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Abstract

We give a fully dynamic (Las-Vegas style) algorithm with constant expected amortized time per

update that maintains a proper (∆ + 1)-vertex coloring of a graph with maximum degree at most ∆.

This improves upon the previous O(log ∆)-time algorithm by Bhattacharya et al. (SODA 2018).

Our algorithm uses an approach based on assigning random ranks to vertices and does not need to

maintain a hierarchical graph decomposition. We show that our result does not only have optimal

running time, but is also optimal in the sense that already deciding whether a ∆-coloring exists in a

dynamically changing graph with maximum degree at most ∆ takes Ω(log n) time per operation.
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1 Introduction

A (fully) dynamic graph algorithm is a data structure that provides information about a

graph property while the graph is being modified by edge updates such as edge insertions or

deletions. When designing a dynamic graph algorithm the goal is to minimize the time per

update or query operation. The lower bounds of Patrascu and Demaine [24] showed that in

the cell-probe model many fundamental graph properties, such as asking whether the graph

is connected, require Ω(log n) time per operation, where n is the number of nodes in the

graph. Their lower bound technique also gives logarithmic time lower bounds for further

dynamic problems such as higher types of connectivity, planarity and bipartiteness testing,

and minimum spanning forest, and it is an open research question for which other dynamic

graph problems non-constant time lower bounds exist.

Furthermore, there are only very few graph problems for which it is known that no such

lower bounds can exist. These are the following problems, which all have constant-time,

and thus optimal, algorithms: maintaining (a) a maximal matching (randomized) [25], (b) a

(2 + ε)-approximate vertex cover (deterministic) [7], and (c) a (2k − 1)-stretch spanner of

size O(n1+ 1

k log2 n) for constant k (randomized) [3]. All these are amortized time bounds

and each of these algorithms maintains a dynamically-changing sophisticated hierarchical

graph decomposition.

In this paper we present a dynamic algorithm with constant update time for a new

graph problem, expanding the above list. Additionally, our algorithm does not rely on a

dynamically changing hierarchical graph decomposition, making it (but not its analysis)

simpler. Our new result is a dynamic algorithm for the following problem: We call a dynamic
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graph ∆-bounded if throughout the updates, the graph has maximum degree at most ∆. A

proper coloring assigns to each vertex an integer value, called color, such that the endpoints

of every edge have a different color. A (∆ + 1)-vertex coloring is a proper coloring that

uses only colors from the range [1, . . . , ∆ + 1]. Note that a proper (∆ + 1)-vertex coloring

in a (static) graph with maximum degree at most ∆ always exists and can be found in

linear time by a simple greedy algorithm [27]. A fully dynamic graph algorithm is a data

structure that maintains a graph G = (V, E) while it is undergoing an arbitrary sequence of

the following operations: 1) Insert(u, v): insert the edge (u, v) in G; 2) Delete(u, v): delete

the edge (u, v) from G. In the dynamic (∆ + 1)-vertex coloring problem, the fully dynamic

graph algorithm maintains after each update operation a proper (∆ + 1)-vertex coloring

of the current graph in a ∆-bounded dynamic graph. When asked to perform a Query(u)

operation, the algorithm returns the color of the given vertex u.

Maintaining a proper (∆ + 1)-vertex coloring in a ∆-bounded dynamic graph can be done

trivially in O(∆) worst-case update time: the algorithm does nothing after an edge deletion or

an edge insertion between two nodes of different colors; once an edge is inserted between two

nodes of the same color it scans the whole neighborhood of one of the nodes and chooses an

unused color. Recently Bhattacharya et al. [5] presented a randomized (∆+1)-vertex coloring

algorithm with O(log ∆) expected amortized update time and a deterministic algorithm that

maintains a (∆+o(∆))-vertex coloring with O(poly log ∆) amortized time. Their randomized

algorithm works against the oblivious adversary: It is assumed that the sequence of update

operations is generated by an adversary whose goal is to maximize the running time, but has

to fix the sequence before the algorithm starts to run. This guarantees that the adversary is

oblivious to the random choices of the algorithm. Note that if ∆ is polynomial in n, their

algorithm takes time O(log n). In this paper, we improve upon this result as follows.

◮ Theorem 1. There exists a fully dynamic algorithm for maintaining a proper (∆+1)-vertex

coloring for a ∆-bounded graph against an oblivious adversary with O(1) expected amortized

update time.

Unlike the algorithm in [5] our algorithm does not need to maintain a hierarchical graph

decomposition. Furthermore, apart from having optimal running time, our result is also

optimal in the sense that deciding whether a proper coloring with only ∆ colors exists in a

dynamically changing graph (with maximum degree at most ∆) takes at least Ω(log n) time

per operation, as we show in Theorem 2. More precisely, we define the dynamic ∆-colorability

testing problem as follows: Besides operations Insert(u, v) and Delete(u, v), there is a

Query() operation that returns yes if the graph is ∆-colorable and no otherwise, where ∆ is

the maximum degree in the current graph. We show the following theorem.

◮ Theorem 2. Any data structure for dynamic ∆-colorability testing, where ∆ is the maximum

degree in the graph, must perform Ω(log n) cell probes, where each cell has size O(log n).

Our Techniques. We first give a brief overview of the algorithm in [5] that maintains a

proper (∆ + 1)-vertex coloring for a dynamic graph with maximum degree at most ∆. Let χ

be the current proper ∆ + 1-coloring. First note that after an edge deletion and after an

edge insertion (u, v) that does not cause a conflict, i.e., if χ(u) 6= χ(v), then the coloring

remains unchanged. If a conflict occurs (i.e., χ(u) = χ(v)), then one needs to fix the coloring

by recoloring one vertex from {u, v}, say u. Instead of scanning the whole neighborhood

of u to find the color (called a blank color) that has not been used by any of its neighbors,

the algorithm in [5] tries to sample a color from a set S that contains only blank colors and

colors (called unique colors) that have been used by exactly one neighbor of u. Note that S
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has size Ω(∆), which guarantees that a future conflict edge incident to u occurs with low

probability (i.e., with probability O(1/∆)). On the other hand, if a unique color is chosen,

one needs to recolor the corresponding vertex w (which is a neighbor of u), again, using a

new color sampled from the set of blank and unique colors for w. This procedure might cause

a cascade and even not terminate at all. The dynamic (∆ + 1)-vertex coloring algorithm

of [5] resolves this problem by maintaining a hierarchical graph decomposition, and when

recoloring a node it picks a color randomly out of all colors that are either (i) used by none

of the neighbors or (ii) used by at most one of the neighbors on a lower level in the graph

hierarchy. The resulting algorithm is then shown to have O(log ∆) amortized update time for

maintaining a proper coloring. However, maintaining such a hierarchical partition is not only

complicated, but also inefficient, as it alone already takes O(log ∆) amortized update time.

Now we describe our main ideas which lead to a constant-time dynamic coloring algorithm.

We show that an approach based on assigning random ranks to vertices outperforms the

graph-hierarchy based algorithm: During preprocessing each node v is assigned a random

rank r(v) from [0, 1] and a random color (assuming as usual that the initial graph is empty).

Let Lv denote the set of neighbors of a node v with rank lower than r(v) and for any set S of

neighbors of a node let S< denote the subset of S whose rank is at most the median rank of

the nodes in S. When recoloring v, we pick a color randomly out of all colors that are either

(i) used by none of its neighbors (called blank colors) or (ii) by at most one neighbor in Lv

and this node belongs to L<
v . (We show that there are always Ω(|Lv|) many such colors.)

In case (ii) this neighbor w must be recolored. Due to the definition of L<
v it is guaranteed

that r(w) is at most the median rank of the lower-ranked neighbors of v. Recoloring w is

done with a more refined recoloring procedure that additionally to the above information

takes into account which nodes of Lw also belong to N(v), the neighborhood of v. This

is necessary since on the one side (a) we need to guarantee that the new color is chosen

randomly from a set of Ω(|Lw|) colors and the other side (b) we have to apply a different

analysis depending on whether the new color belongs to N(v) or not.

More formally let Lw,new := Lw \N(v), let Lw,old := Lw ∩N(v), and let L∗ equal L<
w,new

if |Lw,new| > |Lw|/10 and L<
w,old otherwise. The algorithm randomly samples a color out of

the set which consists of (i) all blank colors and (ii) all colors which are used by exactly one

node in Lw and are used by a node in L∗. If the color of a node y in L∗ was chosen, y will

be recolored recursively taking N(x) for all previously visited nodes x into account. If y

was chosen from L<
w,new, y is called a good vertex, otherwise a bad vertex. This results in

a recoloring of nodes along a random recoloring path P in the graph until a blank color is

chosen. The latter is guaranteed to happen when a node y with Ly = ∅ is reached. We give

a data structure that implements each coloring step, i.e., the selection of a new color of a

vertex y on P , in time O(|Ly|). Thus, the total time for recoloring P is O(
∑

y∈P |Ly|).
This sampling routine guarantees that the rank of the next node is at most the median

rank of the lower-ranked neighbors of the previous node. If there were no dependencies

between the rank of the current node and the previous nodes on P , the expected rank would

halve in this coloring step. These dependencies are exactly why we introduced Ly,new, Ly,old,

and L∗, and labeled the vertices on P as good and bad. More specifically, we show that at

every good vertex y the expected rank and the expected size of Ly,new halves. This by itself

would not be sufficient, since we need the expected size of Ly, and not only the expected

size of Ly,new, to halve. Here we use the definition of L∗ to show that the expected size of

Ly decreases by a constant factor whenever Ly,new halves. This then implies that the total

expected time at the good vertices on P , i.e. O(
∑

y∈P,y:good |Ly|), forms a geometric series

adding up to O(r(v)∆), where v is the initial vertex of P .

STACS 2020
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The main difficulty that the analysis still has to overcome is the fact that there might be

bad vertices. To deal with this we introduce a novel potential function Φ based on the nodes

on P , which allows us to bound the work, i.e., the number of (“standard” word) operations

that the algorithm performs, done at bad vertices by the work done at good vertices. More

specifically, we show that, when traversing P from an initial vertex v, at every bad vertex Φ

drops. As (i) Φ is always non-negative, (ii) Φ only increases at good vertices, and (iii) the

drop of Φ gives an upper bound of the time spent at bad vertices, we can bound the total

time for coloring all the vertices on P by the total time spent at the good vertices on P times

a constant. This allows us to prove that the total work done for recoloring all vertices on P

is O(r(v)∆), where v is the initial vertex of P (Lemma 4).

Finally, we combine this bound with the fact that (a) for many operations (such as all

deletions and many insertions) no recoloring is necessary and (b) the color of each node y

was picked uniformly at random from a set of Ω(|Ly|) many colors, to show that the expected

amortized time per update operation is constant.

Note that the refined sampling routine as well as the analysis that combines a potential

function analysis with a careful analysis of the expected size of the sets Ly along a random

path P is novel. The technique has the advantage that, unlike in a hierarchical graph

decomposition where the ordering of nodes by levels might change and needs to be updated,

the ordering of nodes by ranks is static and does not create update costs. However, it has

the disadvantage that, unlike in the hierarchical graph decomposition of [5], (1) we do not

have a worst-case upper bound on the number of nodes that are “lower” in the ordering and

(2) the length of P , which is limited by the longest strictly decreasing path in the ordering,

might be Θ(n) and not Θ(log ∆) in the worst case, as in [5].

As we recently learnt, Bhattacharya et al. [6] achieved the same result as Theorem 1

independently.

Our proof of Theorem 2 follows from a simple reduction from dynamic connectivity, whose

cell probe lower bound was known to be Ω(log n) [24].

Other Related Work. Partially due to the Ω(log n) lower bound for the fundamental

problem of testing connectivity [24], a large amount of previous research on dynamic graph

algorithms has focused on algorithms with polylogarithmic or super-polylogarithmic update

time. Examples include testing k-edge (or vertex) connectivity (see e.g., [14, 18, 17]),

maintaining minimum spanning tree (see e.g., [15, 14, 17, 16, 18, 19, 20, 28, 22, 23]), and

graph coloring [2, 1, 5, 26, 13]. There are also studies on incremental algorithms that only

allow edge insertions, and decremental algorithms that only allow edge deletions throughout

all the updates. In contrast to such studies, our work is focusing on fully dynamic algorithms,

in which both edge insertions and deletions are allowed.

The technique of maintaining random ranks for vertices was previously used for dynamic

maximal independent sets in the distributed setting [10] and very recently in the centralized

setting [11, 4]. However, our analysis is quite different from theirs.

2 Maintaining a Proper (∆ + 1)-Vertex Coloring

In this section, we give our constant-time dynamic algorithm and its analysis for maintaining

a proper (∆ + 1)-coloring in a dynamic ∆-bounded graph and present the proof of Theorem 1.

In Section 4, we discuss how to extend our algorithm to handle the case that the maximum

degree ∆ also changes. Recall that a dynamic graph is said to be ∆-bounded if throughout

the updates, it is ∆-bounded. Given ∆, let C := {1, · · · , ∆ + 1} denote the set of colors. A

coloring χ : V → C is proper if χ(u) 6= χ(v) for any (u, v) ∈ E.
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2.1 Data Structures and the Algorithm

Data structures. We use the following data structures.

(1) We maintain a vertex coloring χ as an array such that χ(v) denotes the color of the

current graph and guarantee that χ is a proper (∆ + 1)-vertex coloring after each update.

(2) For each vertex v ∈ V we maintain: (a) its rank r(v) that is chosen uniformly at random

from [0, 1] during preprocessing; (b) its degree deg(v); (c) the last time stamp, denoted

by τv, at which v was recolored; (d) two sets Lv := {u : (u, v) ∈ E, r(u) < r(v)}, Hv :=

{u : (u, v) ∈ E, r(u) ≥ r(v)}, which contain all neighbors of v with ranks less than v,

and all neighbors of v with ranks at least v (including v itself), respectively; (e) the sizes

of the previous two sets, i.e., |Lv| and |Hv|. Note that deg(v) = |Lv ∪Hv| = |Lv|+ |Hv|.
For each vertex v ∈ V note that every color of C is either (i) used by no neighbor of v

(and we call such color a blank color for v), (ii) used by a neighbor in Hv, or (iii) used

by a neighbor in Lv and by no neighbor in Hv. We call the corresponding sets of colors

(i) Bv, (ii) Cv(H), and (iii) Cv(L). We further partition Cv(L) into (iii.1) Uv(L), which

denotes the set of unique colors for v that have been used by exactly one vertex in Lv

and (iii.2) Mv(L), which denotes the set of colors that have been used by at least two

vertices in Lv. Thus, C = Cv(H) ∪̇ Bv ∪̇ Uv(L) ∪̇ Mv(L). As it will be useful in the

description of the algorithm, we finally define Cv(H) := Bv ∪ Uv(L) ∪Mv(L). Note that

for any fixed v, a color c can appear in exactly one of the two sets Cv(H) and Cv(H).

(3) (i) For every vertex v, we maintain Cv(H) and Cv(H) in doubly linked lists. (ii) For each

color c ∈ C and vertex v ∈ V , we keep the following information: (a) a pointer pc,v from

c to its position in either Cv(H) or Cv(H), depending on which list it belongs to; (b)

a counter µH
v (c) such that µH

v (c) equals the number of neighbors in Hv with color c if

c ∈ Cv(H); or equals 0 if c ∈ Cv(H). (iii) For any vertex v and color c ∈ C we keep the

pointer pc,v in a hash table Av which is indexed by c. (iv) For any vertex v and color

c ∈ Cv(H), we maintain the pairs (c, µH
v (c)) in a hash table AH

v which is indexed by the

pair (v, c).

More precisely, we use the dynamic perfect hashing algorithm by Dietzfelbinger et al. [12],

which takes amortized expected constant time per update and worst-case constant time

for lookups. (Alternatively we can get constant worst-case time for updates and lookups

by spending time O(n∆) during preprocessing to initialize suitable arrays).

To simplify the presentation and since the randomness in the hash tables is independent

of the randomness used by the algorithm otherwise, we will not mention the randomness

introduced through the usage of hash tables in the following.

Initialization. As the initial graph G0 is empty, we initialize as follows: (1) For each vertex

u ∈ V , sample a random number (called rank) r(u) ∈ [0, 1]. (2) Color each vertex u by

a random color χ(u) ∈ C := {1, · · · , ∆ + 1} and initialize all the data structures suitably.

In particular, for each u ∈ V , we initialize Cu(H) to be the empty list and Cu(H) to be

the doubly linked list containing all colors in C. Note that the latter takes O(n∆) time.

We discuss how to reduce the initialization time to O(n) while keeping constant expected

amortized update time in Section 4.

Time stamp reduction. Our algorithm does not use the actual values of the time stamps,

only their relative order. Thus, every poly(n) (say, n4) number of updates we determine the

order of the vertices according to the time stamps and set the time stamps of every vertex to

equal its position in the order and set the current time stamp to n + 1. This guarantees that

we only need to use O(log n) bits to store the time stamp τv for each vertex v and it does

STACS 2020
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not affect the ordering of the time stamps. The cost of the recomputation of time stamps

is O(n log n) and can be amortized over all the operations that are performed between two

updates, increasing their running time only by an additive constant.

Handling an edge deletion. As any edge deletion (u, v) does not lead to a violation of the

current proper coloring, we do not need to recolor any vertex, except to update the data

structures corresponding to u, v, the details of which are deferred to Section 2.1.1.

Handling an edge insertion. For an edge insertion (u, v), we note that if χ(u) 6= χ(v) before

the insertion, then we only need to update the basic data structures corresponding to the two

endpoints. If χ(u) = χ(v), i.e, the current coloring χ is not proper any more, then we need

to recolor one vertex w ∈ {u, v} as well as to update the relevant data structures. We always

recolor the vertex that was colored last, i.e., the one with larger τw. W.l.o.g., we assume

this vertex is v. Then we invoke a subroutine Recolor(v) to recolor v and potentially some

other lower level vertices, and update the corresponding data structures. That is, we will

first update Hu, Lu, Hv, Lv and their sizes trivially in constant time. Then if χ(u) 6= χ(v),

we update the data structures corresponding to u, v as described in Section 2.1.1.

If χ(u) = χ(v), and w.l.o.g., suppose that τv > τu, then we recolor v by invoking the

procedure Recolor(v) below, where Uv(L) denotes the set of colors that have been used by

exactly one vertex in Lv.

Recolor(v)

1. Run SetColor(v) and obtain a new color c (from Bv ∪ Uv(L)).

2. Set χ(v) = c. Update the data structures by the process (>) described in Section 2.1.1.

3. If c ∈ Uv(L),

a. Find the unique neighbor w ∈ Lv with χ(w) = c.

b. Recolor(w).

4. If c ∈ Bv, then remove all the visited marks generated from the calls to SetColor.

Note that the recursive calls will eventually terminate as for every call Recolor(w) in

Step 3 it holds that r(w) < r(v). Furthermore, no recursive call will be performed when

Lv = ∅ as it implies that Uv(L) = ∅. The subroutine ReColor(v) calls the following

subroutine Setcolor(v).

2.1.1 Updating the Data Structures

Case I: an edge deletion (u, v). Whenever an edge (u, v) gets deleted, we update the

data structures corresponding to u and v as follows. More precisely, we first update the sets

Hu, Lu, Hv, Lv and their sizes trivially in constant time. The lists Cu(H), Cu(H), Cv(H), Cv(H)

can be updated in constant worst-case time. The hash tables AH
u ,AH

v can also be maintained

in constant amortized expected update time. More precisely, suppose w.l.o.g., u ∈ Lv, then

we do the following:

1. Delete (χ(v), µH
u (χ(v))) from AH

u ; µH
u (χ(v))← µH

u (χ(v))− 1.

2. If µH
u (χ(v)) = 0, then Cu(H)← Cu(H) \ {χ(v)}, Cu(H)← Cu(H) ∪ {χ(v)}.

3. Otherwise, insert (χ(v), µH
u (χ(v))) to AH

u .
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SetColor(v)

1. Mark v as visited. Initialize sets Lv,old := {v} and Lv,new := ∅.

Scan the list Lv: for any u ∈ Lv, if it is marked as visited, then add u to Lv,old;

otherwise (i.e., it is not marked), then add u to Lv,new and mark u as visited.

2. If |Lv| + |Hv| < ∆
2

(i.e., deg(v) < ∆
2

), repeatedly sample a color uniformly at random

from [∆ + 1] until we get a color c that is contained in Bv, the set of blank colors for v

that have not been used by any neighbor of v.

3. Otherwise, we let L<
v,new denote the subset of vertices in Lv,new with ranks at most

the median of all ranks of vertices in Lv,new. We let Uv(L<
new) denote the set of colors

that each has been used by exactly one vertex in Lv,new and additionally this vertex

belongs to L<
v,new. Define L<

v,old and Uv(L<
old) similarly.

a. If |Lv,new| ≥ 1
10

|Lv| or Lv = ∅, then we sample a random color c from the set of

the first min{|Bv ∪ Uv(Lg
new)|, |L<

v,new| + 1} elements of Bv ∪ Uv(L<
new).

b. Else (i.e., |Lv,old| > 9
10

|Lv|) we sample a random color c from the set of the first

min{|Bv ∪ Uv(L<
old)|, |L<

v,old| + 1} elements of Bv ∪ Uv(L<
old).

4. Update the relevant data structures (i.e. of v and its neighbors in Lv) and Return c.

Case II: an edge insertion (u, v) such that χ(u) 6= χ(v). In this case, w.l.o.g., suppose

that r(u) < r(v), we update the data structures as follows:

1. Cu(H)← Cu(H) ∪ {χ(v)}, Cu(H)← Cu(H) \ {χ(v)}, µH
u (χ(v))← µH

u (χ(v)) + 1

2. Delete (χ(v), µH
u (χ(v))− 1) from AH

u if µH
u (χ(v)) > 1, insert (χ(v), µH

u (χ(v))) to AH
u .

Case III: procedure (>) in the subroutine Recolor(v). In the subroutine Recolor(v), if

the color of v is changed from c′ to c, then we update the relevant data structure as follows:

(>) For every w ∈ Lv:

1. µH
w (c′)← µH

w (c′)− 1

2. If µw(c′) = 0, then Cw(H)← Cw(H) \ {c′}, Cw(H)← Cw(H) ∪ {c′},
3. Cw(H)← Cw(H) ∪ {c}, Cw(H)← Cw(H) \ {c}, µH

w (c)← µH
w (c) + 1.

4. Delete (c, µH
w (c)) from AH

w if µH
w (c) > 1, and insert (c, µH

w (c)) to AH
w .

2.2 The Analysis

Next we prove Theorem 1. Let v0 := v be the vertex that needs to be recolored after an

insertion and let v1, v2, · · · , vℓ denote the vertices on which the recursive calls of Recolor()

were executed. We call v0, v1, · · · , vℓ the recoloring path originated from v. In the following

lemma, we show that the expected total time for all calls Recolor(vi) is O(1 +
∑ℓ

i=0 |Lvi
|),

where the expectation is not over the random choices of ranks or colors at Step 3, but comes

from the use of hash tables and sampling colors at Step 2.

◮ Lemma 3. Subroutine SetColor(v) can be implemented to run in O(1 + |Lv|) expected

time. For any recoloring path v0, v1, · · · , vℓ, the expected time for subroutine Recolor(u)

for any u ∈ {v1, . . . , vl} excluding the recursive calls to Recolor() is O(|Lu|) if u 6= vℓ, and

is O(1 +
∑ℓ

i=0 |Lvi
|) if u = vℓ.

Proof. Recall that we store Lv, Cv(H), and Cv(H) for every vertex v. We use them to build

all the sets needed in SetColor(v). First we use an array Rv,Lnew
(resp. Rv,Lold

) to store

ranks of vertices in Lv,new (resp. Lv,old), and then find the median mv,new (resp. mv,Lold
) of

the set of ranks of vertices in Lv,new (resp. Lv,old) deterministically in O(|Rv,Lnew
|) = O(|Lv|)

STACS 2020



53:8 Constant-Time Dynamic (∆ + 1)-Coloring

time [8]. Traversing Lv again (and using an empty array of length ∆ that we clean again

after this step) we compute (1) the sets Uv(L<
new) and Uv(L<

old) of colors that contain all

colors that have been used by exactly one vertex in L<
v,new, and by exactly one vertex in

L<
v,old, respectively, and (2) the sets Mv(L) of colors that contain all colors that have been

used by at least two vertices in Lv. Note that Uv(L) = Uv(L<
new) ∪ Uv(L<

old), and, thus, it

can be computed by copying these lists. All these lists have size O(|Lv|) and, thus, all these

steps take time O(|Lv|).
We will keep the sets Mv(L), Uv(L), Uv(L<

new), Uv(L<
old) in four separate lists and build

hash tables for these sets with pointers to their positions in the lists. Next we delete all

colors in Mv(L) ∪ Uv(L) from the list Cv(H) and the resulting list will be Bv. Note that

the hash tables can be implemented in time linear in the size of corresponding sets, and

each lookup (i.e., check if an element is in the set) takes constant worst-case time [12]. This

completes the building of the data structure before Step 1.

Recall that |Lv| + |Hv| = deg(v). Then for Step 2, if deg(v) < ∆
2 , we know that

|Bv| > ∆−∆
2 = ∆

2 . Thus, a randomly sampled color from [∆+1] belongs to Bv with probability

at least 1/2, which implies that in O(1) expected time, we will sample a color c from Bv.

Note that a color c belongs to Bv if and only if c is not contained inMv(L)∪Uv(L)∪Cv(H),

which can be checked by using the hash tables for Mv(L), for Uv(L) and the hash table AH
v .

All the other steps only write, read and/or delete lists or hash tables of size proportional

to |Lv| or |Mv(L) ∪ Uv(L)|, which is at most |Lv|. Though the list Bv ∪ Uv(L<
new) might

have size much larger than |L<
v,new|, it suffices to read at most |L<

v,new| elements from it in

Step 3 (similar for Bv ∪ Uv(L<
old) versus |L<

v,old|). In Step 4, to update the relevant data

structures, we add all colors inMv(L)∪Uv(L) back to the list Bv to construct Cv(H). Thus,

SetColor(v) takes O(1 + |Lv|) expected time.

To analyze the running time of Recolor(u) (apart from the recursive calls), for any

u ∈ v0, v1, . . . , vℓ, note that apart from calling Setcolor(u), Recolor updates the data

structures, determines the neighbor w that needs to be recolored next (if any) and if no such

neighbor w exists, i.e. c is a blank color and u is the last vertex of the recoloring path, then

it unmarks all vertices that were marked by all the calls to Setcolor on the recoloring

path. For this Setcolor has stored all the marked vertices on a list, which it returns to

Recolor. This list is then used by recolor to unmark these vertices. The time to update

the data structures is constant expected time (the expectation arises due to the use of hash

tables) to update its own data structure and O(|Lu|) to update the data structures of its

lower neighbors. Determining w requires O(|Lu|) time, as all lower neighbors of u have to

be checked. Finally, Recolor(u) for the last vertex u = vℓ on the recoloring path takes

expected time O(1 +
∑

i |Lvi
|) as it unmarks all vertices on the recoloring path and their

neighbors. ◭

Throughout the process we have two different types of randomness: one for sampling

the ranks for the vertices and the other for sampling the colors. These two types of

randomness are independent. Furthermore, only the very last vertex vℓ on the recoloring

path P = v0, v1, · · · , vℓ can satisfy the condition of Step 2 in SetColor, as once the

condition is satisfied, we will sample a blank color which will not cause any further recursive

calls. Thus, for all vertices on P , with the possible exception of vℓ, Step 3 will be executed.

We call a vertex w with deg(w) < ∆
2 a low degree vertex. Note that for a low degree vertex

w, SetColor(w) executes Step 2 and takes O(1) expected time, as with probability at least

1/2 a randomly sampled color will be blank. In the following, we consider the expected

time Tv of recoloring P that excludes the time of recoloring any low degree vertex (which, if
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exists, must be the last vertex on P ). We first present a key property regarding the expected

running time for recoloring a vertex v. Let N(v) denote the set of all neighbors of v in the

current graph.

◮ Lemma 4. Let G denote the current graph. For any vertex v with rank r(v) ≤ α, the

expected running time Tv (over the randomness of choosing ranks of other vertices) is

E[Tv|r(v) ≤ α] = O(α∆) (1)

Furthermore, conditioned on ranks of vertices in N(v) and r(v) ≤ α, it holds that the expected

running time Tv (over the randomness of sampling ranks of V \ (N(v) ∪ {v})) is

E[Tv|r(v) ≤ α, r(w)∀w ∈ N(v)] = O(|Lv|) + O(α∆) (2)

The proof of the above lemma is deferred to Section 2.2.1. We remark that Lemma 4 assumes

that for each operation, it is executed in any possible current graph G with any proper

(∆ + 1)-coloring (i.e. worst-case analysis for graph and coloring) and that each rank is

sampled uniformly at random from [0, 1] in G. This is true as the adversary is assumed to be

oblivious, i.e., the sequence of all updates has been written down before the algorithm starts

to process the updates. That is, for any current graph G, the random ranks of vertices still

follows from the same distribution as the one in the beginning. The above further implies

that we can bound the work for recoloring a conflicting vertex v in G by a function that

depends only on the randomness for sampling ranks (and not on the randomness for selecting

colors in previous updates).

We will also need the following lemma regarding the size of the sampled color set. The

proof of the lemma follows from a more refined analysis of the proof of Claim 3.1 in [5] and

can be found in the full version of the paper.

◮ Lemma 5. Let v be any vertex that needs to be recolored. Let s denote the size of the set

of colors that the algorithm samples from in order to choose a new color for v. Then it holds

that 1) if |Lv|+ |Hv| < ∆
2 , then s ≥ ∆

2 + 1; 2) otherwise, s ≥ 1
100 |Lv|+ 1.

With the lemmas above, we are ready to prove Theorem 1.

Proof of Theorem 1. Note that an edge deletion does not lead to the recoloring of any

vertex. Let us consider an insertion (u, v). If χ(u) 6= χ(v), we do not need to recolor any

vertex. Otherwise, we need to recolor one vertex from {u, v}. Suppose w.l.o.g. that τv > τu,

where τu denotes the last time that u has been recolored. This implies that v is recolored

at the current time step, which we denote by τ . We will invoke Recolor(v) to recolor v.

Note that by definition, after calling subroutine Recolor, there will be no conflict in the

resulting coloring. This proves the correctness of the algorithm. In the following, we analyze

its running time.

Recall that we let Tv denote the running time of calling Recolor(v), including all the

recursive calls to Recolor, while excluding the time of recoloring any low degree vertex

(i.e. a vertex where SetColor(w) executed Step 2) on the recoloring path originated from

v (which, if exists, must be the last vertex on the path). If the last vertex is indeed a low

degree vertex, then the expected total running time (over all sources of randomness) of

Recolor(v) will be E[Tv]+O(1), where the expectation E[Tv] in turn is over the randomness

of sampling ranks of all vertices; otherwise, the expected total running time (over all sources

of randomness) of Recolor(v) will be E[Tv]. Let α0 = 4C log ∆
∆ for some constant C ≥ 1.

Now we consider two cases:
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Case I: r(v) ≤ α0. First we note that this case happens with probability at most α0 as r(v)

is chosen uniformly at random from [0, 1]. Furthermore, by Lemma 4, conditioned on the

event that r(v) ≤ α0, the expected time of the subroutine Recolor(v) is E[Tv|r(v) ≤
α0] = O(α0∆), where the expectation is taken over the randomness of choosing ranks of all

other vertices except v. Therefore, the expected time of Recolor(v) (over the randomness

of choosing ranks of all vertices) is at most α0 ·O(α0∆) = O(α2
0∆) = O( log2 ∆

∆ ) = O(1).

Case II: r(v) > α0. Let r(v) = α. Conditioned on the event that r(v) = α, by Lemma 4,

the expected running time (over the randomness of choosing ranks of other vertices) of

Recolor(v) at time τ is O(α∆).

We let Lv and L′
v denote the set of neighbors of v with ranks lower than v in the graph at

(current) time τ and at time τv, (the latest time that v was recolored), respectively. Note

that τu < τv implies that neither χ(u) nor χ(v) changed between τv and τ . We define

Hv, H ′
v similarly. We let deg(v) = |Lv ∪Hv| and deg′(v) = |L′

v ∪H ′
v| denote the degree

of v at time τ and τv, respectively.

Case (a): deg′(v) < ∆/2. In this case, we know that at time τv, we will sample a color

from the set of blank colors B(v), which has size at least ∆/2. Thus, the probability

that we sampled any fixed color at time τv is at most 2/∆. This also applies to the

color χ(u). Thus, the probability that χ(v) = χ(u) at time τv is at most 2/∆. As

neither χ(v) nor χ(u) have changed between τv and τ (which implies that the random

choices of the algorithm between τv and τ have no influence on χ(v) or χ(u)), the

probability that χ(v) = χ(u) at time τ is at most 2/∆. On the other hand, at time

τ , we will spend at most O(α∆) = O(∆) expected time (over the randomness of

sampling ranks of vertices in V \ {v}). Thus, the expected time (over the randomness

of sampling ranks and of sampling colors at time τv) we spent on recoloring v at time

τ is O( 1
∆ ·∆) = O(1).

Case (b): deg′(v) ≥ ∆/2. We now consider two sub-cases.

Case (b1): If deg(v) < ∆/4, then there must have been at least deg′(v)/2 = Ω(∆)

deletions of edges incident to v between τv and τ . We can recolor v at time τ in

expected O(α∆) = O(∆) time. We charge this time to the updates incident to v

between τv and τ . Note that each update is only charged twice in this way, once

from each endpoint, adding a constant amount of work to each deletion.

Case (b2): If deg(v) ≥ ∆/4, then E[|Lv|] = α deg(v) ≥ α∆/4 ≥ α0∆/4 ≥ C log ∆ for

some constant C ≥ 1 and E[|Lv|] = α deg(v) ≤ α∆. Then over the randomness

of sampling ranks for vertices in N(v), it follows from a Chernoff bound that

with probability at least 1− 1
∆ , E[|Lv|]

2 ≤ |Lv| ≤ 3E[|Lv|]
2 , which implies that with

probability at least 1− 1
∆ ,

(α∆)/8 ≤ E[|Lv|]/2 ≤ |Lv| ≤ (3E[|Lv|])/2 ≤ (3α∆)/2 (3)

By Ineq. (2) in Lemma 4, over the randomness of sampling ranks for V \(N(v)∪{v}),
the expected work for recoloring v at time τ is O(|Lv|) + O(α∆) = O(α∆). We first

analyze the case that Ineq. (3) does not hold, which happens with probability at

most 1/∆. Then the work for recoloring is O(∆) as |Lv| ≤ ∆. Thus the expected

work of this case is 1
∆ ·O(∆) = O(1).

Next we analyze the case that Ineq. (3) holds and further distinguish two sub-cases.

Case (b2-1): If |Lv△L′
v| > 1

10 |Lv|, then there must have been at least 1
10 |Lv| = Θ(α∆)

edge updates incident to v between τv and τ . By the same argument as above

we can amortize the expected work of O(α∆) over these edge updates, charging

each edge update at most twice. This adds an expected amortized cost of O(1) to

each update.
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Case (b2-2): If |Lv△L′
v| ≤ 1

10 |Lv|, then it holds that |L′
v| ≥ |Lv|− |Lv△L′

v| ≥ 9
10 |Lv|.

By Lemma 5, χ(v) was picked at time τv from a set of Ω(|L′
v|) many colors. By

similar argument for the Case (a), the probability that we picked the color χ(u) at

time τv is at most O( 1
|L′

v| ) = O( 1
|Lv| ). As the expected work at time τ is at most

O(α∆) = O(|Lv|) (with the expectation over randomness of sampling ranks), the

expected amortized update time is O( 1
|Lv| ) ·O(|Lv|) = O(1).

This completes the proof of the theorem. ◭

2.2.1 Bounding the Expected Work per Recoloring: Proof of Lemma 4

Let v0, v1, · · · be the vertices on the recoloring path after an insertion. By Lemma 3 the

total expected time for all calls Recolor(vi) is O(1 +
∑

i≥0 |Lvi
|). Recall that the running

time Tv excludes the time spent on recoloring a low degree vertex (and a low degree vertex

can only be the last vertex of a recoloring path). Thus, for all vertices vi that contribute

to Tv only Step 3a or Step 3b of SetColor can occur. Let vi0
= v0, vi1

, vv2
, · · · be the

vertices for which Step 3a occurred during Setcolor(v), which we call good vertices. We

bound the expected value of ranks of good vertices and the expected size of the lower-ranked

neighborhood of these vertices in the following lemma. Note that the expectations are taken

over the randomness for sampling ranks of vertices, whose ranks are not in the conditioned

events.

◮ Lemma 6. For any j ≥ 0, it holds that

E[r(vij+1)|r(v0) ≤ α] ≤ α/2j , E[|Lvij
||r(v0) ≤ α] ≤ (10 · α ·∆)/2j−1.

Furthermore, for any j ≥ 1, it holds that

E[r(vij+1)|r(v0) ≤ α, r(w)∀w ∈ N(v0)] ≤ α/2j−1,

E[|Lvij
||r(v0) ≤ α, r(w)∀w ∈ N(v0)] ≤ (10 · α ·∆)/2j−2.

Proof. To prove the lemma, we use the principle of deferred decisions: Instead of sampling

the ranks for all vertices (independently and uniformly at random from [0, 1]) at the very

beginning, we sample the ranks of vertices sequentially by the following random process:

Starting from v0 with rank r(v0), we sample all the ranks of vertices in N(v0). We

will then choose v1 as described in the algorithm Recolor (if a non blank color has been

sampled). Now for each i ≥ 1, we note that the ranks of all the vertices in Nold(vi) :=

N(vi) ∩ (∪j<iN(vj) ∪ {v0}) have already been sampled, and then we only need to sample

(independently and uniformly at random from [0, 1]) the ranks for all vertices in Nnew(vi) :=

N(vi) \Nold(vi). In this case, we say that the ranks of vertices in Nnew(vi) are sampled when

we are exploring vi. Then we will choose vi+1 in the algorithm Recolor (if a non blank

color has been sampled). We iterate the above process until Recolor has sampled a blank

color.

For any i, we call Nnew(vi) the free neighbors of vi with respect to v0, v1, · · · , vi−1. In

particular, Nnew(v0) = N(v0) and N(vi) = Nnew(vi)∪̇Nold(vi). Now a key observation is

that

(⋆) for any vertex vi, it holds that Lvi,new (as defined in the algorithm SetColor(vi)) is

entirely determined by the ranks of the vertices Nnew(vi) and is independent of the

randomness for sampling ranks of Nold(vi).
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This is true since Lvi,new contains all the neighbors of vi with ranks less than r(vi) and have

not been visited so far: for any vertex in Nold(vi), either its rank is higher than vi, or its

rank is less than vi and it has been marked as visited before we invoke SetColor(vi).

We first prove the first part of the lemma. We assume for now that r(v0) is fixed and we

denote by R(ij) the randomness of sampling ranks for vertices in Nnew(vij
). We will prove

by induction on the index j that

ER(ij)[r(vij+1)] ≤ r(v0)/2j and ER(ij)[|Lvij
,new|] ≤ (r(v0) ·∆)/2j−1. (4)

Note that this holds for j = 0 since i0 = 0, r(v1) ≤ r(v0), Lvi0
,new = Lv0

, and ER(0)[|Lv0
|] =

r(v0) · |N(v0)| ≤ r(v0) ·∆. Next we assume it holds for j−1, and prove it also holds for j. By

the definition of the good vertex vij
, we know that vij+1 ∈ Lvij

, and that the rank of vij+1

is at most the median, denoted by mvij
,new, of all the ranks of vertices in Lvij

,new, which in

turn consists of all vertices in Nnew(vij
) with rank not larger than r(vij

). Furthermore, by

the observation (⋆), the rank of r(vij+1) depends only on r(vij
) and the ranks in Nnew(vij

).

This implies that

ER(ij)[r(vij+1)|r(vij
)] ≤ ER(ij)[mvij

,new|r(vij
)] ≤ r(vij

)/2,

where the last inequality follows from the fact that mvij
,new is the median of a set of numbers

chosen independently and uniformly at random from [0, 1], conditioned on that they are at

most r(vij
) (see e.g., Lemma 8.2 and 8.3 in [21]). Since r(vij

) ≤ r(v(ij−1)+1) in all cases and,

by the induction assumption, ER(ij−1)[r(v(ij−1)+1)] ≤ r(v0)
2j−1 , it holds that

ER(ij)[r(vij+1)] ≤ Er(vij
)[ER(ij)[r(vij+1)|r(vij

)]] ≤ 1

2
Er(vij

)[r(vij
)]

≤ 1

2
ER(ij−1)[Er(vij

)[r(vij
)|r(v(ij−1)+1)]] ≤ 1

2
ER(ij−1)[r(v(ij−1)+1)] ≤ r(v0)

2j
.

Furthermore, for any j ≥ 0, by the observation (⋆), Lvij
,new depends only on r(vij

) and

ranks in Nnew(vij
). Thus

ER(ij)[|Lvij
,new| |r(vij

)] ≤ r(vij
) · |Nnew(vij

)| ≤ r(vij
) ·∆.

This further implies that

ER(ij)[|Lvij
,new|] = Er(vij

)[ER(ij)[|Lvij
,new| |r(vij

)]] ≤ Er(vij
)[r(vij

)] ·∆ ≤ r(v0) ·∆
2j−1

.

Now let us no longer assume that r(v0) is fixed, but instead condition on the event that

r(v0) ≤ α. Then it follows that ER(ij)[r(vij+1)|r(v0) ≤ α] ≤ α
2j and ER(ij)[|Lvij

,new| |r(v0) ≤
α] ≤ α·∆

2j−1 .

Now by the definition of good vertices, we have |Lvij
,new| ≥ 1

10 |Lvij
|. This implies that

ER(ij)[|Lvij
| |r(v0) ≤ α] ≤ 10 · ER(ij)[|Lvij

,new| |r(v0) ≤ α] ≤ 10 · (α ·∆)/(2j−1).

This completes the proof of the first part of the lemma.

For the “Furthermore” part of the lemma, the analysis is similar as above. Now we start

with the assumption that r(v0), r(w)∀w ∈ N(v0) are fixed. Note that vi1
∈ N(v0), which

implies that r(vi1
) is also fixed. We will then prove by induction on the index j that

ER(ij)[r(vij+1)] ≤ (r(vi1
))/(2j−1) and ER(ij)[|Lvij

,new|] ≤ (r(vi1
) ·∆)/(2j−2).

In the case j = 1, the above two inequalities hold as r(vi1+1) ≤ r(vi1
) and ER(i1)[|Lvi1

,new|] =

r(vi1
) · |Nnew(vi1

)| ≤ r(vi1
) · ∆. The inductive step from case j − 1 to j can be then

proven in the same way as we proved Inequalities (4). Then instead of assuming that
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r(v0), r(w)∀w ∈ N(v0), we condition on the event that r(v0) ≤ α, r(w)∀w ∈ N(v0), which

directly implies that r(vi1
) ≤ α. Then it follows that ER(ij)[r(vij+1)|r(v0) ≤ α, r(w)∀w ∈

N(v0)] ≤ α
2j−1 and ER(ij)[|Lvij

,new| |r(v0) ≤ α, r(w)∀w ∈ N(v0)] ≤ α·∆
2j−2 . Finally, by the

definition of good vertices, |Lvij
,new| ≥ 1

10 |Lvij
|, which implies that ER(ij)[|Lvij

| |r(v0) ≤
α, r(w)∀w ∈ N(v0)] ≤ 10 · ER(ij)[|Lvij

,new| |r(v0) ≤ α, r(w)∀w ∈ N(v0)] ≤ 10α·∆
2j−2 . This

completes the “Furthermore” part of the lemma. ◭

Now we relate the total work to the work incurred by Step 3a. Note that the total work

Tv is proportional to the sum of sizes of all lower-ranked neighborhoods of v0, v1, . . . . We

will prove the following lemma, which implies that the total work of recoloring v is at most a

constant factor of the total work for recoloring all the good vertices on the recoloring path.

◮ Lemma 7. It holds that
∑

i |Lvi
| ≤ 3

∑
i : vi is good |Lvi

| = 3
∑

j |Lvij
|.

Proof. We first introduce the following definition. For any i and k < i, we let F(vk, vi)

denote the set of vertices whose ranks are less than r(vi), and are sampled when we are

exploring vk, i.e., F(vk, vi) = {w : w ∈ Nnew(vk), r(w) < r(vi)}. Note that as r(vi+1) < r(vi),

it always holds that for any 0 ≤ k < i, F(vk, vi+1) ⊆ F(vk, vi). Now we define the following

potential function Φ:

Φ(−1) := 0 and Φ(i) :=
∑

k:k≤i

|F(vk, vi+1)| ∀i ≥ 0, (5)

We have the following claim regarding the potential functions.

⊲ Claim 8. For any i ≤ 0, Φ(i) ≥ 0. Furthermore, if vi is a good vertex, then Φ(i)−Φ(i−1) ≤
|Lvi
|/2, otherwise Φ(i)− Φ(i− 1) ≤ −7|Lvi

|/20.

Proof. Note that if Step 3a in subroutine SetColor is executed at vertex vi, i.e., vi is

good, then the potential Φ(i) might be larger or smaller than Φ(i− 1). If vi is good then

|F(vi, v1+i)| ≤
|L<

vi,new
|

2 by the fact that r(v1+i) is at most the median rank in L<
vi,new.

Furthermore, it holds that

Φ(i) =
∑

k:k≤i

|F(vk, v1+i)| ≤
∑

k:k≤i−1

|F(vk, vi)|+ |F(vi, vi+1)|

≤ Φ(i− 1) + |L<
vi,new|/2 ≤ Φ(i− 1) + |Lvi

|/2

Now suppose that Step 3b is executed at vertex vi, i.e., vi is not good. Since v1+i is a vertex

from the lower half of the old lower neighbors of vi (i.e., v1+i ∈ L<
vi,old ⊆ ∪k<iF(vk, vi) ∩

Lvi,old), we have that to obtain the set ∪k<iF(vk, v1+i) from the set ∪k<iF(vk, vi), we need

to remove at least 1
2 |Lvi,old| ≥ 1

2 (1− 1
10 )|Lvi

| vertices. Furthermore, F(vi, v1+i) can contain

at most |Lvi,new| ≤ 1
10 |Lvi

| vertices. This implies that

Φ(i) =
∑

k:k≤i

|F(vk, v1+i)| =
∑

k:k≤i−1

|F(vk, v1+i)|+ |F(vi, v1+i)|

≤
∑

k:k≤i−1

|F(vk, vi)| −
1

2
(1− 1

10
)|Lvi

|+ 1

10
|Lvi
| = Φ(i− 1)− 7

20
· |Lvi

| ⊳

Now we distinguish three types of indices. We call an index i, a type I index, if Step 3a

occurred during Setcolor(v) and the Φ(i) − Φ(i − 1) ≥ 0. By Claim 8 it holds that for

such an index i, |Lvi
| ≥ 2(Φ(i) − Φ(i− 1)). We call i a type II index, if Step 3a occurred

during Setcolor(v) and the Φ(i)− Φ(i− 1) ≤ 0. It holds that for such an index i (as for

any index), |Lvi
| ≥ 0. We call i a type III index, if Step 3boccurred during Setcolor(v),

i.e. vi is not a good vertex. By Claim 8 it holds that for such an index i, Φ decreases and

|Lvi
| ≤ (Φ(i− 1)− Φ(i)) · 20

7
< 3 · (Φ(i− 1)− Φ(i)).
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Now we bound the sum of sizes of lower-ranked neighborhoods of vertices corresponding

to Step 3b. It holds that
∑

i: Step 3b

|Lvi
| ≤

∑

i: type III

3(Φ(i− 1)− Φ(i)) ≤
∑

i: type II or III

3(Φ(i− 1)− Φ(i))

≤
∑

i: type I

3(Φ(i)− Φ(i− 1)) ≤
∑

i: type I

3 · 1

2
|Lvi
| <

∑

i: type I

2|Lvi
|

where the third inequality follows from the fact that Φ starts at 0 and is non-negative at the

end, and, thus, the total decrease of Φ is at most its total increase. Thus, it follows that

∑

i

|Lvi
| =

∑

i: type I or II

|Lvi
|+

∑

i: type III

|Lvi
| ≤ 3

∑

i: type I or II

|Lvi
| = 3

∑

j

|Lvij
| ◭

Now we finish the proof of Lemma 4. By Lemma 7 and Lemma 6, it holds that

E[
∑

i

|Lvi
| |r(v) ≤ α] ≤ 3 · E[

∑

j

|Lvij
| |r(v) ≤ α] = O(α ·∆ ·

∑

j

1

2j
) = O(α∆).

Since the expected work Tv satisfies that Tv = O(
∑

i |Lvi
|), the first part of the lemma

follows. By the “Furthermore” part of Lemma 6, it holds that

E[
∑

i

|Lvi
||r(v) ≤ α, r(w)∀w ∈ N(v)]

≤3 · |Lv|+ 3 · E[
∑

j≥1

|Lvij
||r(v) ≤ α, r(w)∀w ∈ N(v)]

≤3 · |Lv|+ 3 · 10 · α ·∆ ·
∑

j

1

2j−2
= 3 · |Lv|+ O(α ·∆ ·

∑

j

1

2j
) = O(|Lv|) + O(α∆).

Then the “Furthermore” part of Lemma 4 follows from the fact that Tv = O(
∑

i |Lvi
|).

3 Lower Bound for Dynamic ∆-Colorability Testing: Proof of
Theorem 2

In [24] Patrascu and Demaine construct an n-node graph and show that there exists a sequence

S of T edge insertion, edge deletion, and query operations such that any data structure for

dynamic connectivity must perform Ω(T log n) cell probes to process the sequence, where

each cell has size O(log n). This shows that the amortized number of cell probes per operation

is Ω(log n).

We now show how to use this result to get a lower bound for the dynamic ∆-colorability

testing problem with ∆ = 2.

The graph G in the proof of [24] consists of a
√

n×√n grid, where each node in column

1 has exactly 1 edge to a node of column 2 and no other edges, each node in column i, with

1 < i <
√

n has exactly 1 edge to a node of column i− 1 and 1 edge to a node of column

i + 1 and no other edges, and each node in column
√

n has exactly 1 edge to a node of

column
√

n− 1 and no other edges. Thus, the graph consists of
√

n paths of length
√

n− 1

and the edges between column i and i + 1 for any 1 ≤ i <
√

n represent a permutation of

the
√

n rows. The sequence S consists of “batches” of O(
√

n) edge updates, replacing the

permutation of some column i by a new permutation for column i. Between the batches of

updates are “batches” of connectivity queries, each consisting of
√

n connectivity queries and

a parameter 1 ≤ k ≤ √n, where the j-th query for 1 ≤ j ≤ √n of each batch tests whether

the j-th vertex of column 1 is connected with a specific vertex of column k.
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Note that the maximum degree ∆ is 2. We now show how to modify each connectivity

query (u, v) such that it consists of a constant number of edge updates and one query whether

the resulting graph is ∆-colorable. The answer will be no iff u and v are connected. Thus,

in the resulting sequence S ′ the number of query operations equals the number of query

operations in S and the number of update operations is linear in the number of update and

query operations in S. Thus the total number of operations in S ′ is only a constant factor

larger than the number of operations in S, which, together with the result of [24], implies

that the amortized number of cell probes per operation is Ω(log n).

We now show how to simulate a connectivity query(u, v), where u is in column 1 and v is

in column k for some 1 ≤ k
√

n. We assume that k is even and explain below how to deal

with the case that k is odd. The instance for the dynamic ∆-colorability testing consists of G

with an additional node s added. To simulate a connectivity query(u, v) we (1) remove the

edge from v to its neighbor in column k + 1 if k <
√

n, (2) add the edges (u, s) and (v, s) and

then (3) ask a ∆-colorability query. Note that the resulting graph still has maximum degree

2. Furthermore, if u and v are connected in G then there exists a unique path of odd length

k − 1 between them. Together with the edges (u, s) and (v, s) and the assumption that k is

even, this results in an odd length cycle, so that the answer to the 2-colorability query is no.

If, however, u and v are not connected in G, then adding the edges (u, s) and (v, s) creates a

path of length 2 +
√

n− 1 + k − 1 =
√

n + k, but no cycle. Thus, the 2-colorability query

returns yes. Thus u and v are connected in G iff the 2-colorability query in the modified

graph returns no. Afterwards we remove the edges (u, s) and (v, s). Finally if k is odd, we

do not add a vertex s to G and to simulate the connectivity query(u, v) we simply insert the

edge (u, v). As before there exists an odd length cycle in the graph iff u and v are connected.

The rest of the proof remains unchanged.

This finishes the proof of Theorem 2.

◮ Remark 9. Let us recall Brooks’ theorem [9]: every connected graph admits a ∆-coloring,

except that it is an odd cycle or a complete graph. This implies that if the dynamic graph is

guaranteed to be connected, then we can answer ∆-colorability in constant time for ∆ ≥ 3

by checking if the graph is complete. However, since the graph is not necessarily connected,

it is unclear if the query can be answered in constant time for ∆ ≥ 3. In particular, testing

whether a dynamic graph is connected or not requires Ω(log n) time per operation [24].

4 Further Discussions

Initialization in O(n) Time. Now we describe how we can reduce the initialization time

from O(n∆) to O(n). Note that the only part that takes O(n∆) time is to initialize Cu(H)

for each vertex u, and the rest part of initialization already only takes O(n) time. The main

observation is that Cu(H) is only needed in the sampling subroutine of SetColor(u) and

even there only once the degree of a vertex is at least ∆/2. Since we make the standard

assumption that we start with an empty graph, this means that Ω(∆) insertions incident to

u must have happened. Thus, we build Cu(H) only once this is the case and amortize the

cost of building it over these previous Ω(∆) insertions.

To be more precise, we change the initialization phase as follows: We do not build Cu(H)

for any vertex u. Note that all other data structure are built as before, but they only have

size O(n) and only take time O(n) to build.

When an edge (u, v) is inserted, we check whether one of the endpoints, say u, of the

newly inserted edge reaches the degree ∆/2 and does not yet have the data structure Cu(H).

If so, we build Cu(H) and its hash table at this point in time O(∆). We amortize this cost
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over the ∆/2 updates that increased the degree of u to ∆/2, adding a constant amortized

cost to each of them. (If the other endpoint v also reaches the degree ∆/2, we handle it

analogously.)

Note that this does not affect the SetColor algorithm: as long as the degree of a vertex

u is less than ∆/2, SetColor(u) selects a new color by sampling in Step 2 from Bu. To

do so Cu(H) is not needed: In time O(|Lu|) time we build the lists and corresponding hash

tables for Mu(L) ∪ Uu(L), which together with the maintained list and hash table for Cu(H)

suffice for us to sample a color from Bu in O(1) time: We pick a random color from C and

test whether it belongs to Bu by making sure that it does not belong to Mu(L) ∪ Uu(L) or

Cu(H). The fact that the degree of u is at most ∆/2 implies that in expectation the second

randomly chosen color will belong to Bu.

Once Cu(H) and its hash table has been built, it is used in the way as we described before

and updated as in Section 2.1.

Extension to Work for Changing ∆. As we mentioned, we can extend our algorithm to

work with changing ∆. (A similar extension was also done in [5]). For any time stamp t ≥ 0,

we will maintain a global value ∆t := maxt
j=1 maxv∈V degj(v), where degj(v) denotes the

degree of v in the graph after j edge updates, that is, ∆ is the maximum degree seen so

far (till time t). Then we have a randomized algorithm for maintaining a (∆t + 1)-coloring.

More precisely, for any time stamp j, for each vertex v, we only need to guarantee that the

color χ(v) is chosen from {1, . . . , degj(v) + 1}. Then for each vertex v ∈ V , we let Cv(H) ⊆ C
consist of all the colors in {1, . . . , degj(v) + 1} that have not been assigned to any neighbor

u of v for u ∈ Hv. It is easy to see that Lemma 3, 4 and 5 still hold, and our randomized

dynamic coloring algorithm maintains a proper (∆t + 1)-coloring of the graph Gt at time t

with constant amortized update time, for any t ≥ 0.

Additionally we can keep a variable ∆ such that we rebuild the data structure every ∆n

operations as follows: We determine the list of current edges and set ∆ to be the maximum

degree of the current graph. Then we build the data structure for an empty graph and

insert all edges using the insert operation. This increases the running time by an amortized

constant factor and guarantees that ∆ is the maximum degree in the graph within the last

∆n updates.
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