
This is a repository copy of Inactivation of tumor suppressor genes and cancer therapy : 
an evolutionary game theory approach.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/155748/

Version: Accepted Version

Article:

Khadem, H. orcid.org/0000-0002-6878-875X, Kebriaei, H. and Veisi, Z. (2017) Inactivation 
of tumor suppressor genes and cancer therapy : an evolutionary game theory approach. 
Mathematical Biosciences, 288. pp. 84-93. ISSN 0025-5564 

https://doi.org/10.1016/j.mbs.2017.03.001

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Inactivation of Tumor Suppressor Genes and 
Cancer Therapy: An Evolutionary Game Theory 

Approach 
 
 

Heydar Khadem, Hamed Kebriaei, Zahra Veisi 
 

Heydar Khadem and Hamed Kebriaei are with School of Electrical and Computer Engineering, College of 
Engineering, University of Tehran, Tehran, Iran. 

Hamed Kebriaei is also with School of Computer Sciences, Institute for Research in Fundamental Sciences (IPM), 
Tehran, Iran.  

Zahra Veisi is With Department of Elrctrical Engineering, Razi University, Kermanshah, Iran. 

 

Emails: h.khadem@ut.ac.ir, kebriaei@ut.ac.ir, veisi.zahra@stu.razi.ac.ir 

 

Abstract— Inactivation of alleles in tumor suppressor genes (TSG) is one of the important issues resulting in 

evolution of cancerous cells. In this paper, the evolution of healthy, one and two missed allele cells is modeled 

using the concept of evolutionary game theory and replicator dynamics. The proposed model also takes into 

account the interaction rates of the cells as designing parameters of the system. Different combinations of the 

equilibrium points of the parameterized nonlinear system is studied and categorized into some cases. In each 

case, the interaction rates’ values are suggested in a way that the equilibrium points of the replicator dynamics 

are located on an appropriate region of the state space. Based on the suggested interaction rates, it is proved 

that the system doesn’t have any undesirable interior equilibrium point as well. Therefore, the system will 

converge to the desirable region, where there is a scanty level of cancerous cells. In addition, the proposed 

conditions for interaction rates guarantee that, when a trajectory of the system reaches the boundaries, then it 

will stay there forever which is a desirable property since the equilibrium points have been already located on 

the boundaries, appropriately. The simulation results show the effectiveness of the suggestions in the 

elimination of the cancerous cells in different scenarios. 
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I. Introduction 



The evolution of cancerous cells is due to the growth of a distorted cell replica (Hanahan and 

Weinberg, 2011, Bozic et al., 2013), and is commonly described by autonomous evolutionary 

dynamics (Vogelstein and Kinzler, 2004, Gatenby et al., 2010, Lambert et al., 2011). The use of 

complex mathematical approaches such as replicator dynamics is investigated to analyze population 

dynamics of complex evolutionary systems (Liao and Tlsty, 2014, Roca et al., 2009). New 

techniques such as passivity notion are applied to replicator equations and evolutionary dynamics 

(Ramirez-Llanos and Quijano, 2010), to study the global stability of the system (Fox and Shamma, 

2013). Replicator equations has been used in network extensions of zero-sum games for 

optimization in complex systems (Piliouras and Shamma, 2014). Also, evolutionary dynamics was 

utilized for multi-agent learning that is not connected to equilibrium point concept or utility of 

single agents (Piliouras et al., 2014). 

The investigation of biological systems has been studied by complex nonlinear models 

(Mehrjerdi et al., 2013, Nguyen et al., 2013, Bologna et al., 2016). Differential equations are used 

to predict the possibility of disease elimination (Greenhalgh et al., 2015).  Many parameters of the 

system, usually leads to having multiple equilibrium points and this makes the stability analysis of 

such systems much more complicated (Xiong and Zhou, 2013). There are several well-known 

control theoretic concepts like Lyapunov or Jacobian methods which are widely used in term of 

stability analysis of different equilibrium points of the biological systems (August et al., 2012, 

Blanchini et al., 2012). Adaptive control model was used to personalized drug administration for 

cancer therapy (Babaei and Salamci, 2015). 

Cancer development may be considered as a result of an evolutionary game between normal and 

offensive cells (Tomlinson and Bodmer, 1997, Archetti and Scheuring, 2011). Therefore, instead 

of making effort to remove all of the cancer cells which has not been successful until now, therapies 



have tried to reduce the fitness of offensive cells compared to the normal ones. This approach results 

in providing the condition for natural selection to remove the cancerous tumor (Dingli et al., 2009). 

M.Archetti used evolutionary game theory to model the joint interactions among cancerous cells to 

study dynamics of the reproduction growth and the effect of therapies on reducing their quantity 

(Archetti, 2013). Tomlinson (1997) proposed a model of a population dynamics including two cell 

types, one of them with a growth factor advantage to both cells (Tomlinson, 1997). Recent 

personalize research works have extended this model up to four cell types, (Basanta et al., 2011, 

Gerstung et al., 2011) considering stochastic and spatial effects (Bach* et al., 2003). Jorge M. 

Pacheco et al proposed an evolutionary game method to model the interaction between cancerous 

plasma cells (Pacheco et al., 2014).  

Cancer is a collection of many diseases that have a common feature: over-proliferation.  

Cancerous cells has many key hallmarks such as: sustaining proliferative signal, evading growth 

suppressors, resisting cell death, inducing angiogenesis, enabling replicative immortality, activating 

invasion and metastasis and avoiding immune system signals (Hanahan and Weinberg, 2000). It 

can be studied also from some key aspects such as: inactivation of tumor suppressor genes, 

activation of oncogenes, telomere erosion, contact inhibition, senescence and necrosis (Hanahan 

and Weinberg, 2011). This work considers the cancer only as a result of inactivation of tumor 

suppressor genes and the other aspects of cancer are not modeled in this study. 

Tumor suppressor genes (TSGs) protect against somatic evolution of cancer. Losing both alleles 

of a TSG in a single cell represents the suitable conditions for the evolution of cancer (Nowak et 

al., 2004). In previous studies, the proposed evolutionary game models employed a few number of 

effective parameters (Bach et al., 2001). The therapeutic suggestions are also proposed which 

impose some limitations due to the change in the parameters of the game model to apply the 



treatment method (Dingli et al., 2009).  In this paper also, the inactivation of TSG is studied as one 

of the momentous and significant causes of development of cancer. Nevertheless, in our research, 

the therapeutic suggestions are proposed in terms of interaction rates. In this way, the cancer therapy 

becomes closer to implementation, since the therapies are performed by changing the interaction 

rates rather than changing the game parameters that alters the natural reproduction ability of 

different cell types. Therefore, to achieve the desired state of the system where the cancerous cells 

are removed, interaction rates are suggested in a way that the system includes only favorable stable 

equilibrium points. To this aim, evolution of cancer is considered as a dynamical system and 

evolutionary game theory together with replicator dynamics is applied. Different feasible conditions 

based on the game’s parameters are studied using the proposed method. The equilibrium points of 

the nonlinear dynamical system is derived in terms of parameters and interaction rates and the 

convergence of the system to those equilibrium points is investigated. 

The rest of the paper is organized as follows: Section II describes the evolutionary model of the 

tumor suppressor gene using replicator dynamics. The analysis of the equilibrium points of the 

model and convergence of the system is given in Section III. In this section, the proposed interaction 

rate parameters to provide the conditions of convergence to desired non-cancerous cells are given. 

Section IV demonstrates the Simulation results and finally the paper is concluded in Section V. 

II. Modeling 

In the proposed model, we will investigate the development of the cancer cells due 

to inactivation of tumor suppressor genes (TSGs). Although cancers can arise through 

various mechanisms, in this work we will only focus on cancers that are a 

consequence of inactivation of TSGs. A TSG can typically be inactivated by any mutation 



that disrupts the functionality of the genes (Nowak, 2006). The inactivation of TSG is caused by 

two point mutations. The first mutation inactivates one allele of TSG and the mutant cell becomes 

a cell with a lost allele. The second mutation which is more probable than the first one, inactivates 

the second allele of the TSG (Nowak, 2006). Although the first inactivation of the allele doesn’t 

change the cell genotype, it may increase the cell proliferation rate and the affected cell tends to 

become a cancerous cell (cell with two lost alleles) (Nowak, 2006). In our model each types of these 

cells are a specific species. 

In present study, each one of three different types of cells are a specific species in our model and 

the evolutionary game theory is employed to model the interaction between them. The purpose is 

to identify which cell(s) are going to be the evolutionary stable strategy (ESS) and control the 

evolution in a way that game converges to the desired situation where there is a scanty amount of 

cancerous cells. The evolutionary game is defined by a set of species (strategies) and the 

corresponding payoff matrix. We have a set of three strategies  1 2 3{ , , }S s s s   and the 

corresponding payoff matrix defined byP . The species in this game are the healthy cells (A ) 

(i.e. 1s ), the cells with one missing (due to the first mutation) allele (A ), (i.e. 2s ), and the 

cancerous cells which are cells with two missing alleles (A ), (i.e. 3s ). 

The payoffs of the matrix game is defined in table 1: 

  



                              Table 1. Payoff matrix of the game 

1 2 3

1

2

3

s s s

s

P s

s

    
       
       

  
       

       

  

Where, the parameter   is sheer payoff that A  cells earn in competition with each other. The 

parameters   and   have the same definition as   for A  and A cells, respectively. The 

parameter stands for the damage to A cell, caused byAcell and    is the benefit that A

cell gains in this interaction (sinceA is a stronger specie). Identically, the parameters  ,    

represent the damage caused by A  and the benefit gained by A  in interaction between A  

and A . Also, the parameters   and    imply the same meaning as  ,    for interaction between 

A  andA  cells, respectively. Parameter   stands for the cost of beingAcell, due to the damage 

by the immune system to these cells and the parameter   shows the same concept for A  cells 

(Basanta et al., 2012). 

Although it is possible that parameters  and    be negative, which means that A  cells are 

affected by A  cells, it this paper we investigate the case which these parameters are positive 

(Wodarz and Komarova, 2005). Nevertheless, following the same procedure, it is straightforward 

to adjust parameters shown in table 1 to reach the corresponding scenarios, similar to table 3, when 

the aforementioned parameters be considered negative. Beside, in a real immune system, in some 

cases the immune system can help cancerous cells in competition with healthy cells (De Visser et 

al., 2006) (Wodarz and Komarova, 2005) (which means parameters   and  could be negative 

here). However, the immune system referred in this research is an abstract idea of what an immune 

system should do. 



A. Replicator equations 

Our analysis is based on the replicator equation describing the frequency dependent evolutionary 

dynamics of three well-mixed cell population (Attal et al., 1996). Consider,1x , 2x and 3x as the 

frequency of individuals adopting the strategies1s , 2s  and 3s , respectively. Equation (1) represent 

the evolution of different cell types (strategies). 

(f M) , i 1,2,3i i ix x             (1) 

Where, i if p x is the average fitness of is ( ip is the thi  row of the matrix P and 1 2 3[ , , ]Tx x x x

) and ܯ is the average fitness of all strategies as follows: 

M Fx  

Where 1 2 3[ ]F F F F . Clearly, 1 2 3 1x x x    and it can be easily verified that this 

condition is always preserved by replicator dynamics define by Eq.1. The replicator dynamics show 

that the percentage of the species with fitness more than the average (M) will increase while those 

with the fitness lower than the average will decrease. The final population consists of the species 

(one or many) that gained more fitness than the other ones. In this way, the replicator dynamics 

may converge to different equilibrium points, including the boundary equilibrium points where 

some of ix s  are equal to zero (i.e. some species will be removed), or interior equilibrium point 

where all the species coexist with the same fitness (Cressman, 2003). 

B. Non-uniform Interaction rates 

In ordinary replicator dynamics, the probability of interaction between strategies completely 

depends on their proportion in environment. However, in real state condition, some other factors 



affect the rate of interaction between strategies. According to effect of chemical reactions on the 

cells, some species has more tendency to interact with some special species. This fact naturally 

results in more interaction between some species rather than other ones. These factors can be 

considered as the interaction rate parameters (Taylor and Nowak, 2006).  

The interaction rates between different cell types is defined by the symmetric matrix R as shown in 

table 2. 

Table 2. Non-Uniform interaction rates 

1 2 3

1 11 12 13

2 21 22 23

3 31 33 33

s s s

s r r r

R s r r r

s r r r

 
   
  

  

Where the strategyis  and js interact with each other by the reaction rate ij jir r (and 0ijr  ). 

By taking into account the interaction rates, the payoffs of the matrix game is formulated as follows: 

3 3
( ) ( )ijQ x q x


         (2)  

Where:  3

1

ij
ij ij

ik k
k

r
q p

r x





          (3) 

It is obvious that the modified payoff matrix is not constant and depends on the frequencies of 

the strategies which makes the analysis of the replicator dynamics more complicated.  

In our analysis, we consider the replicator dynamics (1) together with the effect of interaction 

rates which results: 



i if q x  

(x)TM x Q x  

Where iq is the ith row of the matrix ( )Q x . 

 

 

III. Analysis 

In this section equilibrium points and convergence of the system is investigated. The purpose is 

to converge the system to the desired region consisting the least number of cancerous cells. We 

represent the system’s state space as a two- dimensional triangle with vertices at the three pure 

strategies (1S , 2S , 3S  ) which means that on the vertices the frequency of two cell types are zero 

and the frequency of the other one is equal to one. On triangle’s sides, frequency of one cell type is 

zero and the other ones are non-zero. Finally, in the interior points of the triangle, percentage of all 

cell types are non-zero. 

We divide the interior part of the state space into three regions as follows and is illustrated in 

Figure (1). 

Region 1     3x    

Region 2     3 1x     

Region 3   31 1x     



Where and are infinitesimal magnitudes depending on specific problem. In fact, we want the 

system converges to the region 1 if the system is initialized on any point in region 1 or 2 (3 1x  

). Since boundaries of the regions are arbitrary, they are determined based on the system’s initial 

condition so that initial condition falls into region 1 or 2. Then, the system will converge to the 

desired point regardless of initial conditions. 

 

Figure 1. Dividing the system state space into three separated regions 

 

The proposed method is discussed in following 4 steps:   

First step: In this step the system is studied in 1 0x   and 2 0x   boundaries. Hence, the game 

will experience four various conditions depending on its parameters’ value on aforementioned 

boundaries. For each situation we propose to embed all the equilibrium points on sections of  

1 0x  and 2 0x   borders that lies in region 1 or 3 (to have no equilibrium point on the border 

located in region 2) and make the section of borders in region 2 an attraction manifold to an 

equilibrium point in region 1 .This means that in all points of these borders the game will converge 

to region 1 which is desirable. Thus, if a trajectory reaches the borders it will eventually converge 

to region 1. 



Afterwards, a combination of different conditions on the aforementioned borders (1 0x   and 

2 0x  ) is considered, which results in 16 distinguished conditions for the whole game. Then we 

will state our proposal to achieve our goal in each case (placing all equilibrium points on sections 

of 1 0x  and 2 0x   borders that settles in region 1 or 3 and make the section of the border located 

in region 2 an attraction manifold to an equilibrium point in subspace 1). 

Second step: In this step the equilibrium points in region 2 for all 16 game conditions are 

identified. The region 2 is divided into three separated sub-regions 2.1, 2.2 and 2.3 as shown in 

Figure (2). Suggestions are presented to eliminate the chance of having any equilibrium point in 

these regions. Consequently, there is no equilibrium point in region 2 for all game conditions. In 

other words, the game does not converge to interior equilibrium points where there is substantial 

amount of cancerous cells. 

 

Figure 2. Dividing region 2 into three sub-regions 

Third step: Conditions in which the system’s trajectory cannot enter region 3 from region 2 in 

all of the game’s determined situations are discussed. 



Fourth step:  the situation in which the system do not exit from region 1 in all of the game 

condition is investigated. Therefore, the system acts in domain of region 1 permanently, expressing 

a perfect condition.  

This four-step method guarantee the convergence of system to region 1 where there is 

infinitesimal percentage of cancerous cells for any arbitrary initial condition inside the triangle. To 

precisely illustrate the phenomenon, two possible condition may happen as follows. 

1- If the percentage of cancerous cells is low enough, it implies that the disease is progressed a 

little or has not happened yet and the purpose is cancer prevention. In this case, we assume 

that the system is in region 1 and applying the first and the fourth steps are adequate to fetter 

the system to stay in this region permanently. 

2- If the percentage of cancerous cells is high, the regions are defined in a way that the system 

acts in region 2 and then the four steps are applied to converge the system to region 3. This 

is mainly because there is no limit cycle in region 2 (since there is no equilibrium point in 

this region). Moreover, the system is second-order and chaos cannot occur. As a result, the 

system can’t stay in region 2 forever and inevitably there is no way for it except going to 

region 1. Henceforward, the system will stay in region 1 forever because it cannot exit from 

it. 

Here we present the biological conception of our four step procedure: 

 In the first step we guarantee that by adjusting interaction rate parameters in a proper way, if 

there is not any ” A  ” cells (healthy ones), in competition between two other types, “ A ”invade 

“ A ” cells (cancerous cells); and if the system doesn’t have any “type two” cells, the “type one” 

cells will annihilate cancerous cells. 



In the second step we propose conditions to guarantee that starting from any initial fraction of 

three types of cells, at least one of the cell types will be extinct and invaded by two other types. 

At the third step, our suggestions on the interaction rates for an already cancerous system at 

large, avoid the cancerous cells to invade two other cell types. It means that, we do not let the system 

to become entirely cancerous. 

At the forth step, by applying our suggestions on the interaction rates, for the cancerous system 

at the beginning, we do not let cancerous cells to grow up more than a small specific percentage. In 

means that, we impede a healthy system to become cancerous or a cured one to relapse. 

In fact, under these four step mechanism: 

1- A healthy system cannot become cancerous;  

2- A sick system is prevented to become completely cancerous (which means all of its cells 

become cancerous and we assume that such a system is cureless); 

3- For an ill system, eventually one cell type will be destroyed (according to step two). If this 

extinct cell type is “type three”, then the system is cured. If it is “type one” or “two”, the 

population consists of two remaining cell types. Then, the cell “type three” will be eliminated 

by the other one and the system is cured again and after the remedy it cannot go back to the 

cancerous situation (step four again). 

 

Based on different conditions on the boundaries of 1 0x   and 2 0x  , 16 cases for the game 

is considered as presented in Table 3 and steps 1 to 4 of the proposed method is applied.  

 



 

Table 3. Different cases on 
1 0x   and 

2 0x   boundaries  

2 0x  Border 1 0x  Border 

31 11 33 13p p p p    Sub-Case B1 
32 22 33 23p p p p    Sub-Case A1 

11 31 13 33p p p p    Sub-Case B2 
22 32 23 33p p p p    Sub-Case A2 

11 31 33 13,p p p p   Sub-Case B3 
22 32 33 23,p p p p   Sub-Case A3 

31 11 13 33,p p p p   Sub-Case B4 
32 22 23 33,p p p p    Sub-Case A4 

 

1. Case A1B1 

Step 1: 

Sub-Case A1: 32 22 33 23p p p p    

On the 1 0x   boundary, the payoff matrix and replicator dynamics is reduced as table 4: 

Table 4. Reduced payoff matrix on the 1 0x   boundary 

2 3

2 22 23

3 32 33

(x)

s s

s q q
Q

s q q

 
  

 

  

Therefore, replicator equations is: 

2 2 2

3 3 3

(f )

(f )

x x M

x x M

 
  

       (4) 



Since 2 3 1x x  , after some algebraic calculations, equation 4 can be written as: 

2 2 2 22 23 32 33 2 23 33(1 x )[(q )x ]x x q q q q q           (5) 

2 0x   and 2 1x   are two trivial solutions of equation 5.  Potentially, there are some interior 

equilibrium points between zero and one which are the feasible solutions of equation 6. 

22 23 32 33 2 23 33(q )x 0q q q q q               (6) 

The solutions of (6) are: 

 
2 2

y s
x

z


                (7)  

Where: 

 

2
23 32 23 22 33 22 23 33 23 23 33

2 2 2 4
22 33 22 33 23 32 23 22 33 23 32

2
22 23 22 32 23 33 32 33 23 22 33

2
23 32 23 32 22 22 23 22 33 22 33

(p p ) r (p p ) r 2(p p ) r

(p p ) (p p ) r (4 p 4p p

2p p 2p p 2p p 2p p ) r

(p p ) r (p p ) r (p p ) r

y r r

s r r p

r r

z r r

      


     

   
      

 (8) 

If 0s  ¸then bifurcation occurs in system (4) (Thompson and Stewart, 2002) and this is the case 

if 
2

22 33 23 1( / )r r r k  , in which: 

 

 

1 22 23 32 33 23 33 32 32 332
22 33

1

2
22 23 22 32 23 33 32 332

22 33

1
p (p p 2p ) p (p 2p ) p p

(p p )

1
(p p )(p p )(p p )(p p )

(p p )

k      


    


   (9) 

Therefore 
2

22 33 23/r r r  can be defined as the system bifurcation parameter (Taylor and Nowak, 

2006). 



 

In case A1B1, after some algebraic manipulations location of equilibrium points and their 

attraction and repelling manifold on 1 0x  border for different values of bifurcation parameter is 

depicted in figure (3): 

    

22 33
12

23

r r
k

r
  

(a) 

22 33
12

23

r r
k

r
  

(b) 

22 33
12

23

r r
k

r
  

(c) 

22 33
12

23

r r
k

r
 

(d) 

Figure 3. Location of the system equilibrium points on  1 0x   border for different values of bifurcation 

parameters in case A1 

Figure 3(d) is the desired objective where all equilibrium points on this border are located region 1 

and 3. Besides, the part of 1 0x   boundary that is lied in region 2, acts as an attraction manifold 

for an equilibrium point placed in region 1. Suggestions to achieve figure3(d) is described in 

equation 10: 

22 332
22 33 23 1

13

( ) / is :
0

r r
r r r k Our suggestion

r


 

     (10) 

Sub-Case B1: 31 11 33 13p p p p    



The location of equilibrium points on 2 0x   border for different amount of bifurcation 

parameter is given in figure (4). 

    

11 33
22

13

r r
k

r
   

(a) 

11 33
22

13

r r
k

r
  

(b) 

11 33
22

13

r r
k

r
   

(c) 

11 33
22

13

r r
k

r
  

(d) 

Figure 4.  Location of the system equilibrium points on  1 0x   border for different values of bifurcation 

parameter in case B1 

 

Similarly, figure 4(d) is the ideal situation and the requisite to create this condition is: 

11 332
11 33 13 2

13

( ) / suggestion is :
0

r r
r r r k Our

r


 

         (11)  

Taking into account the previous discussions, the following expressions for case A1B1 in first 

step is represented: 

22 33 11 33

23 130 0

r r r r
and

r r

  
   

    (12) 

Step 2: 



In this step, first, calculations of the first step is applied to the system to identify any equilibrium 

point located in region 2 and then solutions are proposed to exclude region 2 from equilibrium 

points. Region 2 would be divided into 3 different sub-regions and each sub-region is studied.  

Sub-region 2.1: 

In this sub-region we may write: 

12 2 13 3 1 11

22 2 23 3 2 21

3 3331 1 32 2

0 , 0

0 , 0 :

0 , 0

r x r x f p

r x r x Then f p

f pr x r x

   
    
    

      (13) 

It is clear that for interior equilibrium points  1 2 3f f f M   . On the other hand, in Eq.13,  

1 3f f  and consequently there are no equilibrium point in sub-region 2.1 in this case. 

Sub-region 2.2: 

In this sub-region, 1 0x  , the following conditions are applied.  

11 1 13 3 1 12

21 1 23 3 2 22

3 3331 1 32 2

0 , 0

0 , 0 :

0 , 0

r x r x f p

r x r x Then f p

f pr x r x

   
    
    

       (14) 

 Since 2 3f f  (as mentioned before), there is no equilibrium point in this sub-region as well. 

Sub-region 2.3:  

In this sub-region, for case 1, equations are: 



 

11 1 11 12 2 12
1

11 1 12 2

13 3 23 3 21 1 21 22 2 22
2

31 1 32 2 21 1 22 2

3 33

0 , 0
:

0 , 0

r x p r x p
f

r x r x
r x r x r x p r x p

Then f
r x r x r x r x

f p

  
       

 



      (15) 

 Considering the fact that 2 22 21(p ,p )f   and 2 3f f  (because in this case 33 22p p  and 33 21p p

) , there is no equilibrium point in this sub-region. 

So, no proposal is required for step 2 and the objective is achieved by applying the procedures 

described in step 1.  

Step 3: 

In this step recommendations are provided so that 3 0x   where 3 1x   . 

3
3 3 3 1 1 2 2 3 3 3 1 1 2 2

1 2

1
0 : : :

x
x Then f M then f x f x f x f Then f x f x f

x x





 

        
 (16) 

The purpose is to make equation 16 active in sub-regions.  

Sub-region 2.1:  

In this sub-region: 

1 1 11
1 1 2 2 11

2 2 21 3 1 1 2 2
3 33

3 3 33

,

0 , : :

1 ,

x f p
x f x f p

x f p Then Then f x f x f
f p

x f p





 



 
          

   (17) 

It is obvious that using the above constraints make the equation active and there is no need for 

further analysis. 



Sub-region 2.2: 

In this sub-region: 

1 1 12
1 1 2 2 22

2 2 22 3 1 1 2 2
3 33

3 3 33

0 ,

, : :

1 ,

x f p
x f x f p

x f p Then Then f x f x f
f p

x f p


 

 


 
          

  (18) 

Similar to the previous case, the equation is active in this sub-region. 

Sub-region 2.3: 

In this sub-region: 

11 1 11 12 1 12
1

11 1 12 1

21 1 21 22 2 22
2

21 1 22 1

3 33

( x )

( x )

( x )

r x p r p
f

r x r

r x p r x p
f

r x r

f p






    


  
 



    (19) 

If: 1 1 2 2 3 11 1 1 11 1 12 1 1 1 12(x M ) r ( x )(M x p )x f x f f r x p               (20) 

Where: 1 3 2 2M f x f          (21) 

If  1 1 11M x p  the following situation is our proposal to make (20) active: 

  12 1 1 1 12
11

1 1 11 1

( x )(M x p )

x (x M )

r
r

p

  



    (22) 

Also, we check if the following equation is active: 

1 1 11M x p       (23) 



21 1 21 22 1 22
1 1 11 1 1 11

12 1 22 1

( x )
( x )

( x )

r x p r p
M x p i x p

r x r

 


  
       

    

12 1 33 1 21 1 11 22 1 1 11 1 22 33

12 1 22 1

( ( x )p p ) ( x )( ( x )p )

( x )

r x p x r x p p

r x r

    


       


 
    (24) 

And: 33 1 21 1 11
1 1 11 1 1 11

1 1 1 2 33

( ( x ) ) 0
: 0 :

( ( x ) ) 0

p p x p
Then M x p Then M x p

x p p p

 
 

   
      

   (25) 

Therefore, equation 20 is always active and there is no need to alter the situation.  

Step 4: 

In this step we propose 3 0x   and 3x  . The only difference with the step 3 is replacing  

1   with   in equations.  

11 1 11 12 1 12
1

11 1 12 1

21 1 21 22 2 22
2

21 1 22 1

3 33

( x )

(1 x )

(1 x )

r x p r p
f

r x r

r x p r x p
f

r x r

f p






     
 


  

 



      (26) 

Our suggestion: 12 1 1 1 12
11

1 1 11 1

(1 x )(N x p )

x (x )

r
r

p N

  



    (27) 

Where: 1 3 2 2(1 )N f x f       (28) 

 By applying our proposed four steps the location of equilibrium point in this case is 

demonstrated in figure 5: 



 

Figure 5. The location of system equilibrium points in case A1B1 on the boundaries of 
1 0x   and 

2 0x 

using the four steps for case 1 

Proposed solutions for the remaining cases are presented in table 4. More detailed calculations 

are available in supplementary of the paper. 

Also, it is discussed in the supplementary that there is no need to consider extra suggestions for 

the remaining 15 cases in step 2 and by applying the first step, no equilibrium point is located in 

region 2. Therefore, there is no necessity to present the details of step 2. 

Table 5. the proposed approach for different cases in different steps  

Case  Step 1 Step 3 Step 4 
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IV. Simulations 

In this section the results of simulation are presented in two parts.  

A. Part 1 

Despite the fact that the proposed methods demands ideal condition (for example 11r   that 

is unlikely to happen in real condition), by changing the parameters in proposed direction (for 

instance, increasing ݎଵଵ to a sufficiently higher value), the system will converge to equilibrium 

points.  

We suppose the game’s parameters are assumed as follows: 

1, 1.4, 0.6, 0.3, 0.4, 1.2, 0.3, 0.2, 0.3, 0.4, 0.05                         

This represents the case A1B1 in analysis. Convergence of the system with and without the 

proposed method using an initial condition is depicted in fig.6(a) and fig.6(b), respectively.   

 

 



  

Uniform interaction rates (all equal 1 ) 

 

(a) 

13 23 330.01, 0.1, 100r r r    and others ones 

are 1 

(b) 

Figure 6. System convergence with a specific initial condition without and with (left and right pictures 

respectively) applying our proposals for case 1 

It is clear that using the proposed method yields desirable results where there is no cancerous 

cells. 

B. Part 2 

In this part we present the results of game convergence considering non-cancerous and cancerous 

initial conditions for different values of interaction rates. The purpose is to find an optimum 

condition to eliminate cancerous cells with least changes in interaction rate parameters. The 

proposed method provided merely sufficient but not necessarily essential conditions and there 

might be other methods with lower cost in terms of optimization.  

Due to high number of parameters, some of them are shown in figures 7 and 8 while the rest of 

the parameters are presented in table 5.  



Figure 7 and 8 show 25 black border squares. In each one of the black border squares there are 

4 brown border squares consisting 16 arrays. The value of 11r and 33r  are presented in this figure. 

The parameter 22r  is constant and equal to 1. The remaining parameters are provided in table 6. 

Table 6. The value of interaction rate parameters in figures 7 and 8 

Brown squares in 

each black square 13r  

Columns of each 

brown square (left to 

right direction) 
13r  

Rows of each 

brown square (up 

to down direction) 
23r  

lower-left 0.1 First 0.1 First 0.1 

lower-right 1 Second 1 Second 1 

Upper-left 10 Third 10 Third 10 

Upper-right 100 Fourth 100 Fourth 100 

Each specific color indicates the result of game convergence. For instance, blue means there are 

Aand A cells in converged point which implies an equilibrium point on 2 0x   boundary 

(there is no Acells or negligible number of them). Magenta, cyan or yellow represent the game 

convergence to points without cancerous cells or with a very scanty level of it that is desirable. Each 

color corresponds to a specific condition that is shown by legends in the figure. Besides, parameters 

  and   are set as 0.03 in the simulations presented in this part. 

The model parameters of the game in both figures are assumed as follows: 

1, 1.4, 0.8, 0.6, 0.6, 1.2, 0.4, 0.4, 0.4, 0.4, 0.4                         

Figure 7 depicts the game convergence results with non-cancerous initial conditions (1 0.98x   , 

2 0.01x   and 3 0.01x  ) for different values of interaction rate. It can be understood that by 

adjustment of interaction parameters, the system may converge to non-cancerous equilibrium 



points (desired colors). 

 

Figure 7. Convergence of the game with non-cancerous initial condition and model parameters: 

1, 1.4, 0.8, 0.6, 0.6, 1.2, 0.4, 0.4, 0.4, 0.4, 0.4                       , for different values of 

interaction rate parameters 

Among the possible ways to prevent generating cancerous cells that can be interpreted from 

figure 7, an effective way to converge to a proper equilibrium point which is colored in cyan is to 

set 23 330.1, 10r r   and the other parameters to be 1. 

Figure 8 indicates that with the same game parameters in the case shown in figure 7, setting the 

initial condition to be: 1 0.02x   , 2 0.03x   and 3 0.95x   (almost all the cells are cancerous) 

and adapting the interaction rates, the game converges to equilibrium points (desired colors). 



 

Figure 8. Convergence of the game with cancerous initial condition and model parameters: 

1, 1.4, 0.8, 0.6, 0.6, 1.2, 0.4, 0.4, 0.4, 0.4, 0.4                       , for different values of 

interaction rate parameters 

Regarding the results illustrated in figure 8, an efficient way to eradicate the cancerous cells is 

to choose 12 23 3310, 0.1, 10r r r    and other interaction rate parameters to be 1. 

V. Conclusion  

The proposed therapeutic method in this paper based on changing the interaction parameters was 

to eliminate cancerous cells or prevent cell population to become cancerous, . 

It was shown in Figure 7 that ݎଷଷ ൌ ͳͲ and ݎଶଷ ൌ ǤͲͳ could be an appropriate strategy, since 

by placing A—cells close to each other, the interaction rate increases and ݎଷଷ ൌ ͳͲ is obtained. On 

the other hand, separating A++ and A+- cells reduces the interaction rate and ݎଶଷ ൌ ǤͲͳ is attained.  

Using the proposed method, with natural selection, cancerous cells are eliminated and cell 

population will converge to non-cancerous point. The suggested interaction rates in the analysis 



section, gave some sufficient conditions for the convergence of the game to the desired equilibrium 

points. Nevertheless, as it was understood from the Simulation results, the desired convergence can 

be achieved by applying less conservative conditions on the interaction rates. 

VI. Future works 

In the light of our studies, it is an idea that the medical technology could be designed to change 

the interaction rate of cancerous cells. A clue on this is to separate the cell types in demarcated 

boundaries to change the interaction rate. For instance, conducting a population of cells through a 

filter or using an especial drug could separate them regarding the fact that cells’ sizes are different. 

Therefore, the interaction rates among different cell’s type could be changed. Another clue to 

change the interaction rate parameters could be utilizing the chemicals. For example, one can soak 

each cell types with specific chemicals through target therapy approaches which can lead to non-

uniform interaction rates among different cell types. Another avenue for future work is to 

develop a more realistic model compared to what was presented in this work by 

building a more comprehensive model which incorporates more aspects of cancer. 

For example, researchers can consider the impact of current therapies such as chemotherapy, 

surgery or radiation instead or in tandem with the immune suppression. 

Appendix 
Here we prove the dynamics in border the of 2 0x   is given by (5). 
From (4): 
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