrm{p}_{31}\right)+\mathrm{p}_{31} \mathrm{p}_{33}\right) \\
& +\frac{1}{\left(\mathrm{p}_{11}-\mathrm{p}_{33}\right)^{2}}\left(\left(\mathrm{p}_{11}-\mathrm{p}_{13}\right)\left(\mathrm{p}_{11}-\mathrm{p}_{31}\right)\left(\mathrm{p}_{13}-\mathrm{p}_{33}\right)\left(\mathrm{p}_{31}-\mathrm{p}_{33}\right)\right)^{\frac{1}{2}}
\end{aligned}
$$

Sub-Case B2: $\mathrm{p}_{11}>\mathrm{p}_{31}>\mathrm{p}_{13}>\mathrm{p}_{33}$

Similar to the A2 case, the location of equilibrium points on $x_{2}=0$ boundary is shown in figure
(10):

Figure 5. Location of the system equilibrium points on the $x_{2}=0$ border for different values of the

bifurcation parameter in case B 2

Figure 10(a) indicates the desired situation. Hence, our proposal for this case would be:

$$
\begin{equation*}
\text { Our - Proposal : }\left(\left(\mathrm{r}_{11} \mathrm{r}_{33}\right) / \mathrm{r}_{13}^{2}\right)>\mathrm{k}_{2} \tag{4}
\end{equation*}
$$

Sub-Case B3: $\mathrm{p}_{11}>\mathrm{p}_{31}, \mathrm{p}_{33}>\mathrm{p}_{13}$

Similar to case A3, bifurcation never happens in this case as well. The position of equilibrium points on the $\mathrm{x}_{2}=0$ boundary in this case is depicted in figure (11).

Figure 6. Location of the system equilibrium points on the $x_{2}=0$ border before applying our proposal to case B3

By changing the interaction rate parameters, the location of red equilibrium point in figure 11 change. When $\mathrm{r}_{11} \rightarrow \infty$, the red equilibrium point moves as figure 12 which is .

Figure 7. Distribution of the system equilibrium points on the $x_{2}=0$ border after applying our proposal to case B3

Thus, our suggestion in this case is:

$$
\begin{equation*}
\text { Our - Proposal : } \mathrm{r}_{11} \rightarrow \infty \tag{5}
\end{equation*}
$$

Sub-Case B4: $\mathrm{p}_{31}>\mathrm{p}_{11}, \mathrm{p}_{13}>\mathrm{p}_{33}$

Bifurcation won't happen in this case, too. The position of equilibrium points on the $x_{2}=0$ border is illustrated in figure (13).

Figure 8. Position of the system equilibrium points on the $x_{2}=0$ border before applying our proposal in case

B4

Altering the interaction rate parameters makes the location of red equilibrium point in figure 13 transferred and if $\mathrm{r}_{33} \rightarrow \infty$, the red equilibrium point moves to the desired point as shown in figure.

Figure 9. Location of the system equilibrium points on the $x_{2}=0$ boundary after applying our proposal to case B4

Thus, suggestion for this case is:

$$
\begin{equation*}
\text { Our - Proposal : } r_{33} \rightarrow \infty \tag{6}
\end{equation*}
$$

2. Case A1B2

According to previous parts, our proposition for this case would be:

$$
\left\{\begin{array}{l}
\mathrm{r}_{22} \mathrm{r}_{33} \rightarrow \infty \\
\mathrm{r}_{23} \rightarrow 0
\end{array} \quad \text { and } \quad \frac{\mathrm{r}_{11} \mathrm{r}_{33}}{\mathrm{r}_{13}^{2}}>\mathrm{k}_{2}\right.
$$

Step 2:

In this step, suggestions to exclude equilibrium points from region 2 are provided. As it has been asserted, region 2 is divided into 3 different sub-regions.

Sub-region 2.1:

In this sub-region, based on our proposition in first step, we may write:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 2 } \mathrm { x } _ { 2 } \rightarrow 0 \quad , \quad \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 3 } \mathrm { x } _ { 3 } \rightarrow 0 \quad , \quad \mathrm { r } _ { 3 2 } \mathrm { x } _ { 2 } \rightarrow 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{21} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{31} \mathrm{x}_{1} p_{31}+\mathrm{r}_{33} \mathrm{x}_{3} \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33} \mathrm{x}_{3}}
\end{array}\right.\right.
$$

Taking into account these equations, there might be equilibrium points in this sub-region. Thus, to eliminate any possible equilibrium points in this sub-region, extra conditions are proposed.

$$
\begin{equation*}
\text { Our extra condition: } r_{13} \rightarrow 0 \tag{7}
\end{equation*}
$$

Consequently, equations reform to:

$$
\left\{\begin{array}{ll}
\mathrm{r}_{12} \mathrm{x}_{2} \rightarrow 0 \\
\mathrm{r}_{22} \mathrm{x}_{2} \rightarrow 0 \\
\mathrm{r}_{31} \mathrm{x}_{1} \rightarrow 0
\end{array} \quad, \quad \begin{array}{l}
\mathrm{r}_{13} \mathrm{x}_{3} \rightarrow 0 \\
\mathrm{r}_{23} \mathrm{x}_{3} \rightarrow 0 \\
\mathrm{r}_{32} \mathrm{x}_{2} \rightarrow 0
\end{array} \Rightarrow\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{21} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since $f_{1}>f_{3}$, there would be no equilibrium points in this sub-region for this case.

Sub-region 2.2:

In this sub-region we propose the following trend:

$$
\left\{\begin{array}{ll}
\mathrm{r}_{11} \mathrm{x}_{1} \rightarrow 0 \\
\mathrm{r}_{22} \mathrm{x}_{2} \rightarrow 0 \\
\mathrm{r}_{31} \mathrm{x}_{1} \rightarrow 0
\end{array} \quad, \quad \mathrm{r}_{13} \mathrm{x}_{3} \rightarrow 0 . \begin{array}{l}
\mathrm{r}_{23} \mathrm{x}_{3} \rightarrow 0 \\
\mathrm{r}_{32} \mathrm{x}_{2} \rightarrow 0
\end{array} \Rightarrow\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{12} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{21} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since $\mathrm{f}_{2}>\mathrm{f}_{3}$, there is no equilibrium point.

Sub-region 2.3:

The equation for case 1 may be written as:

$$
\left\{\begin{array}{l}
\mathrm{r}_{13} \mathrm{x}_{3} \rightarrow 0, \quad \mathrm{r}_{23} \mathrm{x}_{3} \rightarrow 0 \\
\mathrm{r}_{31} \mathrm{x}_{1} \rightarrow 0,
\end{array} \quad, \quad \mathrm{r}_{32} \mathrm{x}_{2} \rightarrow 0.0 \begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \mathrm{x}_{2}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

Since, $\mathrm{f}_{2} \in\left(\mathrm{p}_{22}, \mathrm{p}_{21}\right), \mathrm{f}_{2}>\mathrm{f}_{3}$ in this region and there is no equilibrium point here.

Step 3:

In this step recommendations are proposed to obtain $\dot{\mathrm{x}}_{3}<0$, where $\mathrm{x}_{3}=1-\varepsilon$.

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \tag{8}\\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if : } \dot{\mathrm{x}}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

So, equations are active in step 3.

Sub-region 2.1:

In this sub-region:

$$
\left\{\begin{array} { c c }
{ \mathrm { x } _ { 1 } \rightarrow \varepsilon } & { , } \\
{ \mathrm { f } _ { 1 } \rightarrow \mathrm { p } _ { 1 1 } } \\
{ \mathrm { x } _ { 2 } \rightarrow 0 } & { , } \\
{ \mathrm { f } _ { 2 } \rightarrow \mathrm { p } _ { 2 1 } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , } \\
{ \mathrm { f } _ { 3 } \rightarrow \mathrm { p } _ { 3 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{11} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.\right.
$$

Therefore, equation 8 is always active and we don't need any proposition.

Sub-region 2.2:

In this sub-region:

$$
\left\{\begin{array} { c l }
{ \mathrm { x } _ { 1 } \rightarrow 0 } & { , } \\
{ \mathrm { f } _ { 1 } \rightarrow \mathrm { p } _ { 1 2 } } \\
{ \mathrm { x } _ { 2 } \rightarrow \varepsilon } & { , } \\
{ \mathrm { f } _ { 2 } \rightarrow \mathrm { p } _ { 2 2 } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , } \\
{ \mathrm { f } _ { 3 } \rightarrow \mathrm { p } _ { 3 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{22} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.\right.
$$

Identically, equation 8 is always active and we don't need any proposition.

Sub-region 2.3:

$$
\left\{\begin{aligned}
\mathrm{f}_{1} & \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{12}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{2} & \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{3} & \rightarrow \mathrm{p}_{33}
\end{aligned}\right.
$$

If: $\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} \Rightarrow \mathrm{r}_{11} \mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{2}\right)>\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{2}-\mathrm{x}_{1} \mathrm{p}_{12}\right)$

Where: $\mathrm{M}_{2}=\varepsilon \mathrm{f}_{3}-\mathrm{x}_{2} \mathrm{f}_{2}$

If $\mathrm{M}<\mathrm{X}_{1} \mathrm{p}_{11}$, then the following condition is our proposition to make equation 8 active:

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{2}-\mathrm{x}_{1} \mathrm{p}_{12}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{2}\right)} \tag{9}
\end{equation*}
$$

Moreover, the activeness of the following equation is verified:

$$
\begin{aligned}
& \mathrm{M}_{2}<\mathrm{x}_{1} \mathrm{p}_{11} \\
& \mathrm{M}_{2}-\mathrm{x}_{1} \mathrm{p}_{11}=\varepsilon \mathrm{i}-\left(\varepsilon-\mathrm{x}_{1}\right)\left(\frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}}{\mathrm{r}_{12} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)}\right)-\mathrm{x}_{1} \mathrm{p}_{11} \\
& =\frac{\mathrm{r}_{12} \mathrm{x}_{1}\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)-\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\varepsilon \mathrm{p}_{33}\right)}{\mathrm{r}_{12} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)} \\
& \text { And: }\left\{\begin{array}{l}
\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)<0 \\
\left(\mathrm{x}_{1} \mathrm{p}_{1}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{2}-\varepsilon \mathrm{p}_{33}\right)>0
\end{array} \Rightarrow \mathrm{M}_{2}-\mathrm{x}_{1} \mathrm{p}_{11}<0 \Rightarrow \mathrm{M}_{2}<\mathrm{x}_{1} \mathrm{p}_{11}\right.
\end{aligned}
$$

Therefore, the equation 10 is always active and there is no need to extra proposition.

Step 4:

In this step, the proposed condition are intended to have $\dot{\mathrm{x}}_{3}<0$, where $\mathrm{X}_{3}=\sigma$. Therefore, it is completely similar to step 3 , and we just replace $1-\varepsilon$ with σ.

$$
\begin{align*}
& \left\{\begin{aligned}
\mathrm{f}_{1} & \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{12}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{2} & \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{3} & \rightarrow \mathrm{p}_{33}
\end{aligned}\right. \\
& \text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)\left(\mathrm{N}_{2}-\mathrm{x}_{1} \mathrm{p}_{12}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{N}_{2}\right)} \tag{11}
\end{align*}
$$

Where: $\mathrm{N}_{2}=(1-\sigma) \mathrm{f}_{3}-\mathrm{X}_{2} \mathrm{f}_{2}$

3. Case A1B3

According to previous parts, our proposition for this case is:

$$
\left\{\begin{array}{l}
\mathrm{r}_{22} \mathrm{r}_{33} \rightarrow \infty \\
\mathrm{r}_{23} \rightarrow 0
\end{array} \quad \text { and } \quad \mathrm{r}_{11} \rightarrow \infty\right.
$$

Step 2:

In this step, propositions to avoid equilibrium points in region 2 is presented. As it has been mentioned, region 2 is divided into 3 different sub-regions and.

Sub-region 2.1:

In this sub-region, $\mathrm{X}_{2} \rightarrow 0$ and the procedure continues based on following suggestions:

$$
\left\{\begin{array}{l}
\mathrm{r}_{11} \mathrm{x}_{1} \rightarrow \infty \quad, \quad \mathrm{r}_{22} \mathrm{x}_{2} \rightarrow 0 \\
\mathrm{r}_{23} \mathrm{x}_{3} \rightarrow 0
\end{array} \quad, \quad \mathrm{r}_{32} \mathrm{x}_{2} \rightarrow 0 \mathrm{l} .\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{21} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{33} \mathrm{x}_{3} \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33} \mathrm{x}_{3}}
\end{array}\right.\right.
$$

Since $f_{3} \in\left(p_{33}, p_{31}\right), f_{1}>f_{3}$ and no equilibrium point is located in this sub-region.

Sub-region 2.2:

similar to sub-region $1, \mathrm{x}_{1} \rightarrow 0$ and it can be easily noticed that:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 2 } \mathrm { x } _ { 1 } \rightarrow 0 \quad , \quad \mathrm { r } _ { 2 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 1 } \mathrm { x } _ { 1 } \rightarrow 0 \quad , \quad \mathrm { r } _ { 3 2 } \mathrm { x } _ { 2 } \rightarrow 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \mathrm{x}_{1} \mathrm{p}_{12}+\mathrm{r}_{11} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Regarding the fact that $\mathrm{f}_{2}>\mathrm{f}_{3}$, there would be no equilibrium point.

Sub-region 2.3:

For case 1, equations are:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow \infty } \\
{ \mathrm { r } _ { 2 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 2 } \mathrm { x } _ { 2 } \rightarrow 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{33} \mathrm{x}_{3} \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33} \mathrm{x}_{3}}
\end{array}\right.\right.
$$

Since, $\mathrm{f}_{3} \in\left(\mathrm{p}_{33}, \mathrm{p}_{31}\right)$, always $\mathrm{f}_{1}>\mathrm{f}_{3}$ in this region and there is no equilibrium point here.

Step 3:

In this step the following suggestions are provided to have $\dot{\mathrm{x}}_{3}<0$, where $\mathrm{x}_{3}=1-\varepsilon$.

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \tag{12}\\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if }: \dot{\mathrm{x}}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

Therefore, in step 3 we will recommend propositions so that the above equation becomes active.

Sub-region 2.1:

In this region:

$$
\left\{\begin{array} { c l l }
{ \mathrm { x } _ { 1 } \rightarrow \varepsilon } & { , } & { \mathrm { f } _ { 1 } \rightarrow \mathrm { p } _ { 1 1 } } \\
{ \mathrm { x } _ { 2 } \rightarrow 0 } & { , } & { \mathrm { f } _ { 2 } \rightarrow \mathrm { p } _ { 2 1 } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , } & { \mathrm { f } _ { 3 } \rightarrow \mathrm { p } _ { 3 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{11} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.\right.
$$

It is clear that the equation is always active and there is no necessity for proposition.

Sub-region 2.2:

$$
\left\{\begin{array} { c c }
{ \mathrm { x } _ { 1 } \rightarrow 0 , } & { \mathrm { f } _ { 1 } \rightarrow \frac { \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \mathrm { p } _ { 1 1 } + \mathrm { r } _ { 1 2 } \mathrm { x } _ { 1 } \mathrm { p } _ { 1 2 } + \mathrm { r } _ { 1 1 } (1 - \varepsilon) \mathrm { p } _ { 1 3 } } { \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } + \mathrm { r } _ { 1 2 } \mathrm { x } _ { 2 } + \mathrm { r } _ { 1 3 } (1 - \varepsilon) } } \\
{ \mathrm { x } _ { 2 } \rightarrow \varepsilon , } & { \mathrm { f } _ { 2 } \rightarrow \mathrm { p } _ { 2 2 } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon , } & { \mathrm { f } _ { 3 } \rightarrow \mathrm { p } _ { 3 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{22} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.\right.
$$

Therefore, equation (12) is active and no proposed procedure is required, as well.

Sub-region 2.3

In this sub-region:

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{33}(1-\varepsilon) \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33}(1-\varepsilon)}
\end{array}\right.
$$

If: $\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} \Rightarrow \mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{M}_{3}\right)>\mathrm{r}_{12} \mathrm{x}_{1}\left(\mathrm{M}_{3}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}\right)$

Where: $\mathrm{M}=\varepsilon \mathrm{f}_{3}-\mathrm{x}_{1} \mathrm{f}_{1}$

If $\mathrm{M}<\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}$, then the appropriate solution to make equation (12) active is proposed as follows:

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{22}>\frac{\mathrm{r}_{12} \mathrm{x}_{1}\left(\mathrm{M}_{3}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}\right)}{\left(\varepsilon-\mathrm{x}_{1}\right)\left(\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{M}_{3}\right)} \tag{13}
\end{equation*}
$$

Thus, we check if the following equation is active:

$$
\begin{gather*}
\mathrm{M}<\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22} \tag{14}\\
\mathrm{M}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}=\varepsilon\left(\frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{33} \varepsilon \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33} \varepsilon}\right)-\mathrm{x}_{1} \mathrm{p}_{11}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21} \\
=\frac{\mathrm{r}_{31} \mathrm{x}_{1}\left(\varepsilon \mathrm{p}_{31}-\mathrm{x}_{1} \mathrm{p}_{11}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}\right)-\mathrm{r}_{33} \varepsilon\left(\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}+\mathrm{x}_{1} \mathrm{p}_{11}-\varepsilon \mathrm{p}_{33}\right)}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33} \varepsilon}
\end{gather*}
$$

And: $\left(\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}+\mathrm{x}_{1} \mathrm{p}_{11}-\varepsilon \mathrm{p}_{33}\right)>0$

As a result, the equation (12) is always active if the following condition is applied:

$$
\begin{equation*}
\text { Our extra proposition: } \mathrm{r}_{33}>\frac{\mathrm{r}_{31} \mathrm{x}_{1}\left(\varepsilon \mathrm{p}_{31}-\mathrm{x}_{1} \mathrm{p}_{11}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}\right)}{\varepsilon\left(\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}+\mathrm{x}_{1} \mathrm{p}_{11}-\varepsilon \mathrm{p}_{33}\right)} \tag{15}
\end{equation*}
$$

Step 4:

In this step, the intention is to maintain $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{x}_{3}=\sigma$). Therefore, we just replace $1-\mathcal{E}$ with σ as we did in step 3.

$$
\begin{align*}
& \qquad\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{22}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{33}(1-\varepsilon) \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33} \sigma}
\end{array}\right. \\
& \text { Our proposition: } \mathrm{r}_{22}>\frac{\mathrm{r}_{12} \mathrm{x}_{1}\left(\mathrm{~N}_{3}-\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{21}\right)}{\left(1-\sigma-\mathrm{x}_{1}\right)\left(\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{N}_{3}\right)} \tag{16}
\end{align*}
$$

Where: $\mathrm{N}_{3}=(1-\sigma) \mathrm{f}_{3}-\mathrm{X}_{2} \mathrm{f}_{2}$

4. Case A1B4

According to preceding discussions, our recommendation for this case is:

$$
\left\{\begin{array}{l}
\mathrm{r}_{22} \mathrm{r}_{33} \rightarrow \infty \\
\mathrm{r}_{23} \rightarrow 0
\end{array} \quad \text { and } \quad r_{33} \rightarrow \infty\right.
$$

Step 2:

Similar to previous parts, the desired condition is to have no equilibrium point in region 2 and to achieve that, region 2 is divided in 3 sub-regions.

Sub-region 2.1:

$\mathrm{x}_{2} \rightarrow 0$ and the proposed approach is:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 2 } \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{21} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since in equations above $f_{2}>f_{3}$, there are no equilibrium point in this sub-region in this case.

Sub-region 2.2:

In this sub-region $\mathrm{X}_{1} \rightarrow 0$ and:

$$
\left\{\begin{array}{l}
\mathrm{r}_{11} \mathrm{x}_{1} \rightarrow 0 \\
\mathrm{r}_{23} \mathrm{x}_{3} \rightarrow 0
\end{array} \quad, \quad \mathrm{r}_{21} \mathrm{x}_{1} \rightarrow 0 . \quad \mathrm{r}_{33} \mathrm{x}_{3} \rightarrow \infty,\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since $f_{2}>f_{3}$, there is no equilibrium point.

Sub-region 2.3:

Equations for case 1 are:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 2 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{12}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since $f_{2} \in\left(p_{22}, p_{21}\right), f_{2}>f_{3}$ and no equilibrium point is identi.

Step 3:

The condition in which $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{x}_{3}=1-\varepsilon$) is :

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \tag{18}\\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if : } \dot{\mathrm{x}}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

So, recommend propositions are made for the equation to be active.

Sub-region 2.1:

In this sub-region:

$$
\left\{\begin{array} { c c }
{ \mathrm { x } _ { 1 } \rightarrow \varepsilon \quad , \mathrm { f } _ { 1 } \rightarrow \frac { \mathrm { r } _ { 1 1 } \varepsilon \mathrm { p } _ { 1 1 } + \mathrm { r } _ { 1 3 } \mathrm { p } _ { 1 3 } (1 - \varepsilon) } { \mathrm { r } _ { 1 1 } \varepsilon + \mathrm { r } _ { 1 3 } (1 - \varepsilon) } } \\
{ \mathrm { x } _ { 2 } \rightarrow 0 , } & { \mathrm { f } _ { 2 } \rightarrow \mathrm { p } _ { 2 1 } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon , } & { \mathrm { f } _ { 3 } \rightarrow \mathrm { p } _ { 3 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{11} \varepsilon \mathrm{p}_{11}+\mathrm{r}_{13} \mathrm{p}_{13}(1-\varepsilon)}{\mathrm{r}_{11} \varepsilon+\mathrm{r}_{13}(1-\varepsilon)}\right) \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array}\right.\right.
$$

It is obvious that the equation is active.

Sub-region 2.2:

In this region:

$$
\left\{\begin{array} { c c }
{ \mathrm { x } _ { 1 } \rightarrow 0 } & { , \mathrm { f } _ { 1 } \rightarrow \frac { \mathrm { r } _ { 1 2 } \mathrm { x } _ { 2 } } { \mathrm { r } _ { 1 2 } \mathrm { x } _ { 2 } + \mathrm { r } _ { 1 3 } \mathrm { x } _ { 3 } } \mathrm { p } _ { 1 2 } + \frac { \mathrm { r } _ { 1 3 } \mathrm { x } _ { 3 } } { \mathrm { r } _ { 1 2 } \mathrm { x } _ { 2 } + \mathrm { r } _ { 1 3 } \mathrm { x } _ { 3 } } \mathrm { p } _ { 1 3 } } \\
{ \mathrm { x } _ { 2 } \rightarrow \varepsilon \quad , \quad \mathrm { f } _ { 2 } \rightarrow \mathrm { p } _ { 2 2 } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon \quad , } & { \mathrm { f } _ { 3 } \rightarrow \mathrm { p } _ { 3 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{22} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.\right.
$$

Similar to previous sub-region, the equation is active.

Sub-region 2.3:

In this region:

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{12}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{13}(1-\varepsilon)} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

If: $\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} \Rightarrow \mathrm{r}_{11} \mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{4}\right)>\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{4}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13}(1-\varepsilon)\left(\mathrm{M}_{4}-\mathrm{x}_{1} \mathrm{c}\right)$

Where: $\mathrm{M}_{4}=\varepsilon \mathrm{f}_{3}-\mathrm{x}_{2} \mathrm{f}_{2}$

If $\mathrm{M}_{4}<\mathrm{X}_{1} \mathrm{p}_{11}$, then the following situation is our proposition to make equation () active:

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{4}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13}(1-\varepsilon)\left(\mathrm{M}_{4}-\mathrm{x}_{1} \mathrm{p}_{13}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{4}\right)} \tag{19}
\end{equation*}
$$

Therefore, we check if the following equation is active:

$$
\begin{equation*}
\mathrm{M}_{4}<\mathrm{x}_{1} \mathrm{p}_{11} \tag{20}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{M}_{4}-\mathrm{x}_{1} \mathrm{p}_{11}=\varepsilon \mathrm{i}-\left(\varepsilon-\mathrm{x}_{1}\right)\left(\frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}}{\mathrm{r}_{12} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)}\right)-\mathrm{x}_{1} \mathrm{p}_{11} \\
& =\frac{\mathrm{r}_{12} \mathrm{x}_{1}\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)-\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\varepsilon \mathrm{p}_{33}\right)}{\mathrm{r}_{12} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)}
\end{aligned}
$$

$$
\text { And: }\left\{\begin{array}{c}
\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)<0 \\
\left(\mathrm{x}_{1} \mathrm{p}_{1}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{2}-\varepsilon \mathrm{p}_{33}\right)>0
\end{array} \quad \Rightarrow \mathrm{M}_{4}-\mathrm{x}_{1} \mathrm{p}_{11}<0 \Rightarrow \mathrm{M}_{4}<\mathrm{x}_{1} \mathrm{p}_{11}\right.
$$

Therefore, the equation () is always active and there is no need to extra proposition for that.

Step 4:

In this step we want to recommend propositions so that $\dot{x}_{3}<0$, where $\mathrm{x}_{3}=\sigma$. Therefore, it would be similar to step 3 , and we just replace $1-\varepsilon$ with σ.

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{12}+\mathrm{r}_{13} \sigma \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)+\mathrm{r}_{13} \sigma} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{22}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)\left(\mathrm{N}_{4}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13} \sigma\left(\mathrm{~N}_{4}-\mathrm{x}_{1} \mathrm{p}_{13}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{N}_{4}\right)} \tag{21}
\end{equation*}
$$

Where: $\mathrm{N}_{4}=(1-\sigma) \mathrm{f}_{3}-\mathrm{X}_{2} \mathrm{f}_{2}$

5. Case A2B1

Taking into account the previous parts, our proposition for this case is:

$$
\frac{\mathrm{r}_{22} \mathrm{r}_{33}}{\mathrm{r}_{23}^{2}}>\mathrm{k}_{1} \quad \text { and } \quad\left\{\begin{array}{l}
\mathrm{r}_{11} \mathrm{r}_{33} \rightarrow \infty \\
\mathrm{r}_{13} \rightarrow 0
\end{array}\right.
$$

We propose an extra proposition to keep the left equation active:

$$
\text { Extra proposition: }\left\{\begin{array}{l}
r_{33} \rightarrow \infty \tag{22}\\
\frac{r_{22}}{r_{23}^{2}} \gg 0
\end{array}\right.
$$

Step 2:

In this step we will present propositions to have zero equilibrium points in region 2. Again, region 2 is consisted of 3 sub-regions.

Sub-region 2.1:

In this sub-region, $\mathrm{X}_{2} \rightarrow 0$ and considering the following proposed condition:

$$
\left\{\begin{array} { l l }
{ \mathrm { r } _ { 1 2 } \mathrm { x } _ { 2 } \rightarrow 0 } & { , } \\
{ \mathrm { r } _ { 1 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow 0 } & { , } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

$\mathrm{f}_{1}>\mathrm{f}_{3}$ and there are no equilibrium points in this sub-region for this case.

Sub-region 2.2:

In this sub-region, $\mathrm{X}_{1} \rightarrow 0$ and indicates that:

$$
\left\{\begin{array} { l l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow 0 } & { , } \\
{ \mathrm { r } _ { 1 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } \rightarrow 0 } & { , } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 \infty } \rightarrow 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{12} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Again, $\mathrm{f}_{2}>\mathrm{f}_{3}$ and no equilibrium point exists.

Sub-region 2.3:

In this sub-region for case 1 equations are as bellow:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \mathrm{x}_{2}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since $\mathrm{f}_{2} \in\left(\mathrm{p}_{22}, \mathrm{p}_{21}\right), \mathrm{f}_{2}>\mathrm{f}_{3}$ and there is no equilibrium point.

Step 3:

Propositions are made in a way that $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{X}_{3}=1-\varepsilon$)

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if : } \mathrm{x}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

Therefore, we will make propositions so that equation becomes active.

Sub-region 2.1:

In this region:

$$
\left\{\begin{array}{ccc}
\mathrm{x}_{1} \rightarrow \varepsilon & , & \mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{x}_{2} \rightarrow 0 \\
\mathrm{x}_{3}=1-\varepsilon & , & \mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \varepsilon \mathrm{p}_{21}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{21} \varepsilon+\mathrm{r}_{23}(1-\varepsilon)} \Rightarrow\left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{11} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
\end{array}\right.
$$

Therefore, in this region the equation is always active and we don't need any proposition.

Sub-region 2.2:

In this region:

$$
\left\{\begin{array} { c c }
{ \mathrm { x } _ { 1 } \rightarrow 0 } \\
{ \mathrm { x } _ { 2 } \rightarrow \varepsilon } & { , } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , }
\end{array} \quad \mathrm { f } _ { 2 } \rightarrow \frac { \mathrm { f } _ { 1 } \rightarrow \mathrm { p } _ { 1 2 } } { } \frac { \mathrm { r } _ { 2 2 } \mathrm { p } _ { 2 2 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) \mathrm { p } _ { 2 3 } } { \mathrm { r } _ { 2 2 } \varepsilon + \mathrm { r } _ { 2 3 } (1 - \varepsilon) } \Rightarrow \begin{array} { l }
{ \mathrm { f } _ { 3 } \rightarrow \mathrm { p } _ { 3 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{23} \mathrm{x}_{3}}\right) \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since, $\mathrm{p}_{22}, \mathrm{p}_{23}>\mathrm{p}_{33} \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3}$

It is clear that the equation is always active and there is no necessity for proposition.

Sub-region 2.3:

In this region:

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{12}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

If: $\mathrm{X}_{1} \mathrm{f}_{1}+\mathrm{X}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} \Rightarrow \mathrm{r}_{11} \mathrm{X}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{5}\right)>\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{5}-\mathrm{x}_{1} \mathrm{p}_{12}\right)$

Where: $\mathrm{M}_{5}=\varepsilon \mathrm{f}_{3}-\mathrm{x}_{2} \mathrm{f}_{2}$

If $\mathrm{M}_{5}<\mathrm{X}_{1} \mathrm{p}_{11}$, then the following condition is our proposition to make equation () active:

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{5}-\mathrm{x}_{1} \mathrm{p}_{12}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{5}\right)} \tag{24}
\end{equation*}
$$

Moreover, the activeness of the following equation is verified:

$$
\begin{equation*}
\mathrm{M}_{5}<\mathrm{x}_{1} \mathrm{p}_{11} \tag{25}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{M}_{5}-\mathrm{x}_{1} \mathrm{p}_{11}=\varepsilon \mathrm{i}-\left(\varepsilon-\mathrm{x}_{1}\right)\left(\frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{12} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)}\right)-\mathrm{x}_{1} \mathrm{p}_{11} \\
& =\frac{\mathrm{r}_{12} \mathrm{x}_{1}\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)-\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\varepsilon \mathrm{p}_{33}\right)-\mathrm{r}_{23}(1-\varepsilon)\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{23}-\varepsilon \mathrm{p}_{33}\right)}{\mathrm{r}_{12} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)} \\
& \text { And: }\left\{\begin{array}{l}
\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)<0 \\
\left(\mathrm{x}_{1} \mathrm{p}_{1}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{2}-\varepsilon \mathrm{p}_{33}\right)>0 \\
\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{23}-\varepsilon \mathrm{p}_{33}\right)>0
\end{array}\right.
\end{aligned}
$$

Therefore, the equation (25) is always active and no propositions are needed.

Step 4:

In this step, the intention is to maintain $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{x}_{3}=\sigma$). Therefore, we just replace $1-\varepsilon$ with σ as we did in step 3 .

$$
\left\{\begin{aligned}
\mathrm{f}_{1} & \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{12}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{2} & \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{3} & \rightarrow \mathrm{p}_{33}
\end{aligned}\right.
$$

$$
\begin{equation*}
\text { Our proposition: } r_{11}>\frac{r_{12}\left(1-\sigma-x_{1}\right)\left(N_{5}-x_{1} p_{12}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{N}_{5}\right)} \tag{26}
\end{equation*}
$$

Where: $\mathrm{N}_{5}=(1-\sigma) \mathrm{f}_{3}-\mathrm{X}_{2} \mathrm{f}_{2}$

6. Case A2B2

According to preceding parts, our proposition for this case is:

$$
\frac{\mathrm{r}_{22} \mathrm{r}_{33}}{\mathrm{r}_{23}^{2}}>\mathrm{k}_{1} \quad \text { and } \quad \frac{\mathrm{r}_{11} \mathrm{r}_{33}}{\mathrm{r}_{13}^{2}}>\mathrm{k}_{2}
$$

An extra condition is applied as follows to keep the equation active:

$$
\text { Extra proposition: }\left\{\begin{array}{l}
r_{33} \rightarrow \infty \tag{27}\\
\frac{r_{22}}{r_{23}^{2}} \gg 0 \\
\frac{r_{11}}{r_{13}^{2}} \gg 0
\end{array}\right.
$$

Step 2:

Region 2 is divided into 3 sub-regions and the idea is to eliminate equilibrium points in this region.

Sub-region 2.1:

In this sub-region, $\mathrm{x}_{2} \rightarrow 0$ and the proposed conditions are:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 2 } \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since $f_{2}>f_{3}$, there are no equilibrium point in this sub-region for this case.

Sub-region 2.2:

In this sub-region, $\mathrm{X}_{1} \rightarrow 0$ and:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

$\mathrm{f}_{2}>\mathrm{f}_{3}$ and there would be no equilibrium points.

Sub-region 2.3:

Equations for case 1 are as follows:

$$
\mathrm{r}_{3} \mathrm{x}_{3} \rightarrow \infty \Rightarrow\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

$\mathrm{f}_{2} \in\left(\mathrm{p}_{23}, \mathrm{p}_{21}\right)$ and $\mathrm{f}_{2}>\mathrm{f}_{3}$ which implies the existence of no equilibrium points.

Step 3:

Conditions are applied to maintain $\dot{\mathrm{X}}_{3}<0$, where $\mathrm{X}_{3}=1-\varepsilon$.

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \tag{28}\\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if : } \dot{\mathrm{x}}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

Thus, the suggestions are in a way to keep the above equations active.

Sub-region 2.1:

In this sub-region:

$$
\left\{\begin{array}{lc}
\mathrm{x}_{1} \rightarrow \varepsilon & , \\
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \varepsilon \mathrm{p}_{11}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \varepsilon+\mathrm{r}_{13}(1-\varepsilon)} \\
\mathrm{x}_{2} \rightarrow 0 & , \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \varepsilon \mathrm{p}_{21}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{21} \varepsilon+\mathrm{r}_{23}(1-\varepsilon)} \\
\mathrm{x}_{3}=1-\varepsilon & ,
\end{array} \quad \mathrm{f}_{3} \rightarrow \mathrm{p}_{33}, ~\left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{11} \varepsilon \mathrm{p}_{11}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \varepsilon+\mathrm{r}_{13}(1-\varepsilon)}\right) \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since, $\mathrm{p}_{11}, \mathrm{p}_{13}>\mathrm{p}_{33} \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3}$

Therefore, in this sub-region the equation is always active and we don't need any proposition.
Sub-region 2.2:
In this region:

$$
\left\{\begin{array}{lc}
\mathrm{x}_{1} \rightarrow 0 & , \quad \mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{12} \varepsilon \mathrm{p}_{12}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{12} \varepsilon+\mathrm{r}_{13}(1-\varepsilon)} \\
\mathrm{x}_{2} \rightarrow \varepsilon & , \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{22} \varepsilon \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{22} \varepsilon+\mathrm{r}_{23}(1-\varepsilon)} \Rightarrow\left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{22} \mathrm{x}_{1}+\mathrm{r}_{23} \mathrm{x}_{3}}\right) \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array}\right.
\end{array}\right.
$$

Since, $\mathrm{p}_{22}, \mathrm{p}_{23}>\mathrm{p}_{33} \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3}$
As a result the equation is active and no extra condition is required.

Sub-region 2.3:

In this sub-region:

$$
\left\{\begin{aligned}
\mathrm{f}_{1} & \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{12}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{13}(1-\varepsilon)} \\
\mathrm{f}_{2} & \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)} \\
\mathrm{f}_{3} & \rightarrow \mathrm{p}_{33}
\end{aligned}\right.
$$

If:

$$
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} \Rightarrow \mathrm{r}_{11} \mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{6}\right)>\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{6}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13}(1-\varepsilon)\left(\mathrm{M}_{6}-\mathrm{x}_{1} \mathrm{p}_{13}\right)
$$

Where: $\mathrm{M}_{6}=\varepsilon \mathrm{f}_{3}-\mathrm{X}_{2} \mathrm{f}_{2}$

If $\mathrm{M}_{5}<\mathrm{X}_{1} \mathrm{p}_{11}$, then the proposed condition to make the equation 27 an active equation is:

$$
\begin{equation*}
\mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{6}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13}(1-\varepsilon)\left(\mathrm{M}_{6}-\mathrm{x}_{1} \mathrm{p}_{13}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{6}\right)} \tag{28}
\end{equation*}
$$

The following equation must be active: :

$$
\begin{align*}
& \mathrm{M}_{6}<\mathrm{x}_{1} \mathrm{p}_{11}(29) \tag{29}\\
& \mathrm{M}_{6}-\mathrm{x}_{1} \mathrm{p}_{11}=\varepsilon \mathrm{i}-\left(\varepsilon-\mathrm{x}_{1}\right)\left(\frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{12} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)}\right)-\mathrm{x}_{1} \mathrm{p}_{11} \\
& =\frac{\mathrm{r}_{12} \mathrm{x}_{1}\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)-\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\varepsilon \mathrm{p}_{33}\right)-\mathrm{r}_{23}(1-\varepsilon)\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{23}-\varepsilon \mathrm{p}_{33}\right)}{\mathrm{r}_{12} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)} \\
& \text { And: }\left\{\begin{array}{l}
\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)<0 \\
\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\varepsilon \mathrm{p}_{33}\right)>0 \\
\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{23}-\varepsilon \mathrm{p}_{33}\right)>0
\end{array} \Rightarrow \mathrm{M}_{6}-\mathrm{x}_{1} \mathrm{p}_{11}<0 \Rightarrow \mathrm{M}_{6}<\mathrm{x}_{1} \mathrm{p}_{11}\right.
\end{align*}
$$

Therefore, the equation (29) is always active and no added condition is required.

Step 4:

In this step we want to recommend propositions to make $\dot{x}_{3}<0$, where $\mathrm{x}_{3}=\sigma$. Similar to step 3 $1-\varepsilon$ is replaced with σ in equations.

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{12}+\mathrm{r}_{13} \sigma \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)+\mathrm{r}_{13} \sigma} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{13}\left(\sigma \mathrm{p}_{23}\right.}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right)+\mathrm{r}_{23} \sigma} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)\left(\mathrm{N}_{6}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13} \sigma\left(\mathrm{~N}_{6}-\mathrm{x}_{1} \mathrm{p}_{13}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{N}_{6}\right)} \tag{30}
\end{equation*}
$$

Where: $\mathrm{N}_{6}=(1-\sigma) \mathrm{f}_{3}-\mathrm{x}_{2} \mathrm{f}_{2}$

7. Case A2B3

Recalling the previous sections, our suggestion for this case is::

$$
\frac{\mathrm{r}_{22} \mathrm{r}_{33}}{\mathrm{r}_{23}^{2}}>\mathrm{k}_{1} \quad \text { and } \quad \mathrm{r}_{11} \rightarrow \infty
$$

Applying the following extra condition to this case makes the left equation active:

$$
\text { Extra proposition: }\left\{\begin{array}{c}
r_{23} \rightarrow 0 \tag{31}\\
r_{22} r_{33} \gg 0
\end{array}\right.
$$

Step 2:

Propositions are made to eliminate equilibrium points in region 2. We assume region 2 is consist of 3 sub-regions.

Sub-region 2.1:

In this sub-region, $\mathrm{x}_{2} \rightarrow 0$ and considering our propositions we have:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow \infty , \quad \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 3 } \mathrm { x } _ { 3 } \rightarrow 0 , \quad \mathrm { r } _ { 3 2 } \mathrm { x } _ { 2 } \rightarrow 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{21} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{33} \mathrm{x}_{3} \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33} \mathrm{x}_{3}}
\end{array}\right.\right.
$$

$\mathrm{f}_{1}>\mathrm{f}_{3}$ and consequently there are no equilibrium points.

Sub-region 2.2:

In this sub-region, $\mathrm{X}_{1} \rightarrow 0$, similar to sub-region 1 , we have:

$$
\left\{\begin{array}{l}
\mathrm{r}_{21} \mathrm{x}_{1} \rightarrow 0, \\
\mathrm{r}_{32} \mathrm{x}_{2} \rightarrow \infty,
\end{array} \quad \mathrm{r}_{23} \mathrm{x}_{3} \rightarrow 0 .\left\{\begin{array}{l}
\mathrm{r}_{33} \mathrm{x}_{3} \rightarrow 0
\end{array} \Rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}}\right.\right.
$$

Since $f_{2}>f_{3}$ no equilibrium points exists.

Sub-region 2.3:

Equations for case 1are:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow \infty } \\
{ \mathrm { r } _ { 2 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 2 } \mathrm { x } _ { 2 } \rightarrow 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{33} \mathrm{x}_{3} \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33} \mathrm{x}_{3}}
\end{array}\right.\right.
$$

Since, $\mathrm{f}_{2} \in\left(\mathrm{p}_{22}, \mathrm{p}_{21}\right)$, always $\mathrm{f}_{2}>\mathrm{f}_{3}$ and there are no equilibrium points.

Step 3:

The objective is to have $\dot{x}_{3}<0$ (where $\mathrm{X}_{3}=1-\varepsilon$)

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \tag{32}\\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if : } \dot{\mathrm{x}}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

Therefore, propositions are recommended to activate the above equation.

Sub-region 2.1:

In this region:

$$
\begin{aligned}
& \left\{\begin{array} { c c c }
{ \mathrm { x } _ { 1 } \rightarrow \varepsilon } & { , } & { \mathrm { f } _ { 1 } \rightarrow \mathrm { p } _ { 1 1 } } \\
{ \mathrm { x } _ { 2 } \rightarrow 0 } & { , } & { \mathrm { f } _ { 2 } \rightarrow \mathrm { p } _ { 2 1 } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , } & { \mathrm { f } _ { 3 } \rightarrow \frac { \mathrm { r } _ { 3 1 } \varepsilon \mathrm { p } _ { 3 1 } + \mathrm { r } _ { 3 3 } (1 - \varepsilon) \mathrm { p } _ { 3 3 } } { \mathrm { r } _ { 3 1 } \varepsilon + \mathrm { r } _ { 3 3 } (1 - \varepsilon) } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{11} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{31} \varepsilon \mathrm{p}_{31}+\mathrm{r}_{33}(1-\varepsilon) \mathrm{p}_{33}}{\mathrm{r}_{31} \varepsilon+\mathrm{r}_{33}(1-\varepsilon)}\right)
\end{array}\right.\right. \\
& \mathrm{p}_{11}>\mathrm{p}_{31}, \mathrm{p}_{33}
\end{aligned} \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} . \quad .
$$

Therefore, in this region the equation is always active and we don't need any proposition.

Sub-region 2.2:

In this region:

$$
\left\{\begin{array} { c c c }
{ \mathrm { x } _ { 1 } \rightarrow 0 } & { , } & { \mathrm { f } _ { 1 } \rightarrow \frac { \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \mathrm { p } _ { 1 1 } + \mathrm { r } _ { 1 2 } (\varepsilon - \mathrm { x } _ { 1 }) \mathrm { p } _ { 1 2 } + \mathrm { r } _ { 1 3 } (1 - \varepsilon) \mathrm { p } _ { 1 3 } } { \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } + \mathrm { r } _ { 1 2 } (\varepsilon - \mathrm { x } _ { 1 }) + \mathrm { r } _ { 1 3 } (1 - \varepsilon) } } \\
{ \mathrm { x } _ { 2 } \rightarrow \varepsilon } & { , } & { \mathrm { f } _ { 2 } \rightarrow \mathrm { p } _ { 2 2 } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , } & { \mathrm { f } _ { 3 } \rightarrow \mathrm { p } _ { 3 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{22} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array}\right.\right.
$$

Therefore, in this region, the equation 32 is always active and we don't need any proposition.

Sub-region 2.3:

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{33}(1-\varepsilon) \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33}(1-\varepsilon)}
\end{array}\right.
$$

If: $\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} \Rightarrow \mathrm{r}_{22}\left(\varepsilon-\mathrm{X}_{1}\right)\left(\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{M}_{7}\right)>\mathrm{r}_{21} \mathrm{x}_{1}\left(\mathrm{M}_{7}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{12}\right)$

Where: $\mathrm{M}_{7}=\varepsilon \mathrm{f}_{3}-\mathrm{X}_{1} \mathrm{f}_{1}$

If $\mathrm{M}_{7}<\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}$, then the following situation is our proposition to make equation (32) active:

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{22}>\frac{\mathrm{r}_{21} \mathrm{x}_{1}\left(\mathrm{M}_{7}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}\right)}{\left(\varepsilon-\mathrm{x}_{1}\right)\left(\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{M}_{7}\right)} \tag{33}
\end{equation*}
$$

Therefore, we check if the following equation is active:

$$
\begin{equation*}
\mathrm{M}_{7}<\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21} \tag{34}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{M}_{7}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}=\varepsilon\left(\frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{33}(1-\varepsilon) \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33}(1-\varepsilon)}\right)-\mathrm{x}_{1} \mathrm{p}_{11}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21} \\
& =\frac{\mathrm{r}_{31} \mathrm{x}_{1}\left(\varepsilon \mathrm{p}_{31}-\mathrm{x}_{1} \mathrm{p}_{11}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}\right)-\mathrm{r}_{33}(1-\varepsilon)\left(\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}+\mathrm{x}_{1} \mathrm{p}_{11}-\varepsilon \mathrm{p}_{33}\right)}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33}(1-\varepsilon)}
\end{aligned}
$$

Since, $\left(\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}+\mathrm{x}_{1} \mathrm{p}_{11}-\varepsilon \mathrm{p}_{33}\right)>0$ by applying the following extra proposition the equation is always active and no extra condition is required.:

$$
\begin{equation*}
\text { Our extra proposition: } \mathrm{r}_{33}>\frac{\mathrm{r}_{13} \mathrm{x}_{1}\left(\varepsilon \mathrm{p}_{31}-\mathrm{x}_{1} \mathrm{p}_{11}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}\right)}{(1-\varepsilon)\left(\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}+\mathrm{x}_{1} \mathrm{p}_{11}-\varepsilon \mathrm{p}_{33}\right)} \tag{35}
\end{equation*}
$$

Step 4:

Propositions to have $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{x}_{3}=\sigma$) are made by replacing $1-\varepsilon$ with σ..

$$
\begin{align*}
& \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{22}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{33} \sigma \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33} \sigma}
\end{array}\right. \\
& \text { Our proposition: } \mathrm{r}_{22}>\frac{\mathrm{r}_{21} \mathrm{x}_{1}\left(\mathrm{~N}_{7}-\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{21}\right)}{\left(1-\sigma-\mathrm{x}_{1}\right)\left(\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{N}_{7}\right)} \tag{36}
\end{align*}
$$

8. Case A4B4

Proposition for this are:

$$
\frac{\mathrm{r}_{22} \mathrm{r}_{33}}{\mathrm{r}_{23}^{2}}>\mathrm{k}_{1} \quad \text { and } \quad \mathrm{r}_{33} \rightarrow \infty
$$

Step 2:

To prevent locating equilibrium points in region 2 the following analysis are carried out in 3 different sub-regions. Sub-region 2.1:

In this sub-region, $\mathrm{x}_{2} \rightarrow 0$ and::

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 2 } \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Againf ${ }_{2}>f_{3}$ and there are no equilibrium points in this sub-region for this case.

Sub-region 2.2:

In this sub-region, $\mathrm{X}_{1} \rightarrow 0$, similar to sub-region 1 we may write:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since $\mathrm{f}_{2}>\mathrm{f}_{3}$ no equilibrium point is located in this sub-region.

Sub-region 2.3:

For case 1, the following conditions are proposed:
$\mathrm{r}_{33} \mathrm{x}_{3} \rightarrow \infty \Rightarrow\left\{\begin{array}{l}\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\ \mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\ \mathrm{f}_{3} \rightarrow \mathrm{p}_{33}\end{array}\right.$
$\mathrm{f}_{2} \in\left(\mathrm{p}_{23}, \mathrm{p}_{21}\right)$ that means $\mathrm{f}_{2}>\mathrm{f}_{3}$ and there is no equilibrium point here.

Step 3:

In this step we attempt to keep a $\dot{\mathrm{x}}_{3}<0\left(\right.$ where $\left.\mathrm{x}_{3}=1-\varepsilon\right)$

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \tag{38}\\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if }: \dot{\mathrm{x}}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

So, we will recommend propositions to make the equation active.

Sub-region 2.1:

In this sub-region:

$$
\left\{\begin{array} { l c }
{ \mathrm { x } _ { 1 } \rightarrow \varepsilon } & { , } \\
{ \mathrm { f } _ { 1 } \rightarrow \frac { \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \mathrm { p } _ { 1 1 } + \mathrm { r } _ { 1 3 } (1 - \varepsilon) \mathrm { p } _ { 1 3 } } { \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } + \mathrm { r } _ { 1 3 } (1 - \varepsilon) } } \\
{ \mathrm { x } _ { 2 } \rightarrow 0 } & { , } \\
{ \mathrm { f } _ { 2 } \rightarrow \frac { \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } \mathrm { p } _ { 2 1 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) \mathrm { p } _ { 2 3 } } { \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , }
\end{array} \quad \left\{\begin{array}{l}
\mathrm{x}_{3} \rightarrow \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{33} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13}(1-\varepsilon)}\right) \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array}\right.\right.
$$

$$
\mathrm{p}_{11}, \mathrm{p}_{13}>\mathrm{p}_{33} \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3}
$$

Therefore, the equation is always active and no proposal is needed..

Sub-region 2.2:

In this sub-region:

$$
\left\{\begin{array} { l c }
{ \mathrm { x } _ { 1 } \rightarrow 0 } & { , \mathrm { f } _ { 1 } \rightarrow \frac { \mathrm { r } _ { 1 2 } (\varepsilon - \mathrm { x } _ { 1 }) \mathrm { p } _ { 1 2 } + \mathrm { r } _ { 1 3 } (1 - \varepsilon) \mathrm { p } _ { 1 3 } } { \mathrm { r } _ { 1 2 } (\varepsilon - \mathrm { x } _ { 1 }) + \mathrm { r } _ { 1 3 } (1 - \varepsilon) } } \\
{ \mathrm { x } _ { 2 } \rightarrow \varepsilon } & { , \mathrm { f } _ { 2 } \rightarrow \frac { \mathrm { r } _ { 2 2 } (\varepsilon - \mathrm { x } _ { 1 }) \mathrm { p } _ { 2 2 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) \mathrm { p } _ { 2 3 } } { \mathrm { r } _ { 2 2 } (\varepsilon - \mathrm { x } _ { 1 }) + \mathrm { r } _ { 2 3 } (1 - \varepsilon) } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , }
\end{array} \quad \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon\left(\frac{\mathrm{p}_{33}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)}\right) \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array}\right.\right.
$$

Thus, the equation (38) is active and we don't need any proposition as well.

Sub-region 2.3:

In this sub-region:

$$
\left\{\begin{aligned}
\mathrm{f}_{1} & \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{12}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{13}(1-\varepsilon)} \\
\mathrm{f}_{2} & \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)} \\
\mathrm{f}_{3} & \rightarrow \mathrm{p}_{33}
\end{aligned}\right.
$$

If:
$\mathrm{X}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} \Rightarrow \mathrm{r}_{11} \mathrm{X}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{8}\right)>\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{8}-\mathrm{x}_{1} \mathrm{~b}\right)+\mathrm{r}_{13}(1-\varepsilon)\left(\mathrm{M}_{8}-\mathrm{x}_{1} \mathrm{p}_{13}\right)$

Where: $\mathrm{M}_{8}=\varepsilon \mathrm{f}_{3}-\mathrm{X}_{2} \mathrm{f}_{2}$

If $\mathrm{M}_{8}<\mathrm{X}_{1} \mathrm{p}_{11}$, then the following condition is our proposition to make equation (38) active:

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{8}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13}(1-\varepsilon)\left(\mathrm{M}_{8}-\mathrm{x}_{1} \mathrm{p}_{13}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{8}\right)} \tag{39}
\end{equation*}
$$

Therefore, we evaluate the activeness of the following equation::

$$
\begin{aligned}
& \mathrm{M}_{8}<\mathrm{x}_{1} \mathrm{p}_{11} \\
& \mathrm{M}_{8}-\mathrm{x}_{1} \mathrm{p}_{11}=\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right)\left(\frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)}\right)-\mathrm{x}_{1} \mathrm{p}_{11} \\
& =\frac{\mathrm{r}_{21} \mathrm{x}_{1}\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)-\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\varepsilon \mathrm{p}_{33}\right)-\mathrm{r}_{23}(1-\varepsilon)\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{23}-\varepsilon \mathrm{p}_{33}\right)}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)} \\
& \left\{\begin{array}{l}
\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)<0 \\
\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\varepsilon \mathrm{p}_{33}\right)>0 \\
\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{23}-\varepsilon \mathrm{p}_{33}\right)>0
\end{array} \Rightarrow \mathrm{M}_{8}-\mathrm{x}_{1} \mathrm{p}_{11}<0 \Rightarrow \mathrm{M}_{8}<\mathrm{x}_{1} \mathrm{p}_{11}\right.
\end{aligned}
$$

It is apparent that the equation is active and no propositions are recommended.

Step 4:

In this step we want to recommend propositions so that $\dot{x}_{3}<0$ (where $\mathrm{x}_{3}=\sigma$). It is exactly similar to step 3 , and we just replace $1-\mathcal{E}$ with σ.

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{12}+\mathrm{r}_{13} \sigma \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)+\mathrm{r}_{13} \sigma} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23} \sigma \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right)+\mathrm{r}_{23} \sigma} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

Our proposition: $\mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)\left(\mathrm{N}_{8}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13} \sigma\left(\mathrm{~N}_{8}-\mathrm{x}_{1} \mathrm{p}_{13}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{N}_{8}\right)}$

Where: $\mathrm{N}_{8}=(1-\sigma) \mathrm{f}_{3}-\mathrm{X}_{2} \mathrm{f}_{2}$

9. Case A3B1

According to previous parts, our proposition for this case is :

$$
\mathrm{r}_{22} \rightarrow \infty \quad \text { and } \quad\left\{\begin{array}{l}
\mathrm{r}_{11} \mathrm{r}_{33} \rightarrow \infty \\
\mathrm{r}_{13} \rightarrow 0
\end{array}\right.
$$

Step 2:

In this step we will present propositions to have zero equilibrium points in region 2. Again, region 2 is consisted of 3 sub-regions

Sub-region 2.1:

In this sub-region, $\mathrm{X}_{2} \rightarrow 0$ and taking into account the proposed conditions.:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 2 } \mathrm { x } _ { 2 } \rightarrow 0 , \quad \mathrm { r } _ { 1 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 1 } \mathrm { x } _ { 1 } \rightarrow 0 , \quad \mathrm { r } _ { 3 2 } \mathrm { x } _ { 2 } \rightarrow 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since, $f_{1}>f_{3}$, there are no equilibrium point in this sub-region for this case.

Sub-region 2.2:

$\mathrm{X}_{1} \rightarrow 0$ and:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow 0 , \quad \mathrm { r } _ { 1 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow \infty , \quad \mathrm { r } _ { 3 1 } \mathrm { x } _ { 1 } \rightarrow 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{12} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{32} \mathrm{x}_{2} \mathrm{p}_{32}+\mathrm{r}_{33} \mathrm{x}_{3} \mathrm{p}_{33}}{\mathrm{r}_{32} \mathrm{x}_{2}+\mathrm{r}_{33} \mathrm{x}_{3}}
\end{array}\right.\right.
$$

$\mathrm{f}_{2}>\mathrm{f}_{3}$, there is no equilibrium point in this sub-region.

Sub-region 2.3:

In this sub-region for case 1 equations are as bellow:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow \infty } \\
{ \mathrm { r } _ { 3 1 } \mathrm { x } _ { 1 } \rightarrow 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \mathrm{x}_{2}} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{32} \mathrm{x}_{2} \mathrm{p}_{32}+\mathrm{r}_{33} \mathrm{x}_{3} \mathrm{p}_{33}}{\mathrm{r}_{32} \mathrm{x}_{2}+\mathrm{r}_{33} \mathrm{x}_{3}}
\end{array}\right.\right.
$$

Since, $\mathrm{f}_{2} \in\left(\mathrm{p}_{23}, \mathrm{p}_{21}\right), \mathrm{f}_{2}>\mathrm{f}_{3}$ there is no equilibrium point is located in this region.

Step 3:

In this step we attempt to keep a $\dot{x}_{3}<0\left(\right.$ where $\left.\mathrm{X}_{3}=1-\varepsilon\right)$

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \tag{41}\\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if }: \dot{\mathrm{x}}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

So, we will recommend propositions to make the equation active

Sub-region 2.1:

In this sub-region:

$$
\left\{\begin{array} { c c c }
{ \mathrm { x } _ { 1 } \rightarrow \varepsilon } & { , } & { \mathrm { f } _ { 1 } \rightarrow \mathrm { p } _ { 1 1 } } \\
{ \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , } & { \mathrm { f } _ { 2 } \rightarrow \frac { \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } \mathrm { p } _ { 2 1 } + \mathrm { r } _ { 2 2 } (\varepsilon - \mathrm { x } _ { 1 }) \mathrm { p } _ { 2 2 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) \mathrm { p } _ { 2 3 } } { \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } + \mathrm { r } _ { 2 2 } (\varepsilon - \mathrm { x } _ { 1 }) + \mathrm { r } _ { 2 3 } (1 - \varepsilon) } } \\
{ \mathrm { f } _ { 3 } \rightarrow \mathrm { p } _ { 3 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{11} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array} \quad \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3}\right.\right.
$$

Therefore, in this region the equation is always active and we don't need any proposition.

Sub-region 2.2:

In this sub-region:

$$
\left\{\begin{array} { c c c }
{ \mathrm { x } _ { 1 } \rightarrow 0 } & { , } & { \mathrm { f } _ { 1 } \rightarrow \mathrm { p } _ { 1 2 } } \\
{ \mathrm { x } _ { 2 } \rightarrow \varepsilon } & { , } & { \mathrm { f } _ { 2 } \rightarrow \mathrm { p } _ { 2 2 } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , } & { \mathrm { f } _ { 3 } \rightarrow \frac { \mathrm { r } _ { 3 2 } (\varepsilon - \mathrm { x } _ { 1 }) \mathrm { p } _ { 3 2 } + \mathrm { r } _ { 3 3 } (1 - \varepsilon) \mathrm { p } _ { 3 3 } } { \mathrm { r } _ { 3 2 } (\varepsilon - \mathrm { x } _ { 1 }) + \mathrm { r } _ { 3 3 } (1 - \varepsilon) } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{22} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array} \quad \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3}\right.\right.
$$

Therefore, the equation is always active and no proposal is needed.

Sub-region 2.3:

In this sub-region:

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{12}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{32}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{32}+\mathrm{r}_{33}(1-\varepsilon) \mathrm{p}_{33}}{\mathrm{r}_{32}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{33}(1-\varepsilon)}
\end{array}\right.
$$

If: $\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} \Rightarrow \mathrm{r}_{11} \mathrm{X}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{9}\right)>\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{9}-\mathrm{x}_{1} \mathrm{~b}\right)$

Where: $\mathrm{M}_{9}=\varepsilon \mathrm{f}_{3}-\mathrm{X}_{2} \mathrm{f}_{2}$

If $\mathrm{M}_{9}<\mathrm{X}_{1} \mathrm{p}_{11}$, the following situation would be our proposition to make equation (41) active:

$$
\begin{equation*}
\text { Our proposition: } r_{11}>\frac{r_{12}\left(\varepsilon-x_{1}\right)\left(M_{9}-x_{1} p_{12}\right)}{x_{1}\left(x_{1} p_{11}-M_{9}\right)} \tag{42}
\end{equation*}
$$

Therefore, we check if the following equation is active:

$$
\begin{gathered}
\mathrm{M}_{9}<\mathrm{x}_{1} \mathrm{p}_{11} \\
\mathrm{M}_{9}-\mathrm{x}_{1} \mathrm{p}_{11}=\varepsilon\left(\frac{\mathrm{r}_{32}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{32}+\mathrm{r}_{33}(1-\varepsilon) \mathrm{p}_{33}}{\mathrm{r}_{32}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{33}(1-\varepsilon)}\right)-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{x}_{1} \mathrm{p}_{11} \\
=\frac{\mathrm{r}_{32}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\varepsilon \mathrm{p}_{32}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{x}_{1} \mathrm{p}_{11}\right)-\mathrm{r}_{33}(1-\varepsilon)\left(-\varepsilon \mathrm{p}_{33}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{x}_{1} \mathrm{p}_{11}\right)}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)}
\end{gathered}
$$

Since $\left(-\varepsilon \mathrm{p}_{33}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{x}_{1} \mathrm{p}_{11}\right)>0$, With the following extra proposition the equation is always active:

$$
\begin{equation*}
\text { Our extra proposition: } \mathrm{r}_{23}>\frac{\mathrm{r}_{33}(1-\varepsilon)\left(\varepsilon \mathrm{p}_{31}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{x}_{1} \mathrm{p}_{11}\right)}{\left(\varepsilon-\mathrm{x}_{1}\right)\left(\varepsilon \mathrm{p}_{32}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{x}_{1} \mathrm{p}_{11}\right)} \tag{44}
\end{equation*}
$$

Therefore, the equation () becomes active and there is no need for extra conditions to be applied.

Step 4:

In this step we attempt to keep a $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{x}_{3}=1-\varepsilon$) by replacing $1-\varepsilon$ with σ.

$$
\begin{align*}
& \qquad\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{12}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{32}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{32}+\mathrm{r}_{33} \sigma \mathrm{p}_{33}}{\mathrm{r}_{32}\left(1-\sigma-\mathrm{x}_{1}\right)+\mathrm{r}_{33} \sigma}
\end{array}\right. \\
& \text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)\left(\mathrm{N}_{9}-\mathrm{x}_{1} \mathrm{p}_{12}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{N}_{9}\right)} \tag{45}
\end{align*}
$$

Where: $\mathrm{N}_{9}=(1-\sigma) \mathrm{f}_{3}-\mathrm{x}_{2} \mathrm{f}_{2}$

10. Case A3B2

According to previous parts, our proposition for this case is as bellow:

$$
\mathrm{r}_{22} \rightarrow \infty \quad \text { and } \quad \frac{\mathrm{r}_{11} \mathrm{r}_{33}}{\mathrm{r}_{13}^{2}}>\mathrm{k}_{2}
$$

We propose an extra proposition to this case so that the left equation above always be active:

$$
\left\{\begin{array}{l}
\mathrm{r}_{13} \rightarrow 0 \tag{47}\\
\mathrm{r}_{11} \mathrm{r}_{33} \gg 0
\end{array}\right.
$$

Step 2:

In this step we will present propositions to have zero equilibrium points in region 2. Again, region 2 is consisted of 3 sub-regions.

Sub-region 2.1:

In this sub-region, $\mathrm{x}_{2} \rightarrow 0$ and the propositions are: :

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 2 } \mathrm { x } _ { 2 } \rightarrow 0 , \quad \mathrm { r } _ { 1 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 1 } \mathrm { x } _ { 1 } \rightarrow 0 , \quad \mathrm { r } _ { 3 2 } \mathrm { x } _ { 2 } \rightarrow 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since in equations above $\mathrm{f}_{1}>\mathrm{f}_{3}$, there are no equilibrium points case.

Sub-region 2.2:

In this sub-region, $\mathrm{X}_{1} \rightarrow 0$ and we recommend the following trend:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow 0 , \quad \mathrm { r } _ { 1 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow \infty , \quad \mathrm { r } _ { 3 1 } \mathrm { x } _ { 1 } \rightarrow 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{12} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{32} \mathrm{x}_{2} \mathrm{p}_{32}+\mathrm{r}_{33} \mathrm{x}_{3} \mathrm{p}_{33}}{\mathrm{r}_{32} \mathrm{x}_{2}+\mathrm{r}_{33} \mathrm{x}_{3}}
\end{array}\right.\right.
$$

Since $\mathrm{f}_{2}>\mathrm{f}_{3}$, no equilibrium point exists.

Sub-region 2.3:

In this sub-region equations for case 1 are:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow \infty } \\
{ \mathrm { r } _ { 3 1 } \mathrm { x } _ { 1 } \rightarrow 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \mathrm{x}_{2}} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{32} \mathrm{x}_{2} \mathrm{p}_{32}+\mathrm{r}_{33} \mathrm{x}_{3} \mathrm{p}_{33}}{\mathrm{r}_{32} \mathrm{x}_{2}+\mathrm{r}_{33} \mathrm{x}_{3}}
\end{array}\right.\right.
$$

$\mathrm{f}_{2} \in\left(\mathrm{p}_{23}, \mathrm{p}_{21}\right)$ that results in $\mathrm{f}_{2}>\mathrm{f}_{3}$ which means there is no equilibrium point here.

Step 3:

In this step, propositions are made in way that $\dot{x}_{3}<0\left(\right.$ where $\left.\mathrm{x}_{3}=1-\varepsilon\right)$

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \tag{47}\\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if : } \dot{\mathrm{x}}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

So, we will recommend propositions to make the equation active

Sub-region 2.1:

In this sub-region:

$$
\left\{\begin{array} { c c c }
{ \mathrm { x } _ { 1 } \rightarrow \varepsilon } & { , } & { \mathrm { f } _ { 1 } \rightarrow \mathrm { p } _ { 1 1 } } \\
{ \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , } & { \mathrm { f } _ { 2 } \rightarrow \frac { \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } \mathrm { p } _ { 2 1 } + \mathrm { r } _ { 2 2 } (\varepsilon - \mathrm { x } _ { 1 }) \mathrm { p } _ { 2 2 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) \mathrm { p } _ { 2 3 } } { \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } + \mathrm { r } _ { 2 2 } (\varepsilon - \mathrm { x } _ { 1 }) + \mathrm { r } _ { 2 3 } (1 - \varepsilon) } } \\
{ \mathrm { f } _ { 3 } \rightarrow \mathrm { p } _ { 3 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{11} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array} \quad \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3}\right.\right.
$$

It is apparent that the equation is active and no propositions are recommended

Sub-region 2.2:

In this sub-region:

$$
\left\{\begin{array} { c c }
{ \mathrm { x } _ { 1 } \rightarrow 0 } & { , } \\
{ \mathrm { x } _ { 2 } \rightarrow \varepsilon } & { , } \\
{ \mathrm { f } _ { 1 } \rightarrow \mathrm { p } _ { 1 2 } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , } \\
{ \mathrm { f } _ { 3 } \rightarrow \frac { \mathrm { p } _ { 2 2 } } { } \rightarrow \frac { \mathrm { r } _ { 3 2 } (\varepsilon - \mathrm { x } _ { 1 }) \mathrm { p } _ { 3 2 } + \mathrm { r } _ { 3 3 } (1 - \varepsilon) \mathrm { p } _ { 3 3 } } { \mathrm { r } _ { 3 2 } (\varepsilon - \mathrm { x } _ { 1 }) + \mathrm { r } _ { 3 3 } (1 - \varepsilon) } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{22} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array} \quad \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3}\right.\right.
$$

Thus, the equation is active and we don't need any proposition as well.

Sub-region 2.3:

In this sub-region:

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{12}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{32}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{32}+\mathrm{r}_{33}(1-\varepsilon) \mathrm{p}_{33}}{\mathrm{r}_{32}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{33}(1-\varepsilon)}
\end{array}\right.
$$

If: $\mathrm{X}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} \Rightarrow \mathrm{r}_{11} \mathrm{X}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{10}\right)>\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{10}-\mathrm{x}_{1} \mathrm{p}_{12}\right)$

Where: $\mathrm{M}_{10}=\varepsilon \mathrm{f}_{3}-\mathrm{x}_{2} \mathrm{f}_{2}$

If $\mathrm{M}_{10}<\mathrm{X}_{1} \mathrm{p}_{11}$, then the following condition is applied to make equation (47) active:

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{10}-\mathrm{x}_{1} \mathrm{p}_{12}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{10}\right)} \tag{48}
\end{equation*}
$$

Therefore, we check if the following equation is active:

$$
\begin{gathered}
\mathrm{M}_{10}<\mathrm{x}_{1} \mathrm{p}_{11} \\
\mathrm{M}_{10}-\mathrm{x}_{1} \mathrm{p}_{11}=\varepsilon\left(\frac{\mathrm{r}_{32}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{32}+\mathrm{r}_{33}(1-\varepsilon) \mathrm{p}_{33}}{\mathrm{r}_{32}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{33}(1-\varepsilon)}\right)-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{x}_{1} \mathrm{p}_{11} \\
=\frac{\mathrm{r}_{32}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\varepsilon \mathrm{p}_{32}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{x}_{1} \mathrm{p}_{11}\right)-\mathrm{r}_{33}(1-\varepsilon)\left(-\varepsilon \mathrm{p}_{33}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{x}_{1} \mathrm{p}_{11}\right)}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)}
\end{gathered}
$$

Since, $\left(-\varepsilon \mathrm{p}_{33}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{x}_{1} \mathrm{p}_{11}\right)>0$, by applying the following extra proposition the equation becomes active

Our extra proposition: $\mathrm{r}_{23}>\frac{\mathrm{r}_{33}(1-\varepsilon)\left(\varepsilon \mathrm{p}_{31}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{x}_{1} \mathrm{p}_{11}\right)}{\left(\varepsilon-\mathrm{x}_{1}\right)\left(\varepsilon \mathrm{p}_{32}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{x}_{1} \mathrm{p}_{11}\right)}$

Step 4:

In this step we want to recommend propositions so that $\dot{x}_{3}<0$ (where $\mathrm{x}_{3}=\sigma$). It is exactly similar to step 3 , and we just replace $1-\varepsilon$ with σ.

$$
\begin{align*}
& \qquad\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{12}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{32}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{32}+\mathrm{r}_{33} \sigma \mathrm{p}_{33}}{\mathrm{r}_{32}\left(1-\sigma-\mathrm{x}_{1}\right)+\mathrm{r}_{33} \sigma} \\
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)\left(\mathrm{N}_{10}-\mathrm{x}_{1} \mathrm{p}_{12}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{N}_{10}\right)}
\end{array}\right. \\
& \text { Our extra proposition: } \mathrm{r}_{23}>\frac{\mathrm{r}_{33} \sigma\left(\varepsilon \mathrm{p}_{31}-\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{x}_{1} \mathrm{p}_{11}\right)}{\sigma\left(\varepsilon \mathrm{p}_{32}-\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{x}_{1} \mathrm{p}_{11}\right)} \tag{51}
\end{align*}
$$

Where: $\mathrm{N}_{10}=(1-\sigma) \mathrm{f}_{3}-\mathrm{X}_{2} \mathrm{f}_{2}$

11. Case A3B3

Taking into account the preceding discussions, our proposition for this case is:

$$
\mathrm{r}_{22} \rightarrow \infty \quad \text { and } \quad \mathrm{r}_{11} \rightarrow \infty
$$

Step 2:

To prevent locating equilibrium points in region 2 the following analysis are carried out in 3 different sub-regions.

Sub-region 2.1:

In this sub-region, $\mathrm{X}_{2} \rightarrow 0$ and our propositions are::

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow \infty } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow \infty } \\
{ \mathrm { r } _ { 3 2 } \mathrm { x } _ { 2 } \rightarrow 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{33} \mathrm{x}_{3} \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33} \mathrm{x}_{3}}
\end{array}\right.\right.
$$

Since $f_{1}>f_{3}$, there are no equilibrium points in this sub-region for this case.

Sub-region 2.2:

In this sub-region, $\mathrm{X}_{1} \rightarrow 0$ and it is apparent that:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow \infty } \\
{ \mathrm { r } _ { 3 1 } \mathrm { x } _ { 1 } \rightarrow 0 }
\end{array} \Rightarrow \left\{\begin{array}{rl}
\mathrm{f}_{1} & \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} & \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} & \rightarrow \frac{\mathrm{r}_{32} \mathrm{x}_{2} \mathrm{p}_{32}+\mathrm{r}_{33} \mathrm{x}_{3} \mathrm{p}_{33}}{\mathrm{r}_{32} \mathrm{x}_{2}+\mathrm{r}_{33} \mathrm{x}_{3}}
\end{array}\right.\right.
$$

Since $f_{2}>f_{3}$, no equilibrium points exists..

Sub-region 2.3:

In this sub-region equations are written as follows for case 1:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow \infty } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{32} \mathrm{x}_{2} \mathrm{p}_{32}+\mathrm{r}_{33} \mathrm{x}_{3} \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{32} \mathrm{x}_{2}+\mathrm{r}_{33} \mathrm{x}_{3}}
\end{array}\right.\right.
$$

Considering the following condition which is highly possible, $\mathrm{f}_{1} \neq \mathrm{f}_{2}$ and consequently, there would be no equilibrium points in this region.

$$
\begin{equation*}
\mathrm{p}_{11} \neq \mathrm{p}_{22} \tag{53}
\end{equation*}
$$

Step 3:

In this step we attempt to keep a $\dot{\mathrm{x}}_{3}<0\left(\right.$ where $\left.\mathrm{x}_{3}=1-\varepsilon\right)$.

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \tag{54}\\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if }: \dot{\mathrm{x}}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

So, we will recommend propositions to make the equation active

Sub-region 2.1:

In this sub-region:

$$
\left\{\begin{array} { l l l }
{ \mathrm { x } _ { 1 } \rightarrow \varepsilon } & { , } & { \mathrm { f } _ { 1 } \rightarrow \mathrm { p } _ { 1 1 } } \\
{ \mathrm { x } _ { 2 } \rightarrow 0 } & { , } & { \mathrm { f } _ { 2 } \rightarrow \frac { \mathrm { r } _ { 2 1 } \varepsilon \mathrm { p } _ { 2 1 } + \mathrm { r } _ { 2 2 } (\varepsilon - \mathrm { x } _ { 1 }) \mathrm { p } _ { 2 2 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) \mathrm { p } _ { 2 3 } } { \mathrm { r } _ { 2 1 } \varepsilon + \mathrm { r } _ { 2 2 } (\varepsilon - \mathrm { x } _ { 1 }) + \mathrm { r } _ { 2 3 } (1 - \varepsilon) } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , } & { \mathrm { f } _ { 3 } \rightarrow \frac { \mathrm { r } _ { 3 1 } \varepsilon \mathrm { p } _ { 3 1 } + \mathrm { r } _ { 3 3 } (1 - \varepsilon) \mathrm { p } _ { 3 3 } } { \mathrm { r } _ { 3 1 } \varepsilon + \mathrm { r } _ { 3 3 } (1 - \varepsilon) } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{11} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{33}(1-\varepsilon) \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{33}(1-\varepsilon)}\right)
\end{array} \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3}\right.\right.
$$

Therefore, the equation is always active and no proposal is needed.

Sub-region 2.2:

In this sub-region:

$$
\left\{\begin{array}{lc}
\mathrm{x}_{1} \rightarrow 0 & , \\
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \varepsilon \mathrm{p}_{12}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \varepsilon+\mathrm{r}_{13}(1-\varepsilon)} \\
\mathrm{x}_{2} \rightarrow \varepsilon & , \\
\mathrm{x}_{3}=1-\varepsilon & , \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{p}_{22} \varepsilon \mathrm{p}_{32}+\mathrm{r}_{33}(1-\varepsilon) \mathrm{p}_{33}}{\mathrm{r}_{32} \varepsilon+\mathrm{r}_{33}(1-\varepsilon)}
\end{array} \Rightarrow\left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{22} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{32} \varepsilon \mathrm{p}_{32}+\mathrm{r}_{33}(1-\varepsilon) \mathrm{p}_{33}}{\mathrm{r}_{32} \varepsilon+\mathrm{r}_{33}}(1-\varepsilon)\right.
\end{array}\right) \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3}\right.
$$

Thus, the equation is active and we don't need any proposition as well.

Sub-region 2.3:

In this sub-region:

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{32}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{32}+\mathrm{r}_{33}(1-\varepsilon) \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{32}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{33}(1-\varepsilon)}
\end{array}\right.
$$

If: $\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} \Rightarrow \mathrm{r}_{11} \mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{11}\right)>\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{11}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13}(1-\varepsilon)\left(\mathrm{M}_{11}-\mathrm{x}_{1} \mathrm{p}_{13}\right)$

Where: $\mathrm{M}_{11}=\varepsilon \mathrm{f}_{3}-\mathrm{x}_{2} \mathrm{f}_{2}$

If $\mathrm{M}_{11}<\mathrm{X}_{1} \mathrm{p}_{11}$, then the following condition is our suggestion to make equation (54) active:

$$
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{11}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13}(1-\varepsilon)\left(\mathrm{M}_{11}-\mathrm{x}_{1} \mathrm{p}_{13}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{11}\right)}
$$

Therefore, we check if the following equation to find out if it is active:

$$
\begin{equation*}
\mathrm{M}_{11}<\mathrm{x}_{1} \mathrm{p}_{11} \tag{56}
\end{equation*}
$$

$$
\mathrm{M}_{11}-\mathrm{x}_{1} \mathrm{p}_{11}=\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{x}_{1} \mathrm{p}_{11}
$$

It is apparent that the equation is active and no propositions are recommended

Step 4:

Propositions to have $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{x}_{3}=\sigma$) are made by replacing $1-\varepsilon$ with σ.

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \tag{57}\\
\mathrm{f}_{3} \rightarrow \frac{\mathrm{r}_{31} \mathrm{x}_{1} \mathrm{p}_{31}+\mathrm{r}_{32}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{32}+\mathrm{r}_{33} \sigma \mathrm{p}_{33}}{\mathrm{r}_{31} \mathrm{x}_{1}+\mathrm{r}_{32}\left(1-\sigma-\mathrm{x}_{1}\right)+\mathrm{r}_{33} \sigma} \\
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)\left(\mathrm{N}_{11}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13} \sigma\left(\mathrm{~N}_{11}-\mathrm{x}_{1} \mathrm{p}_{13}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{N}_{11}\right)}
\end{array}\right.
$$

Where: $\mathrm{N}_{11}=\varepsilon \mathrm{f}_{3}-\mathrm{x}_{2} \mathrm{f}_{2}$

12. Case A4B4

According to previous parts, our proposition for this case is:

$$
\mathrm{r}_{22} \rightarrow \infty \quad \text { and } \quad \mathrm{r}_{33} \rightarrow \infty
$$

Step 2:

To prevent locating equilibrium points in region 2 the following analysis are carried out in 3 different sub-regions.

Sub-region 2.1:

In this sub-region, $\mathrm{x}_{2} \rightarrow 0$ and based on our propositions we may write::

$$
\left\{\begin{array} { l }
{ r _ { 1 2 } x _ { 2 } \rightarrow 0 } \\
{ r _ { 3 3 } x _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13} \mathrm{x}_{1}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} p_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

$\mathrm{f}_{1}>\mathrm{f}_{3}$ and there are no equilibrium point in this sub-region for this case.

Sub-region 2.2:

In this sub-region, $\mathrm{x}_{1} \rightarrow 0$, similar to the procedure in sub-region 1 we may suggest:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow \infty } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since $\mathrm{f}_{2}>\mathrm{f}_{3}$, there is no equilibrium point there as well..

Sub-region 2.3:

In this sub-region, equations for case 1 :

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow \infty } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

$\mathrm{f}_{2}>\mathrm{f}_{3}$ and no equilibrium point exists..

Step 3:

In this step we attempt to keep a $\dot{X}_{3}<0\left(\right.$ where $\left.\mathrm{X}_{3}=1-\varepsilon\right)$

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \tag{58}\\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if }: \dot{\mathrm{x}}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

So, we will recommend propositions to make the equation active

Sub-region 2.1:

In this sub-region:

$$
\left\{\begin{array}{lc}
\mathrm{x}_{1} \rightarrow \varepsilon & , \\
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13} \mathrm{x}_{1}} \\
\mathrm{x}_{2} \rightarrow 0 \\
\mathrm{x}_{3}=1-\varepsilon & ,
\end{array}, \mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+(1-\varepsilon) \mathrm{x}_{3}} \Rightarrow\left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13} \mathrm{x}_{1}}\right) \\
\varepsilon \mathrm{p}_{33} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array} \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3}\right.\right.
$$

Therefore, the equation is always active and no proposal is needed.

Sub-region 2.2:

In this sub-region:

$$
\left\{\begin{array} { c c c }
{ \mathrm { x } _ { 1 } \rightarrow 0 } & { , } & { \mathrm { f } _ { 1 } \rightarrow \frac { \mathrm { r } _ { 1 2 } \varepsilon \mathrm { p } _ { 1 2 } + \mathrm { r } _ { 1 3 } (1 - \varepsilon) \mathrm { p } _ { 1 3 } } { \mathrm { r } _ { 1 2 } \varepsilon + \mathrm { r } _ { 1 3 } (1 - \varepsilon) } } \\
{ \mathrm { x } _ { 2 } \rightarrow \varepsilon } & { , } & { \mathrm { f } _ { 2 } \rightarrow \mathrm { p } _ { 2 2 } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , } & { \mathrm { f } _ { 3 } \rightarrow \mathrm { p } _ { 3 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{22} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array} \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3}\right.\right.
$$

Therefore, the equation () is always active and we don't need any proposition.

Sub-region 2.3:

In this sub-region:

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{12}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{13}(1-\varepsilon)} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

If: $\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} \Rightarrow \mathrm{r}_{11} \mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{12}\right)>\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{12}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13}(1-\varepsilon)\left(\mathrm{M}_{12}-\mathrm{x}_{1} \mathrm{p}_{13}\right)$

Where: $\mathrm{M}_{12}=\varepsilon \mathrm{f}_{3}-\mathrm{x}_{2} \mathrm{f}_{2}$

If $\mathrm{M}_{12}<\mathrm{x}_{1} \mathrm{p}_{11}$, then the following conditions our proposition to make equation () active:

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{12}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13}(1-\varepsilon)\left(\mathrm{M}_{12}-\mathrm{x}_{1} \mathrm{p}_{13}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{12}\right)} \tag{59}
\end{equation*}
$$

Therefore, we check if the following equation is active:

$$
\begin{equation*}
\mathrm{M}_{12}<\mathrm{x}_{1} \mathrm{p}_{11} \tag{60}
\end{equation*}
$$

$\mathrm{M}_{12}-\mathrm{x}_{1} \mathrm{p}_{11}=\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\mathrm{x}_{1} \mathrm{p}_{11}$

It is apparent that the equation is active and no propositions are recommended

Step 4:

In this step we recommend propositions so that $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{X}_{3}=\sigma$). It is exactly similar to step 3 , and we just replace $1-\varepsilon$ with σ.

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{12}+\mathrm{r}_{13} \sigma \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)+\mathrm{r}_{13} \sigma} \\
\mathrm{f}_{2} \rightarrow \mathrm{p}_{22} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)\left(\mathrm{N}_{12}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13} \sigma\left(\mathrm{~N}_{12}-\mathrm{x}_{1} \mathrm{p}_{13}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{N}_{12}\right)} \tag{61}
\end{equation*}
$$

Where: $\mathrm{N}_{12}=\varepsilon \mathrm{f}_{3}-\mathrm{x}_{2} \mathrm{f}_{2}$

Therefore, the equation is always active and no proposal is needed.

13. Case A4B1

According to preceding parts, our proposition for this case is:

$$
\mathrm{r}_{33} \rightarrow \infty \text { and }\left\{\begin{array}{l}
\mathrm{r}_{11} \mathrm{r}_{33} \rightarrow \infty \\
\mathrm{r}_{13} \rightarrow 0
\end{array}\right.
$$

Step 2:

In this step we will present propositions to have zero equilibrium points in region 2. Again, region 2 is consisted of 3 sub-regions.

Sub-region 2.1:

In this sub-region, $\mathrm{x}_{2} \rightarrow 0$ and our proposition is:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 2 } \mathrm { x } _ { 2 } \rightarrow 0 , \quad \mathrm { r } _ { 1 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow 0 , \quad \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

$\mathrm{f}_{1}>\mathrm{f}_{3}$, there are no equilibrium point in this sub-region for this case.

Sub-region 2.2:

In this sub-region, $\mathrm{X}_{1} \rightarrow 0$ and:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow 0 , \quad \mathrm { r } _ { 1 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } \rightarrow 0 , \quad \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{12} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since $f_{2}>f_{3}$, there is no equilibrium point there.

Sub-region 2.3:

In this sub-region::

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 3 } \mathrm { x } _ { 3 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

$\mathrm{f}_{2}>\mathrm{f}_{3}$ andthere is no equilibrium point there.

Step 3:

In this step we want to recommend propositions to have $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{x}_{3}=1-\varepsilon$)

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \tag{62}\\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if }: \dot{\mathrm{x}}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

So, we will recommend propositions to make the equation active

Sub-region 2.1:

In this sub-region:

$$
\left\{\begin{array} { c c c }
{ \mathrm { x } _ { 1 } \rightarrow \varepsilon } & { , } & { \mathrm { f } _ { 1 } \rightarrow \mathrm { p } _ { 1 1 } } \\
{ \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , } & { \mathrm { f } _ { 2 } \rightarrow \frac { \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } \mathrm { p } _ { 2 1 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) \mathrm { p } _ { 2 3 } } { \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) } } \\
{ \mathrm { f } _ { 3 } \rightarrow \mathrm { p } _ { 3 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{11} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array} \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3}\right.\right.
$$

It is apparent that the equation is active and no propositions are recommended

Sub-region 2.2:

In this sub-region:

$$
\left\{\begin{array} { c c c }
{ \mathrm { x } _ { 1 } \rightarrow 0 } & { , } & { \mathrm { f } _ { 1 } \rightarrow \mathrm { p } _ { 1 2 } } \\
{ \mathrm { x } _ { 2 } \rightarrow \varepsilon } & { , } & { \mathrm { f } _ { 2 } \rightarrow \frac { \mathrm { r } _ { 2 2 } \varepsilon \mathrm { p } _ { 2 2 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) \mathrm { p } _ { 2 3 } } { \mathrm { r } _ { 2 2 } \varepsilon + (1 - \varepsilon) \mathrm { x } _ { 3 } } } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , } & { \mathrm { f } _ { 3 } \rightarrow \mathrm { p } _ { 3 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{22} \varepsilon \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{22} \varepsilon+(1-\varepsilon) \mathrm{x}_{3}}\right) \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array} \Rightarrow \mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3}\right.\right.
$$

Thus, the equation is active and we don't need any proposition as well.

Sub-region 2.3:

In this sub-region:

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13}(1-\varepsilon)} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

If: $\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} \Rightarrow \mathrm{r}_{11} \mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{13}\right)>\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{13}-\mathrm{x}_{1} \mathrm{p}_{12}\right)$

Where: $\mathrm{M}_{13}=\varepsilon \mathrm{f}_{3}-\mathrm{x}_{2} \mathrm{f}_{2}$

If $\mathrm{M}_{13}<\mathrm{X}_{1} \mathrm{p}_{11}$, then the following situation is our proposition to make equation (62) active:

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{13}-\mathrm{x}_{1} \mathrm{p}_{12}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{13}\right)} \tag{63}
\end{equation*}
$$

Therefore, we check if the following equation is active:

$$
\begin{gathered}
\mathrm{M}_{13}<\mathrm{x}_{1} \mathrm{p}_{11} \\
\mathrm{M}_{13}-\mathrm{x}_{1} \mathrm{p}_{11}=\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right)\left(\frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)}\right)-\mathrm{x}_{1} \mathrm{p}_{11} \\
=\frac{\mathrm{r}_{21} \mathrm{x}_{1}\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)-\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\varepsilon \mathrm{p}_{33}\right)-\mathrm{r}_{23}(1-\varepsilon)\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{23}-\varepsilon \mathrm{p}_{33}\right)}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)} \\
\left\{\begin{array}{l}
\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)<0 \\
\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\varepsilon \mathrm{p}_{33}\right)>0 \\
\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{23}-\varepsilon \mathrm{p}_{33}\right)>0
\end{array} \Rightarrow \mathrm{M}_{13}-\mathrm{x}_{1} \mathrm{p}_{11}<0 \Rightarrow \mathrm{M}_{13}<\mathrm{x}_{1} \mathrm{p}_{11}\right.
\end{gathered}
$$

It is apparent that the equation is active and no propositions are recommended

Step 4:

Propositions to have $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{x}_{3}=\sigma$) are made by replacing $1-\varepsilon$ with σ.

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13} \sigma \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13} \sigma} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23} \sigma \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right)+\mathrm{r}_{23} \sigma} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)\left(\mathrm{N}_{13}-\mathrm{x}_{1} \mathrm{p}_{12}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{N}_{13}\right)} \tag{65}
\end{equation*}
$$

Where: $\mathrm{N}_{13}=(1-\sigma) \mathrm{f}_{3}-\mathrm{x}_{2} \mathrm{f}_{2}$

14. Case A4B2

According to previous parts:

$$
\mathrm{r}_{33} \rightarrow \infty \quad \text { and } \quad \frac{\mathrm{r}_{11} \mathrm{r}_{33}}{\mathrm{r}_{13}^{2}}>\mathrm{k}_{2}
$$

Step 2:

To prevent locating equilibrium points in region 2 the following analysis are carried out in 3 different sub-regions.

Sub-region 2.1:

In this sub-region, $\mathrm{x}_{2} \rightarrow 0$ and:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 2 } \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since $f_{2}>f_{3}$, there would be no equilibrium point in this sub-region.

Sub-region 2.2:

In this sub-region, $\mathrm{X}_{1} \rightarrow 0$ and similar to sub-region 1 the following approach is proposed:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

$\mathrm{f}_{2}>\mathrm{f}_{3}$ and there is no equilibrium point there.

Sub-region 2.3:

equations are:

$$
\mathrm{r}_{33} \mathrm{x}_{3} \rightarrow \infty \Rightarrow\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

Since $\mathrm{f}_{2}>\mathrm{f}_{3}$, no equilibrium point exists.

Step 3:

In this step we attempt to keep $\dot{\mathrm{x}}_{3}<0\left(\right.$ where $\left.\mathrm{x}_{3}=1-\varepsilon\right)$

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \tag{66}\\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if }: \dot{\mathrm{x}}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

Therefore, propositions are required for the equationto be active.

Sub-region 2.1:

In thissub- region:

$$
\left\{\begin{array} { l c }
{ \mathrm { x } _ { 1 } \rightarrow \varepsilon } & { , \quad \mathrm { f } _ { 1 } \rightarrow \frac { \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \mathrm { p } _ { 1 1 } + \mathrm { r } _ { 1 3 } (1 - \varepsilon) \mathrm { p } _ { 1 3 } } { \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } + \mathrm { r } _ { 1 3 } (1 - \varepsilon) } } \\
{ \mathrm { x } _ { 2 } \rightarrow 0 } & { , } \\
{ \mathrm { f } _ { 2 } \rightarrow \frac { \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } \mathrm { p } _ { 2 1 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) \mathrm { p } _ { 2 3 } } { \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{3} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13}(1-\varepsilon)}\right) \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array}\right.\right.
$$

Therefore, the equation is always active and no proposal is needed.

Sub-region 2.2:

In this sub-region:

$$
\left\{\begin{array}{lc}
\mathrm{x}_{1} \rightarrow 0 & , \mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{12}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{13}(1-\varepsilon)} \\
\mathrm{x}_{2} \rightarrow \varepsilon & , \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)} \\
\mathrm{x}_{3}=1-\varepsilon & ,
\end{array} \quad \mathrm{f}_{3} \rightarrow \mathrm{p}_{33}, ~\left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)}\right) \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array}\right.\right.
$$

Thus, the equation is active and we don't need any proposition as well.

Sub-region 2.3:

In this sub-region:

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{12}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{13}(1-\varepsilon)} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

If:
$\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} \Rightarrow \mathrm{r}_{11} \mathrm{X}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{14}\right)>\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{14}-\mathrm{x}_{1} \mathrm{~b}\right)+\mathrm{r}_{13}(1-\varepsilon)\left(\mathrm{M}_{14}-\mathrm{x}_{1} \mathrm{p}_{13}\right)$

Where: $\mathrm{M}_{14}=\varepsilon \mathrm{f}_{3}-\mathrm{X}_{2} \mathrm{f}_{2}$

If $\mathrm{M}_{14}<\mathrm{X}_{1} \mathrm{p}_{11}$, then the following condition is proposed to make equation (66) active:

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{14}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13}(1-\varepsilon)\left(\mathrm{M}_{14}-\mathrm{x}_{1} \mathrm{p}_{13}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{14}\right)} \tag{67}
\end{equation*}
$$

Therefore, we check if the following equation is active:

$$
\begin{align*}
& \mathrm{M}_{14}<\mathrm{x}_{1} \mathrm{p}_{11} \tag{68}\\
& \mathrm{M}_{14}-\mathrm{x}_{1} \mathrm{p}_{11}=\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right)\left(\frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)}\right)-\mathrm{x}_{1} \mathrm{p}_{11} \\
& =\frac{\mathrm{r}_{21} \mathrm{x}_{1}\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)-\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\varepsilon \mathrm{p}_{33}\right)-\mathrm{r}_{23}(1-\varepsilon)\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{23}-\varepsilon \mathrm{p}_{33}\right)}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)} \\
& \left\{\begin{array}{l}
\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)<0 \\
\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\varepsilon \mathrm{p}_{33}\right)>0 \\
\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{23}-\varepsilon \mathrm{p}_{33}\right)>0
\end{array} \Rightarrow \mathrm{M}_{14}-\mathrm{x}_{1} \mathrm{p}_{11}<0 \Rightarrow \mathrm{M}_{14}<\mathrm{x}_{1} \mathrm{p}_{11}\right.
\end{align*}
$$

It is apparent that the equation is active and no propositions are recommended

Step 4:

In this step Propositions to have $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{x}_{3}=\sigma$) are made by replacing $1-\varepsilon$ with σ.

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{12}+\mathrm{r}_{13} \sigma \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)+\mathrm{r}_{13} \sigma} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23} \sigma \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right)+\mathrm{r}_{23} \sigma} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

$$
\begin{equation*}
\text { Our proposition: } r_{11}>\frac{r_{12}\left(1-\sigma-x_{1}\right)\left(\mathrm{N}_{14}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13} \sigma\left(\mathrm{~N}_{14}-\mathrm{x}_{1} \mathrm{p}_{13}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{N}_{14}\right)} \tag{69}
\end{equation*}
$$

Where: $\mathrm{N}_{14}=(1-\sigma) \mathrm{f}_{3}-\mathrm{X}_{2} \mathrm{f}_{2}$

15. Case A4B3

According to preceding discussions: :

$$
\mathrm{r}_{33} \rightarrow \infty \quad \text { and } \quad \mathrm{r}_{11} \rightarrow \infty
$$

Step 2:

In this step we present propositions to have zero equilibrium points in region 2. Again, region 2 is consisted of 3 sub-regions.

Sub-region 2.1:

In this sub-region, $\mathrm{x}_{2} \rightarrow 0$ and based on our propositions:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow \infty } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

$\mathrm{f}_{1}>\mathrm{f}_{3}$, there are no equilibrium point in this sub-region for this case.

Sub-region 2.2:

In this sub-region, $\mathrm{X}_{1} \rightarrow 0$ and:

$$
\left\{\begin{array} { l }
{ r _ { 2 1 } \mathrm { x } _ { 1 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since $\mathrm{f}_{2}>\mathrm{f}_{3}$, there is no equilibrium point.

Sub-region 2.3:

In this sub-region::

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow \infty } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

$\mathrm{f}_{1}>\mathrm{f}_{3}$ no equilibrium point is located in this sub-region.

Step 3:

In this step we want to recommend propositions so that $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{x}_{3}=1-\varepsilon$).

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \tag{70}\\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if }: \dot{\mathrm{x}}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

So, we will recommend propositions to make the equation active

Sub-region 2.1:

In this sub-region:

$$
\left\{\begin{array} { l c }
{ \mathrm { x } _ { 1 } \rightarrow \varepsilon } & { , } \\
{ \mathrm { x } _ { 1 } \rightarrow \mathrm { p } _ { 1 1 } } \\
{ \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , }
\end{array} \mathrm { f } _ { 2 } \rightarrow \frac { \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } \mathrm { p } _ { 2 1 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) \mathrm { p } _ { 2 3 } } { \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) } \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon \mathrm{p}_{11} \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array}\right.\right.
$$

It is apparent that the equation is active and no propositions are recommended.

Sub-region 2.2:

In this sub-region:

$$
\left\{\begin{array} { l c }
{ \mathrm { x } _ { 1 } \rightarrow 0 } & { , \mathrm { f } _ { 1 } \rightarrow \frac { \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \mathrm { p } _ { 1 1 } + \mathrm { r } _ { 1 2 } (\varepsilon - \mathrm { x } _ { 1 }) \mathrm { p } _ { 1 2 } + \mathrm { r } _ { 1 3 } (1 - \varepsilon) \mathrm { p } _ { 1 3 } } { \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } + \mathrm { r } _ { 1 2 } (\varepsilon - \mathrm { x } _ { 1 }) + \mathrm { r } _ { 1 3 } (1 - \varepsilon) } } \\
{ \mathrm { x } _ { 2 } \rightarrow \varepsilon } & { , } \\
{ \mathrm { x } _ { 3 } = 1 - \varepsilon } & { , } \\
{ \mathrm { f } _ { 2 } \rightarrow \frac { \mathrm { r } _ { 2 2 } (\varepsilon - \mathrm { x } _ { 1 }) \mathrm { p } _ { 2 2 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) \mathrm { p } _ { 2 3 } } { \mathrm { r } _ { 2 2 } (\varepsilon - \mathrm { x } _ { 1 }) + \mathrm { r } _ { 2 3 } (1 - \varepsilon) } } \\
{ \mathrm { f } _ { 3 } \rightarrow \mathrm { p } _ { 3 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)}\right) \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array}\right.\right.
$$

Thus, the equation is active and we don't need any proposition as well.

Sub-region 2.3:

In this sub-region:

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \mathrm{p}_{11} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

Since: $\mathrm{f}_{3}<\mathrm{f}_{2}, \quad \mathrm{f}_{3}<\mathrm{f}_{1} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{X}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}$

Therefore, the equation is always active and no proposal is needed.

Step 4:

In this step we recommend propositions so that $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{x}_{3}=\sigma$). It is exactly similar to step 3 , and we just replace $1-\varepsilon$ with σ.

16. Case A4B4

According to previous parts::

$$
\mathbf{r}_{33} \rightarrow \infty
$$

Step 2:

To prevent locating equilibrium points in region 2 the following analysis are carried out in 3 different sub-regions.

Sub-region 2.1:

In this sub-region, $\mathrm{x}_{2} \rightarrow 0$ and based on our propositions:

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 2 } \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 2 } \mathrm { x } _ { 2 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

Since $f_{2}>f_{3}$, there are no equilibrium point in this sub-region for this case.

Sub-region 2.2:

In this sub-region, $\mathrm{x}_{1} \rightarrow 0$ and we may write:: :

$$
\left\{\begin{array} { l }
{ \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \rightarrow 0 } \\
{ \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } \rightarrow 0 } \\
{ \mathrm { r } _ { 3 3 } \mathrm { x } _ { 3 } \rightarrow \infty }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.\right.
$$

$\mathrm{f}_{2}>\mathrm{f}_{3}$ and no equilibrium points exists.

Sub-region 2.3:

In this sub-region equations for case 1 are::

$$
\mathrm{r}_{33} \mathrm{x}_{3} \rightarrow \infty \Rightarrow\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12} \mathrm{x}_{2} \mathrm{p}_{12}+\mathrm{r}_{13} \mathrm{x}_{3} \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12} \mathrm{x}_{2}+\mathrm{r}_{13} \mathrm{x}_{3}} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22} \mathrm{x}_{2} \mathrm{p}_{22}+\mathrm{r}_{23} \mathrm{x}_{3} \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22} \mathrm{x}_{2}+\mathrm{r}_{23} \mathrm{x}_{3}} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

Since $f_{2}>f_{3}$, no equilibrium point is located in this sub-region.

Step 3:

Propositions to have $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{x}_{3}=\sigma$) are made by replacing $1-\varepsilon$ with σ.

$$
\left\{\begin{array}{l}
\mathrm{x}_{3}=1-\varepsilon \tag{71}\\
\mathrm{x}_{1}+\mathrm{x}_{2}=\varepsilon
\end{array} \text { if }: \dot{\mathrm{x}}_{3}<0 \Rightarrow \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}+\mathrm{x}_{3} \mathrm{f}_{3} \Rightarrow \varepsilon \mathrm{f}_{3}<\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}\right.
$$

So, we will recommend propositions to make the equation active

Sub-region 2.1:

In this sub-region:

$$
\left\{\begin{array} { l c }
{ \mathrm { x } _ { 1 } \rightarrow \varepsilon } & { , \quad \mathrm { f } _ { 1 } \rightarrow \frac { \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } \mathrm { p } _ { 1 1 } + \mathrm { r } _ { 1 3 } (1 - \varepsilon) \mathrm { p } _ { 1 3 } } { \mathrm { r } _ { 1 1 } \mathrm { x } _ { 1 } + \mathrm { r } _ { 1 3 } (1 - \varepsilon) } } \\
{ \mathrm { x } _ { 2 } \rightarrow 0 } & { , } \\
{ \mathrm { f } _ { 2 } \rightarrow \frac { \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } \mathrm { p } _ { 2 1 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) \mathrm { p } _ { 2 3 } } { \mathrm { r } _ { 2 1 } \mathrm { x } _ { 1 } + \mathrm { r } _ { 2 3 } (1 - \varepsilon) } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{x}_{3} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{13}(1-\varepsilon)}\right) \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array}\right.\right.
$$

Therefore, the equation is always active and no proposal is needed.

Sub-region 2.2:

In this sub-region:

$$
\left\{\begin{array}{lc}
\mathrm{x}_{1} \rightarrow 0 & , \mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{12}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{13}(1-\varepsilon)} \\
\mathrm{x}_{2} \rightarrow \varepsilon & , \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)} \\
\mathrm{x}_{3}=1-\varepsilon & ,
\end{array} \quad \mathrm{f}_{3} \rightarrow \mathrm{p}_{33}, ~\left\{\begin{array}{l}
\mathrm{x}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2} \rightarrow \varepsilon\left(\frac{\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)}\right) \\
\varepsilon \mathrm{f}_{3} \rightarrow \varepsilon \mathrm{p}_{33}
\end{array}\right.\right.
$$

Thus, the equation is active and we don't need any proposition as well.

Sub-region 2.3:

In this sub-region:

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{12}+\mathrm{r}_{13}(1-\varepsilon) \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{13}(1-\varepsilon)} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

If:
$\mathrm{X}_{1} \mathrm{f}_{1}+\mathrm{x}_{2} \mathrm{f}_{2}>\varepsilon \mathrm{f}_{3} \Rightarrow \mathrm{r}_{11} \mathrm{X}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{16}\right)>\mathrm{r}_{12}\left(\varepsilon-\mathrm{X}_{1}\right)\left(\mathrm{M}_{16}-\mathrm{x}_{1} \mathrm{~b}\right)+\mathrm{r}_{13}(1-\varepsilon)\left(\mathrm{M}_{16}-\mathrm{X}_{1} \mathrm{p}_{13}\right)$

Where: $\mathrm{M}_{16}=\varepsilon \mathrm{f}_{3}-\mathrm{x}_{2} \mathrm{f}_{2}$

If $\mathrm{M}_{16}<\mathrm{X}_{1} \mathrm{p}_{11}$, the proposed condition to make equation (71) active is:

Our proposition: $\mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{M}_{16}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13}(1-\varepsilon)\left(\mathrm{M}_{16}-\mathrm{x}_{1} \mathrm{p}_{13}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{M}_{16}\right)}$

Therefore, we check if the following equation is active:

$$
\begin{gather*}
\mathrm{M}_{16}<\mathrm{x}_{1} \mathrm{p}_{11} \tag{73}\\
\mathrm{M}_{16}-\mathrm{x}_{1} \mathrm{p}_{11}=\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right)\left(\frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23}(1-\varepsilon) \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)}\right)-\mathrm{x}_{1} \mathrm{p}_{11} \\
=\frac{\mathrm{r}_{21} \mathrm{x}_{1}\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)-\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\varepsilon \mathrm{p}_{33}\right)-\mathrm{r}_{23}(1-\varepsilon)\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{23}-\varepsilon \mathrm{p}_{33}\right)}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(\varepsilon-\mathrm{x}_{1}\right)+\mathrm{r}_{23}(1-\varepsilon)} \\
\left\{\begin{array}{l}
\left(\varepsilon \mathrm{p}_{33}-\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{21}-\mathrm{x}_{1} \mathrm{p}_{11}\right)<0 \\
\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{22}-\varepsilon \mathrm{p}_{33}\right)>0 \\
\left(\mathrm{x}_{1} \mathrm{p}_{11}+\left(\varepsilon-\mathrm{x}_{1}\right) \mathrm{p}_{23}-\varepsilon \mathrm{p}_{33}\right)>0
\end{array} \Rightarrow \mathrm{M}_{16}-\mathrm{x}_{1} \mathrm{p}_{11}<0 \Rightarrow \mathrm{M}_{16}<\mathrm{x}_{1} \mathrm{p}_{11}\right.
\end{gather*}
$$

It is apparent that the equation is active and no propositions are recommended.

Step 4:

In this step we recommend propositions so that $\dot{\mathrm{x}}_{3}<0$ (where $\mathrm{X}_{3}=\sigma$). It is exactly similar to step 3 , and we just replace $1-\varepsilon$ with σ.

$$
\left\{\begin{array}{l}
\mathrm{f}_{1} \rightarrow \frac{\mathrm{r}_{11} \mathrm{x}_{1} \mathrm{p}_{11}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{12}+\mathrm{r}_{13} \sigma \mathrm{p}_{13}}{\mathrm{r}_{11} \mathrm{x}_{1}+\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)+\mathrm{r}_{13} \sigma} \\
\mathrm{f}_{2} \rightarrow \frac{\mathrm{r}_{21} \mathrm{x}_{1} \mathrm{p}_{21}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right) \mathrm{p}_{22}+\mathrm{r}_{23} \sigma \mathrm{p}_{23}}{\mathrm{r}_{21} \mathrm{x}_{1}+\mathrm{r}_{22}\left(1-\sigma-\mathrm{x}_{1}\right)+\mathrm{r}_{23} \sigma} \\
\mathrm{f}_{3} \rightarrow \mathrm{p}_{33}
\end{array}\right.
$$

$$
\begin{equation*}
\text { Our proposition: } \mathrm{r}_{11}>\frac{\mathrm{r}_{12}\left(1-\sigma-\mathrm{x}_{1}\right)\left(\mathrm{N}_{16}-\mathrm{x}_{1} \mathrm{p}_{12}\right)+\mathrm{r}_{13} \sigma\left(\mathrm{~N}_{16}-\mathrm{x}_{1} \mathrm{p}_{13}\right)}{\mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{p}_{11}-\mathrm{N}_{16}\right)} \tag{74}
\end{equation*}
$$

Where: $\mathrm{N}_{16}=(1-\sigma) \mathrm{f}_{3}-\mathrm{X}_{2} \mathrm{f}_{2}$

