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Abstract— I nactivation of allelesin tumor suppressor genes (T SG) isone of theimportant issuesresulting in
evolution of cancerous cells. In this paper, the evolution of healthy, one and two missed allele cells is modeled
using the concept of evolutionary game theory and replicator dynamics. The proposed model also takes into
account theinteraction rates of the cells as designing parameters of the system. Different combinations of the
equilibrium points of the parameterized nonlinear system is studied and categorized into some cases. | n each
case, theinteraction rates’ values ar e suggested in a way that the equilibrium points of thereplicator dynamics
are located on an appropriate region of the state space. Based on the suggested interaction rates, it is proved
that the system doesn’t have any undesirable interior equilibrium point as well. Therefore, the system will
converge to the desirable region, where there is a scanty level of cancerous cells. In addition, the proposed
conditionsfor interaction rates guarantee that, when atrajectory of the system reaches the boundaries, then it
will stay there forever which isa desirable property since the equilibrium points have been already located on
the boundaries, appropriately. The simulation results show the effectiveness of the suggestions in the
elimination of the cancerous cellsin different scenarios.
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. Introduction



The evolution of cancerous cells is due to the growth of a distorted cell replica (Hamaha

Weinberg, 201{lBozic et al., 2013), and is commonly described by autonomous evolutionary

dynamics|(Vogelstein and Kinzler, 2Qp4, Gatenby et al., [POA@bert et al., 2011). The use of

complex mathematical approaches such as replicator dynamics is investigatezto@omahjation

dynamics of complex evolutionary systems (Liao and TIsty, 4014, Roca et al{, 2008). Ne

techniques such as passivity notion are applied to replicator equations and evolutioaarigsly

Ramirez-Llanos and Quijano, 2(010), to study the global stability of the system @F&xamma)

2013). Replicator equations has been used in network extensions of zeroisie® fga

optimization in complex systerrrs (Piliouras and Shamma,|281sb), evolutionary dynamics was

utilized for multi-agent learning that is not connected to equilibrium pmmntept or utility of

single agents (Piliouras et al., 2014).

The investigation of biological systemsashbeen studied by complex nonlinear models

Mehrjerdi et al., 2018, Nguyen et al., 2(J13, Bologna et al.,|2016). Differeqtiakions are used

to predict the possibility of disease elimination (Greenhalgh et al.] 2015). Many pasaoh&ber

system, usually leads to having multiple equilibrium points and this makes the stability analysis of

such systems much more complicated (Xiong and Zhou,|2013). There are several well-known

control theoretic concepts like Lyapunov or Jacobian methods which are widely used in term of

stability analysis of different equilibrium points of the biological systéms (August, &04.2

Blanchini et al., 201j2). Adaptive control model was used to personalized drugisication for

cancer therapy (Babaei and Salamci, 2015).

Cancer development may be considexrga result of an evolutionary game between normal and

offensive cellg (Tomlinson and Bodmer, 1§8rchetti and Scheuring, 20[L1). Therefore, instead

of making effort to remove all of the cancer cells which has not been successfuwntierapies



have tried to reduce the fitness of offensive cells compared to the normal onepprb&ch results

in providing the condition for natural selection to remove the cancerous fumor @iab)i2009)

M.Archetti used evolutionary game theory to model the joint interactions among carcsiots

study dynamics of the reproduction growth and the effect of therapiesioaing their quantity

Archetti, 2013). Tomlinson (1997) proposed a model of a population dynamics including two cell

types, one of them with a growth factor advantage to both tells (Tomlinson,. &Nt

personalize research works have extended this model up to four cell|types, (Bashnz0#&]

Gerstung et al., 2011) considering stochastic and spatial effects (Bach* Zﬁoﬁ). Jorge M.

Pacheco et al proposed an evolutionary game method to model the interactiom lcetveeeous

plasma cellg (Pacheco et al., 2014).

Cancer is a collection of many diseases that have a common feature: over-pouiifera
Cancerous cells has many key hallmarks such as: sustaining proliferative sigdaig egrowth

suppressors, resisting cell death, inducing angiogenesis, enabling repicatomtality, activating

invasion and metastasis and avoiding immune system siFnaIs (Hanahan and Weinberg, 2000). |

can be studied also from some key aspects such as: inactivation of tumor suppressor genes,

activation of oncogenes, telomere erosion, contact inhibition, senescence and fidarcasr

and Weinberg, 2011). This work considers the cancer only as a result of inactofationor

suppressor genes atie other aspects of cancer are not modeled in this study.

Tumor suppressor genes (TSGs) protect against somatic evolution of cancer. Losing both alleles

of a TSG in a single cell represents the suitable conditions for the evolutioncef gBlowak et

al., 2004). In previous studies, the proposed evolutionary game models employed a few number of

effective parameterg (Bach et al., 2Q0Ihe therapeutic suggestions are also proposed which

impose some limitations due to the chamgdhe parameters of the game model to apply the



treatment methog (Dingli et al., 24J09). In this paper also, the inactivation of TS@ielsts one

of the momentous and significant causes of development of cancer. Nevertheless, in @iy resea

the therapeutic suggestions are proposed in terms of interaction rates. hythisevcancer therapy
becomes closer to implementation, since the therapies are performed by changing thiemnterac
rates rather than changing the game parameters that alters the natural reproduityicsf abi
different cell types. Therefore, to achieve the desired state of the system whereéneusacells

are removed, interaction rates are suggested in a way that the system includes only favorable stable
equilibrium points. To this aim, evolution of cancer is considered anamdgal system and
evolutionary game theory together with replicator dynamics is applied. Differentésamilditions

based on the gariseparameters are studied using the proposed method. The equilibrium points of
the nonlinear dynamical system is derived in terms of parameters and interacBoancdhtine

convergence of the system to those equilibrium points is investigated.

The rest of the paper is organized as follows: Section Il describes the evolutionary mbdel of t
tumor suppressor gene using replicator dynamics. The analysis of the equilimiis of the
model and convergence of the system is given in Section . In this sectipnpfosed interaction
rate parameters to provide the conditions of convergence to desired non-cancerousgredin.are

Section IV demonstrates the Simulation results and finally the paper is concluded in Section V.

[I.  Modeling

In the proposed model, we will investigate the develogrogthe cancer cells due
to inactivation of tumor suppressor genes (TSGs). Alth@agcers can arise through
various mechanisms, in this work we will only focus oancers that are a

consequence of inactivation of TS@STSG can typically be inactivated by any mutation



that disrupts the functionality of the gerjes (Nowak, 2006). The inactivation of T&@sed by

two point mutations. The first mutation inactivates one allele of TSG and the mutant cell becomes

a cell with a lost allele. The second mutation which is more probable than tleadrshactivates

the second allele of the TSIG (Nowak, 2D08though the first inactivation of the allele doesn’t

change the cell genotype, it may increase the cell proliferation rate anffietttechcell tends to

become a cancerous cell (cell with two lost allejes) (Nowak,[2006). madel each types of these

cells are a specific species.

In present study, each one of three different types of cells are a specific speaieniodel and
the evolutionary game theory is employed to model the interaction betweeritineipurpose is
to identify which cell(s) are going to be the evolutionary stable strategy (ESSpaindl ¢che
evolution in a way that game converges to the desired situation where thereniy aswaint of

cancerous cells. The evolutionary game is defined by a set of species (strategies) and the

corresponding payoff matrix. We have a set of three strateg‘ﬁas{si, S, % and the

corresponding payoff matrix defined By. The species in this game are the healthy calls

(i.e.S)), the cells with one missing (due to the first mutation) allele §, (i.e.S,), and the
cancerous cells which are cells with two missing allekes |, (i.e.S;).

The payoffs of the matrix game is defined in table 1:



Table 1. Payoff matrix of the game

St S S
S, a a-0 a-<&
P=s,\f-n+é p-n p-n-0
S;| y—A+E& y-A+0" y-A
Where, the parameter is sheer payoff thad** cells earn in competition with each other. The

parametersp andy have the same definition a& for A*~ and A~ cells, respectively. The
parametes stands for the damage ®** cell, caused by ~cell and ¢’ is the benefit thata*~
cell gains in this interaction (singe~is a stronger specie). Identically, the parameter®’
represent the damage causeday and the benefit gained b&*~ in interaction betweem "
and A*~. Also, the parameter and &’ imply the same meaning ds @' for interaction between

A" andA— cells, respectively. Parametestands for the cost of being ™ cell, due to the damage

by the immune system to these cells and the paranietenows the same concept far— cells

Basanta et al., 2012).

Although it is possible that parametessand 6’ be negative, which means that~ cells are

affected byA* cells, it this paper we investigate the case which these parametgrsséive

Wodarz and Komarova, 2003 evertheless, following the same procedure, it is straightforward

to adjust parameters shown in table 1 to reach the corresponding scenariostcsiabilar3, when
the aforementioned parameters be considered negative. Beside, in a real systeme in some

cases the immune system can help cancerous cells in competition with bebBdtl{ipe Visser et

al., 2006)|(Wodarz and Komarova, 2005) (which means paramgtangl A could be negative

here). However, the immune system referred in this research is an abstratiwndagan immune

system should do.



A Replicator equations

Our analysis is based on the replicator equation describing the frequency depeoldénnary

dynamics of three well-mixed cell populatipn (Attal et al., 1996). CongigeX,and X;as the

frequency of individuals adopting the strate@gsS, andS;, respectively. Equation (1) represent

the evolution of different cell types (strategies).

X =x(f-M , i=123 @

Where,f, =P, X is the average fitness &f (P, is thei ™ row of the matrix P arkl =[X, X ,, X3]T

) andM is the average fitness of all strategies as follows:

M =Fx

WhereF =[F, F, F]. Cleary, X;+X,+X,=1 and it can be easily verified that this

condition is always preserved by replicator dynamics define by Eq.1. The repdigaéonics show
that the percentage of the species with fithess more than the average (M) will increaskosail
with the fitness lower than the average will decrease. The final population cofisistsspecies
(one or many) that gained more fithess than the other ones. In this way, thaaregicamics

may converge to different equilibrium points, including the boundary equilibrium pointe whe

some of X s are equal to zero (i.e. some species will be removed), or interior equilibrium point

where all the species coexist with the same fithess (Cressman, 2003).

B. Non-uniform Interaction rates

In ordinary replicator dynamics, the probability of interaction between strategies completely

depends on their proportion in environment. However, in real state condition, some dtrsr fac



affect the rate of interaction between strategies. According to effect of chemical eactitive
cells, some species has more tendency to interact with some special species. This fact naturally

results in more interaction between some species rather than other ones. These factors can be

considered as the interaction rate parameters (Taylor and Nowak, 2006)

The interaction rates between different cell types is defined by the symmetiicRhas shown in

table 2.

Table 2. Non-Uniform inter action r ates

ST

Sifhy Ty Tis
R=5S| 1 Iy Iy
Sz fa1 Maz [Mag

Where the stratedy ands; interact with each other by the reaction rte=I; (andr # 0).

By taking into account the interaction rates, the payoffs of the matrix game is formulated as follow
Q(x)= |:qij (X)LX3 2)

r
Where: g = —— o) (3)

Zrikxk
k =

It is obvious that the modified payoff matrix is not constant and depends on the frequencies of

the strategies which makes the analysis of the replicator dynamics more complicated.

In our analysis, we consider the replicator dynamics (1) together with the afffatgraction

rates which results:



fi =0; X
M =x"Q (X)X

Where(; is the I" row of the matrix ().

[I1.  Analysis

In this section equilibrium points and convergence of the syistemestigated. The purpose is
to converge the system to the desired region consisting the least numbecefas cells. We
represent the system’s state space as a two- dimensional triangle with vertices at the three pure
strategies §,, S,, S, ) which means thadn the vertics the frequency of two cell types are zero
and the frequency of the other one is equahto On triangle’s sides, frequency of one cell type is
zero and the other ones are non-zero. Finally, in the interior points of the triancpatage of all

cell types are non-zero.

We divide the interior part of the state spate three regions as follows and is illustrated in

Figure (1).
Region1l X;<0
Region 2 0<X;<l-¢

Region 3 1-¢<X;<1



Whereo and¢& are infinitesimal magnitudes depending on specific problem. In fact, we want the

system converges the region 1 if the system is initialized on any point in region 1 $5X{1—¢

). Since boundaries of the regions are arbitrary, they are deterhagegdon the system’s initial
conditionso that initial condition falls into region 1 or 2. Then, the system eutiverge to the

desired point regardless of initial conditions.

Region 1 X3 =0

Borderx, =0
Region 2 /

Border x ;=0 .__

Border x,=0

Figure 1. Dividing the system state space into three separated regions

The proposed method is discussed in following 4 steps:

First step: In this step the system is studiadX; =0 andX, =0 boundaries. Hence, the game

will experience four various conditions depending on its parametahge on aforementioned

boundaries. For each situation we praptss embed all the equilibrium points on sections of

X, =0and X, =0 borders that lies in region 1 or 3 (tavk no equilibrium point on the border

located in region 2) and make the section of borders in region 2 an attra@nifold to an
equilibrium point in region IThis means that in all points of these borders the game will converge
to region 1 which is desirable. Thus, if a trajectory reaches the borders it will elyeotuaierge

to region 1.



Afterwards, a combination of differenonditions on the aforementioned bordefts £ 0 and

X, =0) is considered, which resuits 16 distinguished conditions for the whole gaffieen we

will state our proposdb achieve our goal in each case (placing all equilibrium points oioisect
of X; =0andX, =0 borders that settles in region 1 or 3 and make the section of the bortte loca

in region 2 an attraction manifold to an equilibrium point in subspace 1).

Second step: In this step the equilibrium points in region 2 for all 16 game conditare
identified The region 2 is divided into three separated sub-regions 2.1, 2.2 andsh@nasin
Figure (2). Suggestions are presented to eliminate the chance of having amyi@eupointin
these regiongConsequently, there is no equilibrium point in region 2 for all game conditions
other words, the game does not converge to interior equilibrium points wherésteabstantial

amount of cancerous cells.

Sub —region2.1
(x, >0)

Sub — region22

(x, >0) Sub —region 2.3

x, =1 x,=1

Figure 2. Dividing region 2 into three sub-regions
Third step: Conditions in which the systémtrajectory cannot enter region 3 from region 2 in

all of thegame’s determined situations are discussed.



Fourth step: the situation in which the system do not exit from region 1 in all of the game
conditionis investigated. Therefore, the system acts in domain of region 1 permanently, expressing

a perfect condition.

This four-step method guarantee the convergence of system to region 1 where there is
infinitesimal percentage of cancerous cells for any arbitrary initial condition insidieathgie. To

precisely illustrate the phenomenon, two possible condition may happen as follows.

1- If the percentage of cancerous cells is low enough, it implies that the disease is pdagress
little or has not happened yet and the purpose is cancer prevention. In this caseimes a
that the system is in regidrand applying the first and the fourth steps are adequate to fetter

the system to stay in this region permanently.

2- If the percentage of cancerous cells is high, the regions are defined in a whg Byasteém
acts in region 2 and then the four steps are applied to convergetis® $y region 3. This
is mainly because there is no limit cycle in region 2 (since there is fidegon point in
this region). Moreover, the system is second-order and chaos cannot occur. As heesu
system can’t stay in region 2 forever and inevitably there is no way for it except going to
region 1. Henceforward, the system will stay in region 1 forever because it cannotexit fro
it.

Here we present the biological conception of our four step procedure:

In the first step we guarantee that by adjusting interaction rate parameters inravarppé
thereis not any ” A*™* ” cells (healthy ones), in competition between two other types,”invade
“A~ 7 cells (cancerous cells); and if the sysidsasn’t have any “type twd’ cells, the“type oné&

cells will annihilate cancerous cells.



In the second step we propose conditimnguarantee that starting from any initial fraction of

three types of ced| at least one of the cell types will be extinct and invaded by two other types.

At the third step, our suggestions on the interaction rates for an already cancerous system at
large, avoid the cancerous cells to invade two other cell types. It meangtidatnot let the system

to become entirely cancerous.

At the forth step, by applying our suggestions on the interaction rates, for the cangstems s
at the beginning, we do not let cancerous cells to grow up more than a small sped@fitagerdn

means that, we impede a healthy system to become cancerous or a cured one to relapse.
In fact, under these four step mechanism:
1- A healthy system cannot become cancerous

2- A sick system is prevented to become completely cancerous (which means all d$its cel

become cancerous and we assume that such a system is cureless);

3- For an ill system, eventually one cell type will be destroyed (according to sigpftiinis
extinct cell type is‘type threé&, then the system is cured. If it igfype oné& or “two”, the
population consists of two remaining cell types. Then, thé'typiée thre& will be eliminated
by the other one and the system is cured again and after the remedy itgcaback to the

cancerous situation (step four again).

Based on differentonditionson the boundaries ok; =0 andX, =0, 16 cases for the game

is considered as presented in Table 3 and steps 1 to 4 of the proposed method is applied.



Table 3. Different caseson x, =0 and x, =0 boundaries

Border X, =0 Border X, =0

Sub-Case Al P32 > Py > Paz> Py Sub-Case B1 P31> Pi1> P> Py

Sub-CaseAZ | p,, > py,> Pye> Py | SUD-CaBZ | p > p. > pa> py

Sub-CaseA3 | p > Py, Pyg> P, | UPCaeBI | p > P Pas> Pi

Sub-Case A4 Par > Poy Pos> Pa Sub-CaeBY | p. > Py, Pis> Py

1. CaseAl1B1

Step 1
Sub-Case Al: Pg,> Py > P> P

On theX; =0 boundary, the payoff matrix and replicator dynamics is reduced as table 4:

Table 4. Reduced payoff matrix on the x, =0 boundary

S S
Q(X):S{qzz ng}
S3 q32 q33

Therefore, replicator equations is:

(=X, (f,—M
{Xz X,(f,~M) @)

X, =X,(f,—M)



SinceX, +X,=1, after some algebraic calculations, equation 4 can be written as:
X, =X,(1=X )0y A0t AdX 3 U5 A (5)

X, =0 and X, =1 are two trivial solutions of equation 5. Potentially, there are some interior

equilibrium points between zero and one which are the feasible solutions of equation 6.

(0025~ gt Ugd X 57 Qo5 A= 0 (6)

The solutions of (6) are:

(7)

Where:

Y =(Pys— Ps,) I’§3+ (P2 P33 Tof 25 2(P53 P L a3
S= (pzz_ p33)2 r222r§3+ (p 23" p32) 'Azé' (4p 22P 3§ 4p P -
-2 Pz PR3~ 2 Poo Py 2 B3 B3 2 Bz B3 )255 5 oas

zZ= (pzs_ psz) rgs"' (psz_ pzz) I o5t (p = P 39 rb a3

(8)

If s=0,then bifurcation occurs in system (4) (Thompson and Stewart] 2002) and this is the case

it (Il 15) =K, inwhich:

(pzz (Pogt Pss= 2Pass )kt Pos(Psz 2Psp )k Pao pg);

1

- (pzz_ p33)2

1
+—2((p22_ pzs)(pzz_ psz)(pzs_ p33)(p32_ pas)
(P22— Ps3)

9)

1
2

Thereforel,,l,,/ r§3 can be defined as the system bifurcation parameter (Taylor and Nowak,

2008).




In case Al1B1, after some algebraic manipulations location of equilibrium pointth@ind
attraction and repelling manifold of, = 0 border for different values of bifurcation parameter is

depicted in figure (3):

r22233 < kl r22'2‘33 — kl r22'2‘33 > kl r-22233 > kl
r23 r23 r23 r23
(@) (b) (€) (d)

Figure 3. Location of the system equilibrium pointson x, =0 border for different values of bifurcation

parametersin case Al

Figure 3(d)s the desired objective where all equilibrium points on this border are located region 1
and 3. Besides, the part ¥f = 0 boundary that is lied in region 2, acts as an attraction manifold
for an equilibrium point placed in region $iggestions to achieve figure3(d) is described in

equation 10:

[l g5 —> O
(rr)/ri>k, Our suggestioris :{ 2238 0 (10)
13

Sub-Case B1: P3; > P> Paz™> P



The location of equilibrium points o, =0 border for different amount of bifurcation

parameter is given in figure )4

(@) (b) (€) (d)

Figure 4. Location of the system equilibrium pointson x, =0 border for different values of bifurcation

parameter in case B1

Similarly, figure 4(d)is the ideal situation and the requisite to create this condition is:

Ml 33— ®© (11)

13

(rr)/ri>k, Our suggestion |s{

Taking into account the previous discussions, the following expressiocas®rA1B1 in first

step is represented:

Mol 33 —> 0 and Mfg3—>© (12)
Iy —>0 r,—0

Step 2:



In this step, first, calculations of the first step is applied to the system to identify any equilibr
point located in region 2 and then solutions are proposed to exclude region @qudiorium

points. Region 2 would be divided into 3 different sub-regions and each sub-region is studied.
Sub-region 2.1

In this sub-region we may write:

nX,—>0 , rx;—>0 f,—>pyn
rXx,—»0 , r,x,—»0 Then: {f,> p, (13)
X, >0 , r;x,—>0 fy—Pgs

It is clear that for interior equilibrium point§, =f,=f ;=M . On the other hand, in Eq.13,
fl >f 3 and consequently there are no equilibrium point in sub-region 2.1 in this case.

Sub-region 2.2:

In this sub-regionX,; = 0, the following conditions are applied.

nx,—»0 , rx;—>0 fi—>py
rhx,—»0 , r,x,»0 Then: <f,—»> p,, (14)
rX; >0 , r;x,—>0 f3—>Pas

Sincef, >f ; (as mentioned before), there is no equilibrium point in this sub-region as well.

Sub-region 2.3:

In this sub-regionfor case 1, equations are:



{rmxs—)O , I,Xx,—0

fl SN r11X1p11+ r.12X 2012
r11X1+ rlZX 2

Then: f2 - r-21)( 1p21+ rzzx ZO 22 (15)
r.21)(1_'_ rZZX 2

f3 - p33

Considering the fact tha € (0, P;) andf, >f 5 (because in this cagl; < P,, and Pg; < Py

) , there is no equilibrium point in this sub-region.

So, no proposal is required for step 2 and the objective is achieved by applying the procedures

described in step 1.

Step 3:

In this step recommendations are provided soXhat O whereX; =1-¢.

X,=1-
{ 3T X,<0 Then:f,<M

then: f< xf+xf+xf, Then efx<xf+xf.(16)

The purpose is to make equation 16 active in sub-regions.

Sub-region 2.1:

In this sub-region:

f
Then:{Xl XS Thene f< xf+ xf, (17)
ef, > epg,

It is obvious that using the above constraints make the equation active and thereeis foo ne

further analysis.



Sub-region 2.2:

In this sub-region:

x,»0 , f,->py, NI SN
&
X,—>¢e , f,>p, Then:{ v 27 P2 Tpen, f< xf+ xf, (18)
ef, > epa,
Xo=1l-¢ , f,>pg,

Similar to the previous case, the equation is active in this sub-region.
Sub-region A:

In this sub-region:

f. M:X104,+ rlz(g —X ]) P
1
X, + (e =Xy
X 1Pt 1 X 05
f,—>
FXy+ T (e =X

(19)

fi—>Pgs

If: Xf+Xf > d = X Xp M) >r fe—x M 1xp ), (20)
Where:M, =¢f ,.—x |, (21)

If M, <X,p,, the following situation is our proposal to make (20) active:

> ro(e=X)M-xp,)
Xl(xl P — M ])

(22)

11

Also, we check if the following equation is active:

M,<xp; (23)



. X 1P+ =X )P oy
M,-Xx,p,,=é&l —(g—x])( 217121 2 -X,p
' al MX + 16 —X) ol

_X(EPem(EXIPor X P T A= XJX P o €2 XAP 6P 3 g
FX 1+ T =X )

And: {(gpas—(g—xl) Poy=X,Py) <0 Then: M, - x,p,<0 Then M< xp, (25)

(X1p1+(g_X1) p,—¢ p33) >0

Therefore, equatioR0 is always active and there is no need to alter the situation.

Step 4

In this step we propos¥,; <0 and X; =0 . The only difference with the step 3 is replacing

1-¢ with 0 in equations.

fl N M.X,Pqys + I’lz(e—X 1) P
X, +r,1-o—-x,)
f2 N r21le21+ rl22>( Zp 22
M X, +r(l-0—-X,)

f3—>p33

(26)

r,(1-0—=X)(N=x,p;,)
Xl(xl P1i— N 1)

Our suggestionr;, > 27)

Where:N; =(1-o)f,-x f, (28)

By applying our proposed four steps the location of equilibrium point in this sase i

demonstrated in figure 5:



Figure 5. Thelocation of system equilibrium pointsin case A1B1 on the boundariesof x, =0 and x, =0

using thefour stepsfor case 1

Proposed solutions for the remaining cases are presented in table 4. More detailed calculations

are available in supplementary of the paper.

Also, it is discussed in the supplementary that there is no need to consider extra suggestions for
the remaining 15 cases in step 2 and by applying the first step, no equilibrium podattés lin

region 2. Therefore, there is no necessity to present the details of step 2.

Table 5. the proposed approach for different casesin different steps

Case Step 1 Step 3 Step 4
M55l 33— r,> Ma(e =X)(M =X p,) r> Mo(1— 0 — X)(N,— X4p,,)
A1B2 ly—0 Xl(Xl py—M ?) " Xl(xl p,—N 2)
m>k M,=é&;—x§, N,=Q-o)f;—x§,
" X (Mg (e=X)P,) > X{(Ng—(1-0—X,)Py)
Mool 53 —> 0 (=X )((e=X)pPp—M) (-0 -x )1~ -X,)p,—Ny)
A1B3 ly—0 ro> rX,(6Pa =X, Py—(6=X)P,) > 2 Xy((1-0)Pa— X Py~ -0 = X)Py)
33 33
r,— o e((& = X)) Py + X1 Py~ € P2) A-0)A~0 = X)Py+ X Py~ (1-0)P3)
M =ef ;—xf, N,=(1-o)f;—xf,
Mool 33 —> 0 [,> (e =X)(M =X p) +1,{1-6)M =X p ) C s (-0 —X)IN,~XP)+ rhoN-xp,)
A1B4 l;—0 X,(X;py—M) " X, (X, P~ N )
F33 = © M,=ée,-xf, N,=(1-o)f,—x§,
(PN r,(e =X )(M—x
72:233 kl I’11 > lZ(X (X 1?3( —SM ;) 12) r11 > rlz(l_d— Xl)(Ns_ ijlz)
23 1\M M1 X (X Py — Ns)
1% Py
A2B1 M1af33 > © M, =& ,—x
{rls_)o ° ¢ I Ny=(1-o),—xf,




rzrzzss >k, > (6 =X)Mgxp,)+1{1-6)M X P ) oo M=o = x)(Ngxpy)+ o (Ne xp oy
A2B2 2 X,(X; Py —M g " X, (X, Pp— N o)
r.r
1[,112:3>k2 Mg=éf ;—x f, Ng=Q-o);—xf,
N Xa(M = (e -X)P ) r T Xi(N,~ (-0 —-X))p,)
22 22
Mool 2 K (e=x)((e=%X)px—M) (I-0-x)((-0o-X%)p,—N,)
A2B3 r223 ' r13X1(g p31_X 1P (5_ X])pzj) > r13)(1((1_ 0') Ps— X 1P (1_6_ Xl)pz1)
I, —>o @ (L-&)(e = %)Pay+ X, P~ P 3) ® o((1-0=X)Py + X, P;- (1-0)P )
M,=1-o);—xf, N,=@A-o)f;—xf,
Mool 53 K [> Ma(6=X)Mg=x P ) +1f1-&)(M X p ;) [ Mpd—0—X)(Ng=Xp)+rg(NgXp,)
1 1
A2B4 r223 ! Xl(Xl Pi— M 3) X1(X1 P~ N 8)
f33—>® Mg=ef;—x f, Ng=(L-o)f;—xf,
> Mo(e =X)(Mg—Xxp,) 0 s M- —X)(Ng— X,
r,, =0 X, (X; P =My n X, (X, Py~ N
A3Bl r11r33 —> 00 > r33(l_ 6)(5' p31_ ({;‘ — Xl) p22+ X 1p11) r r330'((1* O_) Psi— ((170_ )7 Xl) Post Xy pu)
r;—0 ® (6=%)(eP3 = (6 =X P X 1P 1) B 0o X)(A-0)Ps — (1m0 = %) Py X Pur)
Mg=ef,—Xx 7§, Nog=(@1-o),—xf,
Ma(e =X)(My-xp,) Mp(1-0 = X)(N;— Xp,,)
[, — o M, > M1>
2 X1(X1 P - M 1() X1(X1 P1— N 10)
A3B2 rlrlr233 >k, F3(1—&)(€ Pai— (€ — X0) Post X 1P10) [350(€ Py (1— 0 = X;) Pt X 1 Pyy)
23 23
B (& =X)(EPg— (€ —X)P o X1P1y) 0(ePg — (1= 0 = X,) Poy= X1 Ps1)
My=ef;—Xx 1§, Njp=@Q-o),;—xf,
s (-0 = X))(N; = XPy,)+ g (N, X p g
My =0 r,> Np(6 = X)(My =X P )+ {1-6)(M ;- X P 1) 1 X, (X, Ppa— N 1)
A3B3 X (X1 P —M ) N, =ef ,—X f
fu = M11=6‘f3—X;2 . ° ’
A3B4 | 1> r 12(5 X)M ;=X po)+rf1-)(M ;5 XPp ) r 12(1 0 = X)(Nyy= XP1)+ 1o (N7 X p o)
11 1
f33—>® X, (X, Py, —My) X (X, Py~ Ny
Mp,=e&,—x§f, Np=ef—x§,
A4Bl | rpy—o N Mo(e=X)(My=Xp ) [ No(1=0 = X)(N,s= X ;)
{r11r33 —> ®© H Xl(Xl Py - M 1:) . X1(X1 P - N 13)
fis >0 w={-0)¥—xf, w=0-0),—xf,
A4B2 l33 >0 12(‘9 XJM =X p ) +1 f1-)(M 17X P ) r 12(1 o—- Xl)(N14 X]p12)+l“19'(N 17 XP4
11
Tl X,(X, P —M) (X P =Ny
> >k,
M3 M,=&,-xf,
w=@Q-o)f;—xf,
A4B3 | 1o Free Free

[}, >




A4B4 I3 —>®© r,> Mo(e =X)Mge=Xp )+ 1. {1-6)(M ;7 X p |} r,> (1= =X))(Nyg= XP1)+ 1,9 (N iz Xp o)
Xl(xl Pu— M 16) Xl(xl Pu— N 16)
M= ,—Xxf, N, =@A-o),—xf,

IV.  Simulations
In this section the results of simulation are presented in two parts.

A. Part 1l

Despite the fact that the proposed methods demands ideal condition (for ekample® that

is unlikely to happen in real condition), by changing the parameters in proposed direction (for
instance, increasing; to a sufficiently higher value), the system will converge to equilibrium

points.
We suppose the game’s parameters are assumed as follows:

a=1y=141=06i= 0.F' = 0.f= 1B~ OB= OR= @&3; 04 03
This represents the case A1B1 in analysis. Convergence of the system with and without the

proposed method using an initial condition is depicted in fig.6(a) and fig.6(b), respectively.



cells popultion

\ |

5 10 15 20 25 30 35 40 45 50 o 5 10 15 20 25 30 35 40 45 50
time time:

cells popultion

cells proportion
s o ® © ©® ° =
o =2 m > u » o =
cells proportion
s = o o o
© 5

o
o
o
o

)
e

=)
]

Uniform interaction rates (all equal 1) | F3=0.01f,,= 0.Ir;,= 10l and others ones

are l

(a) (b)

Figure 6. System convergence with a specific initial condition without and with (left and right pictures
respectively) applying our proposalsfor case 1
It is clear that using the proposed method yields desirable results where there is no cancerous

cells.
B. Part 2

In this part we present the results of game convergence considering non-cancecausenodis
initial conditions for different values of interaction rates. The purpose is to fingptamumn
condition to eliminate cancerous cells with least changes in interactiorpaedaemeters. The
proposed method provided merely sufficient but not necessarily essential conditions and ther

might be other methods with lower cost in terms of optimization.

Due to high number of parameters, some of them are shown in figures 7 and 8evieks of

the parameters are presented in table 5.



Figure 7 and 8 show 25 black border squares. In each one of the black border squaass there

4 brown border squares consisting 16 arrays. The valligaofd 5, are presented in this figure.
The parametek,, is constant and equal to 1. The remaining parameters are provided in table 6.

Table 6. The value of interaction rate parametersin figures7 and 8

Columns of each Rows of each
Brown squares in
r brown square (left to I brown square (up [
13 13 23
each black square
right direction) to down direction)

lower-left 0.1 | First 0.1 | First 0.1
lower-right 1 Second 1 Second 1
Upper-left 10 | Third 10 Third 10
Upper-right 100 | Fourth 100 | Fourth 100

Each specific color indicates the result of game convergence. For instance, blutheressm®

A and A cells in converged point which implies an equilibrium pointX)Zn:O boundary

(there is noA™ cells or negligible number of them). Magenta, cyan or yellow represent the game
convergence to points without cancerous cells or with a very scantpféviblatis desirableEach
color corresponds to a specific condition that is shown by legends in the figure. Besidegdgpsrame

¢ ando are set as 0.03 in the simulations presented in this part.

The model parameters of the game in both figures are assumed as follows:
a=1y=144=08= 0.6&"'= 0.gf= 13- O@= ONA= @4 04
Figure 7 depicts the game convergence results with non-cancerous initial condﬁ;ien@.% ,

X, =0.01 andx; =0.01) for different values of interaction rate. It can be understood that by

adjustment of interaction parameters, the system may converge to non-cancerous equilibrium



points (desired colors).

o A+ A

= A
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W A+ A+- A
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13=1

133 =001 r153=01
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Figure 7. Conver gence of the game with non-cancerousinitial condition and model parameters:

a=1y=144=085= 0.&'= 0.¢i= 13= O&= A= &4 04 for different valuesof

interaction rate parameters

Among the possible ways to prevent generating cancerous cells that can be inténqreted

figure 7, an effective way to converge to a proper equilibrium point whioblased in cyan is to

setl,, =0.1r,,= 1Cand the other parameters to be 1.

Figure 8 indicates that with the same game parameters in the case shown in figure 7, setting the

initial condition to beX; =0.02 | X, =0.03 and X; =0.95 (almost all the cells are cancerous)

and adapting the interaction rates, the game converges to equilibrium points (desired colors).
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Figure 8. Convergence of the game with cancerousinitial condition and model parameters:

a=1y=144=08= 0.6= 0.8= 18= O@= A= &4 04 ,for different valuesof

interaction rate parameters

Regarding the results illustrated in figure 8, an efficient way to eradicate the carcmiDis

to choosdy, =10,r ;= 0.1f ;= 1(and other interaction rate parameters to be 1.

V. Conclusion

The proposed therapeutic method in this paper based on changing the interactietepanmaas

to eliminate cancerous cells or prevent cell population to become cancerous

It was shown in Figure 7 thaj; = 10 andr,; = .01 could be an appropriate strategy, since
by placing A cells close to each other, the interaction rate increases-aadl0 is obtained. On

the other hand, separating*Aand A~ cells reduces the interaction rate and= .01 is attained.

Using the proposed method, with natural selection, cancerous cells are eliminatesll and

population will converge to non-cancerous point. The suggested interaction ratesumalifses



section, gave some sufficient conditions for the convergence of the game to trebetgsiferium
points Nevertheless, as it was understood from the Simulation rebeltdesired convergence can

be achieved by applying less conservative conditions on the interaction rates.
VI. Futureworks

In the light of our studies, it is an idea that the medical technology could be designed to change
the interaction rate of cancerous cefisclue on this is to separate the cell types in demarcated
boundaries to change the interaction rate. For instance, conducting a populagitstofaugh a
filter or using an especial drug coulgparate them regarding the fact that cells’ sizes are different.
Therefore, the interaction ratamong different cell’s type could be changed. Another clue to
change the interaction rate parameters could be utilizing the chemicals. For example soa& can

each cell types with specific chemicals through target therapy approaches whieadcamnon-

uniform interaction rates among different cell typ&siother avenue for future work is to
develop a more realistic model compared to what wasepted in this work by

building a more comprehensive model which incorpesratere aspects of cancer

For example, researchers can consider the impact of current therapies suchmathechpy,

surgery or radiation instead or in tandem with the immune suppression.

Appendix
Here we prove the dynamics in border thepf o is given by §).
From @):
X, =X,(f,—M)

Xy =X,(0X — X" Q(X)x)
On border ofx, — 0, we havex, —oand x, —=1—x,, therefore:



0 Oy O || O
X.2=X2 [q21 4. ql; X, _[O X, 1_X1 021 92 Az X,
1_X2 O3z Qs Oss 1_X2

Xz :Xz[Q22X 2+q23(1_ Xz)_ Xz(q 22X+ ( 2&1_ X 2))_ & x 2)(q X% q 33(1' X 2))
X, = Xz[q 22(1_ Xz) X4 23(1_ X2)2 _qaz(l_ Xz) X,= qsa(l_ Xz)z]
Xz :Xz(l_ Xz)[(sz_qzsa_ 05t Q33)X§" Q.3 qs?]
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