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Abstract

This paper presents an architecture of a 2 Degrees of Freedom pneumatic robot which can be used as a haptic interface.
To improve the haptic rendering of this device, a nonlinear position and stiffness controller without force measurement
based on a Backstepping synthesis is presented. Thus, the robot can follow a targeted trajectory in Cartesian position
with a variable compliant behavior when disturbance forces are applied. An appropriate tuning methodology of the
closed-loop stiffness and closed-loop damping of the robot is given to obtain a desired disturbance response. The models,
the synthesis and the stability analysis of this controller are described in this paper. Two models are presented in
this paper, the first one is an accurate simulation model which describes the mechanical behavior of the robot, the
thermodynamics phenomena in the pneumatic actuators, and the servovalves characteristics. The second model is the
model used to synthesize the controller. This control model is obtained by simplifying the simulation model to obtain a
MIMO strict feedback form. Finally, some simulation and experimental results are given and the controller performances
are discussed and compared with a classical linear impedance controller.

Keywords: Backstepping controller design, damping control, electropneumatic robot, nonlinear control, stiffness
control.

1. INTRODUCTION

Many robotic applications require an interaction be-
tween the end-effector of the robot and an uncertain envi-
ronment. For instance, for human rehabilitation, for hap-
tic interfaces, or for prosthetic devices, human-robot inter-5

actions are necessary. When these interactions occur, most
of the time, a compliant behavior of the robot is required
in order to avoid human injuries or to avoid damaging the
robot itself. But on the other hand, these robots have to
be stiff for some tasks. Therefore it is necessary to con-10

trol the stiffness and damping of the robots. To ensure
a compliant behavior of a robot, various Variable Stiff-
ness Actuators (VSAs) or Variable Impedance Actuators
(VIAs) have been developed during last decades. These
actuators allow the equilibrium position and the stiffness15

to be tuned independently. Van Ham et al. (2009) present
a state of the art in the design of VSAs. Most of these ac-
tuators are designed with two internal motors and passive
compliant elements. An advantage of this design is that
the position and stiffness control of the VSA is obtained20

by controlling the position of two electric motors. The
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main drawbacks of this kind of VSAs are the cost and the
stiffness range. Indeed, these actuator are often expensive
because two electric actuators are needed to control one
Degree Of Freedom (DOF). The range of the stiffness is25

also often limited (Huang et al., 2013) due to the use of
passive stiffness components.

Another approach to obtain a compliant behavior for
the robot is based on control strategies such as stiffness
control (Salisbury, 1980), impedance control (Hogan, 1987)30

or hybrid force position control (Hayati, 1986). Most of
these strategies have been developed for electromechani-
cally actuated robots. The disadvantages of the electrome-
chanical actuation are that, in order to implement these
control strategies, a force/torque sensor is needed. This35

sensor is required to measure the environment interaction
which implies knowing where this interaction will occur.
Moreover, these sensors are often expensive and fragile.
If force/torque sensors are not used, the actuators have
to be backdrivable which mean reducing gear ratio and,40

consequently, the torque or force range of the robot.
On the other hand, due to their nonlinear behaviors,

pneumatic cylinders were traditionally only use as bi-stable
position actuators. The recent development of new ser-
vovalves and modern robust nonlinear control laws based45

on sliding mode and Backstepping allowed the develop-
ment of position or force controller. Thus, since pneu-
matic cylinders are inexpensive and have a good power to
weight ratio, there has been a recent surge of interest for
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this technology. If the independent force/stiffness or po-50

sition/stiffness nonlinear controls of one pneumatic actua-
tor have been addressed in literature (Shen and Goldfarb,
2007; Taheri et al., 2014; Abry et al., 2015), the extension
of these nonlinear control strategies to multi DOF has not
yet been studied. Thus, this article presents an nonlinear55

position/stiffness control strategy for a 2 DOF pneumatic
robot adapted from the Abry et al. position and stiffness
controller developed for a pneumatic cylinder (Abry et al.,
2015). The synthesis of this controller is based on the
Backstepping method and a gain tuning strategy which60

allows to reach a desired behavior of stiffness and damp-
ing.

The presented 2 DOF pneumatic robot is a part of a
haptic interface. This haptic device will be used to develop
a childbirth simulator. Herzig et al. (2014) and Herzig65

et al. (2015) give more details about the interest of us-
ing this kind of haptic interface to simulate a childbirth
delivery.

This paper is structured as follows: In section 2 the
hardware architecture of the 2 DOF actuated robot is70

given. Then the models used for simulations and for con-
trol synthesis are described respectively in sections 3 and
4. The controller synthesis based on the Backstepping
method is described in section 5. In section 6 response
to an external disturbance force and a strategy to ensure75

a desired closed-loop stiffness by control gains tuning are
discussed. Simulation results and a comparison with a
classical linear impedance controller without force sensor
are presented in section 7. Section 8 deals with the exper-
imental results to compare performances of the two con-80

trollers for position tracking and disturbance rejection. Fi-
nally, section 9 provides a conclusion and describes future
works.

2. ROBOT HARDWARE DESIGN

The 2 DOF robot studied in this paper is illustrated in85

Fig. 1. Its architecture is based on the BirthSIM (Herzig
et al., 2014, 2015) design, which is composed of two pneu-
matic cylinders. The main characteristics of these two
cylinders, respectively denoted cylinder 1 and cylinder 2
for the vertical one and the horizontal one, are given in ta-90

ble 1. The second cylinder has been chosen with a square
rod in order to prevent the inner rotation.

Table 1
Main characteristics of the cylinders

Reference DSNU-25-400-PPV-A-Q DSNU-25-200-PPV-A
Notation cylinder 2 cylinder 1
Position horizontal vertical
Stroke 400 mm 200 mm

Piston diameter 25 mm 25 mm
Theoretical force at

295 N 295 N
6 bar, advancing

Theoretical force at
247 N 247 N

6 bar, retracting

Rod geometry 9mm×9mm (square) ∅10mm (circle)

Fig. 1. 2 DOF actuated pneumatic haptic interface

Four Festo MPYE-5-M5-010-B proportional servovalves
supply the cylinder chambers. These servovalves control
the air mass flow rates which enter or exit the chambers.95

Their characterization map is given in 3.4. The pres-
sures inside the chambers are measured with Honeywell
40PC100G2A sensors. Moreover, the end-effector Carte-
sian position and orientation are measured using a Track-
star magnetic tracker. Finally, the controller board is a100

dSPACE MicroLabBox which is suitable for control proto-
typing. Fig. 2 illustrates the global hardware architecture
of the studied robot.

Pn2

U

Pp2

U
Pn1

U
Pp1

U

x
U

M

dSPACE
ycPp1 Pn1 Pp2 Pn2u1u2u4 u3 xc

Fig. 2. Hardware architecture of the 2 DOF pneumatic robot

It has to be noticed that to avoid some usual issues
concerning the compression of air in air tubes, the diame-105

ter of the air tubes have been chosen small and the length
of those tubes have been shortened to the maximum. In-
deed, this issue is known for generating delays and also
has an impact on the control strategies.

3. SIMULATION MODEL110

This section presents the models which are used to test
the control law in simulation. To describe the behavior of
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the robot, mechanical and thermodynamic models have to
be defined.

3.1. Kinematic model115

The Forward Kinematic Model (FKM) and Inverse Kine-
matic Model (IKM) provide the relations between the lo-
cation of the end-effector and the joint coordinates. In-
deed, the FKM gives the position and orientation of the
end-effector as a function of the joint variables whereas120

the IKM gives the joint variables as a function of the end-
effector location. To obtain these models, the Khalil and
Kleinfinger method has been used (Khalil and Kleinfinger,
1986). This method is particularly suitable for robots with
closed chains. Fig. 3 presents the kinematic scheme of the125

studied robot.

Table 2
Kinematic parameters of the 2 DOF pneumatic robot

j a(j) σ µ b d r γ α θ
1 0 0 0 0 0 0 0 0 θ1
2 1 1 1 0 0 r2 0 π

2 0

3 0 0 0 0 −d3 0 γ3 0 θ3
4 3 1 1 0 0 r4 0 −π

2 0

5 4 0 0 0 0 0 0 −π
2 θ5

6 1 2 0 0 −d6 0 −π
2 0 0

z3

x1

u3

z5

z4z2

z0,z1

d6

r2

r4

x4,x5,u6

d3

x3

x0,x6

O0,1

O2

Link 0

Link 1

Link 2 Link 3

Link 4

Fig. 3. Kinematic scheme of the 2 DOF pneumatic robot

The parameters defined with the Khalil and Kleinfinger
method are given in Table 2.

As the robot has a closed kinematic chain, joint vari-
ables can be separated in three categories. The active joint
variables, which are the variables of actuated joints, the
passive joint variables and the cut joint variables. Here,
the active joint vector qa, the passive joint vector qp, and
the cut joint vector qc are defined as

qa =

[

r4
r2

]

qp =

[

θ1
θ3

]

qc = θ5 . (1)

Then, by solving the constraint equations, the passive
joint and cut joint variables are computed as functions of
the active joint variables

θ1 = γ3 − arcsin

(

r24 − d23 − d26
2d3d6

)

θ3 = − arcsin

(

r24 + d23 − d26
2r4d3

)

θ5 = arcsin

(

r24 + d26 − d23
2r4d6

)

.

(2)

It can be noticed that in the working space of the robot,
θ1(r4) is bijective.130

The FKM can be obtained from the transformation
matrix which models the transformation from theR0 frame
into the R2 frame (cf. Fig. 3). As the studied robot is
two DOF actuated, only two Cartesian coordinates can be
controlled. xc and yc denote the coordinates of O2 (end-
effector center) in R0 frame. It can be deduced that

xc = r2 sin θ1
yc = −r2 cos θ1

(3)

where θ1 is given by (2).
To obtain the IKM, the Paul method (Paul, 1982) has

been applied. It leads to the following equations:

θ1 = atan2(xc,−yc)
r2 = −yc cos θ1 + xc sin θ1
r4 =

√

d23 + d26 − 2d3d6 sin(θ1 − γ3).
(4)

3.2. Dynamic Model

The dynamic behavior of the two DOF robot presented
in this paper can be modeled by the folowing Newton-Euler
formulation:

M(qa)q̈a +C(qa, q̇a) + D(q̇a) + G(qa) = fpneu + fe (5)

where M denotes the symetric and positive definite inertia
matrix, C is the centrifugal and Coriolis matrix, D is the
vector which contains dissipative terms due to friction, G is135

the gravity terms vector, fpneu, and fe are respectively the
vector of pneumatic forces and external forces generated by
the environment or the user in the case of haptic interface.

To simplify the dynamic model and to reduce the pa-
rameters which have to be identified, the following assump-140

tions have been taken:

• All the links are assumed to be rigid

• The friction in all revolute joints are neglected com-
pared to the friction of the pistons in cylinders (pris-
matic joints)145

• Only the end-effector mass is taken into account. It
is denoted M and is assumed to be a point mass at
O2. All moments of inertia are neglected.

3



With these assumptions, M and C matrices can be ob-
tained as follows:

M(qa) =





Mr22r4
d3d26 cos(θ1 − γ3) cos θ5

0

0 M





C(qa, q̇a) =














Mr2ṙ4

2ṙ2r4 + r2ṙ4

(

r24
(

r24 − d23 − d26
)

2d23d
2
6 cos

2(θ1 − γ3)
+ 1

)

d3d26 cos(θ1 − γ3) cos θ5

− Mṙ24r
2
4r2

d23d
2
6 cos

2(θ1 − γ3)















(6)

where cos(θ1 − γ3) and cos θ5 can be deduced from (2)

cos(θ1 − γ3) =

√

1−
(

r24 − d23 − d26
2d3d6

)2

cos θ5 =

√

1−
(

r24 − d23 + d26
2r4d6

)2

.

(7)

The friction model used takes into account the Coulomb
friction and the viscous friction. Thus, the parameters Fci

and Fvi denote respectively the Coulomb and viscous fric-
tion parameters of the cylinder i1. These parameters have
been identified experimentally with a dedicated test bench.
Furthermore, the cylinders used here are not symmetrical
so the pneumatic forces have to be modeled as sums of two
phenomena. Indeed Fpneui and Fpexti respectively repre-
sent the pneumatic force due to the pressure difference
between the two chambers and the force applied by the
atmospheric pressure on the rod of the cylinder. These
two forces are given by the following expressions:

Fpneui = PpiSpi − PniSni

Fpexti = Patm(Spi − Sni)
(8)

where Ppi and Pni are the absolute pressures in the P and
N chambers, Patm is the atmospheric pressure, and Spi150

and Sni are the effective piston areas in chambers P and
N.

Thus, the remaining elements of (5) which describe the
dynamic behavior of the robot are given by

D(q̇a) =

[

Fc1sgn(ṙ4) + Fv1ṙ4
Fc2sgn(ṙ2) + Fv2ṙ2

]

=

[

Ff1

Ff2

]

G(qa) =





−Mgr2 sin θ1
d6 cos θ5

−Mg cos θ1





fpneu =

[

Fpneu1 − Fpext1

Fpneu2 − Fpext2

]

fe =

[

Fe1

Fe2

]

(9)

where g is the Earth gravity coefficient, sgn is the sign
function, and Fe1 and Fe2 are respectively the forces ex-
erted by the environment on the piston of cylinder 1 and155

2.

1In the rest of this paper, the indices i refer to cylinder i with
i ∈ {1, 2}.

For the sake of clarity, a new couple of variable y1 and
y2 is defined as follows:

y1 = r4 − k1
y2 = r2 − k2

(10)

where k1 and k2 are positive constants. y1 ∈ [−l1/2; l1/2]
and y2 ∈ [−l2/2; l2/2] are respectively the cylinder 1 and 2
piston positions. l1 and l2 are the strokes of the cylinders.

3.3. Thermodynamic model160

In this section, the objective is to model the thermody-
namic behavior of a cylinder chamber. This kind of model
has been addressed in literature (Shearer, 1956). Fig. 4
shows a scheme of a pneumatic cylinder chamber. P de-
notes the air pressure in the chamber, V is the chamber165

volume, T , Tenv, and Ts are respectively the temperature
of the air inside the chamber, the temperature of the envi-
ronment and the temperature of the pressure source. qm
is the mass flow rate. It is defined as positive for an en-
tering air flow. δQ denotes the heat exchange between the170

air inside the chamber and the environment. It has to be
noticed that the heat exchange between the two chambers
is neglected. The assumptions made to model the thermo-

P V T

qm

Tenv

įQTs

Fig. 4. Model of a cylinder chamber

dynamic behavior of the chamber are as follows:

• Air is a perfect gas175

• Only the convection is taken into account to model
the heat exchanges

• Air leakages are neglected

With these assumptions, the states equations which
model the thermodynamic phenomena are























































dP

dt
=

γ

V

(

rTmqm − P
dV

dt

)

+
γ − 1

V
hSconv (Tenv − T )

dT

dt
=

T

PV

(

(1− γ)
dV

dt
P + r (γTm − T ) qm

+ hSconv (Tenv − T ) (γ − 1)

)

Tm = Ts, for q > 0
Tm = T, for q ≤ 0

(11)
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where γ is the heat capacity ratio of a perfect gas, r is
the specific gas constant of air, h is the heat transfer co-180

efficient, and Sconv is the convective heat transfer surface.
These equations have been written for a chamber. In the
case of the studied robot there are four distinct chambers,
so the thermodynamic variables will be distinguished with
the subscripts n1, p1, n2, and p2 which refer to the epony-185

mous chambers.

3.4. Servovalves model

In literature, two methods are described to model the
servovalves behavior. Both are based on an experimental
characterization. The first one consists in defining a func-190

tion (most of the time polynomial) fitting the behavior of
the servovalve (Bobrow and McDonell, 1998). The second
one consists in an experimental characterization map of
the servovalve. To simulate the behavior of the four servo-
valves of the studied system, the second method has been195

chosen. Fig. 5. shows the experimental characterization
map obtained. It gives the mass flow rate entering the
chamber for a given control voltage and a chamber pres-
sure. It can be noticed that once again the behavior of
these components is not linear.
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Fig. 5. Characterization map of a Festo MYPE5 servovalve

200

4. CONTROL MODEL

The model described in the previous section is not
adapted to apply the Multi-Input Multi-Output (MIMO)
Backstepping method. Indeed, the latter is based on a re-
cursive control design (Freeman and Kokotovic, 1993; Yao
and Tomizuka, 2001). To apply this method, it is suit-
able to rewrite the state model in a strict-feedback form.
The strict-feedback form MIMO n order system can be
described by


















ẋik = fik(x1, ..., xik , u1, ..., uk−1) + gik(x1, ..., xik ,

u1, ..., uk−1)xik+1 + δik,jkgik,k(x1, ..., xik ,

u1, ..., uk−1)uk

yk = hk(x1, ..., xjk)
(12)

where
k ∈ {1, ...,m}

ik ∈ {jk−1, ..., jk}

jk =
k
∑

b=1

nb

n =
m
∑

k=1

nk

xjk−1
, ..., xjk are the nk states of the kth block, u1, ..., um,

and y1, ..., ym define the m control inputs and outputs.
δik,jk denotes the Kronecker delta. Finally f , g, and h
denote nonlinear functions.205

To write the previous model in a strict-feedback form
and then synthesize the Backstepping controller, a change
of variables and some model reductions are needed. These
reductions can be justified by more assumptions. The first
step to reduce the model consists in simplifying the ther-
modynamics model. Indeed, common assumptions taken
to obtain a control model for a pneumatic cylinder are
that air inside the chambers of the cylinder follow a poly-
tropic behavior without heat exchange (Andersen, 1967).
The second assumption is that the temperature variation
of this air is neglected so T is assumed to be constant.
These two assumptions lead to replace (11) by



















dPpi

dt
=

k

SpiLpi(yi)
(rTqmpi − PpiSpivi)

dPni

dt
=

k

SniLni(yi)
(rTqmni + PniSnivi)

(13)

with

Lni(yi) =
li
2
− yi Lpi(yi) =

li
2
+ yi

where k is the polytropic coefficient chosen experimentally,
li is the stroke of the cylinder, r is the specific gas constant
for dry air, T is the ambient temperature, qmpi and qmni

are the respective mass flow rates defined as positive en-
tering the chambers P and N.210

Secondly, the A-T transform is applied to change the
variables of the system. This transform have been pre-
sented by Abry et al. (2015). It can be compared to the
Park transform which is used for electric motor control but
this transform is adapted to pneumatic actuators control.
For each cylinder, the A-T transform introduces two vir-
tual flow rates qmAi and qmTi which respectively are the
active and pressurization mass flow rates. These latter can
be defined as follows:

[

qmAi

qmTi

]

=
li
2







1

Lpi(yi)
− 1

Lni(yi)
1

Lpi(yi)

1

Lni(yi)







[

qmpi

qmni

]

. (14)

The aim of this change of variables is to define two new
states Fpneui the pneumatic force given in (8), and Kpneui

the pneumatic stiffness. The pneumatic stiffness is the

5



position derivative of the pneumatic force free response.
Thus

Kpneui = −dFpneui

dyi
= k

(

PpiSpi

Lpi(yi)
+

PniSni

Lni(yi)

)

. (15)

So the pneumatic model becomes






































dFpneui

dt
=

2krT

li
qmAi −Kpneuivi

dKpneui

dt
=

A1viyiKpneui −A2viFpneui −B1,iyiqmAi

Lpi(yi)Lni(yi)

+
B2qmTi

Lpi(yi)Lni(yi)
(16)

with

A1 = 2(k + 1) A2 = k(k + 1)

B1,i =
2k2rT

li
B2 = k2rT.

On the other hand, to simplify the dynamic model, the
first and second time derivatives of θ1 are linearized around
the equilibrium point denoted xe where y1 =

√

d23 − d26 −
k1, v1 = 0, and v̇1 = 0

θ̇1 ≃ ∂θ̇1
∂v1

∣

∣

∣

∣

∣

xe

v1 +
∂θ̇1
∂y1

∣

∣

∣

∣

∣

xe

y1

θ̇1 ≃ −v1
d6

θ̈1 ≃ ∂θ̈1
∂v̇1

∣

∣

∣

∣

∣

xe

v̇1 +
∂θ̈1
∂v1

∣

∣

∣

∣

∣

xe

v1 +
∂θ̈1
∂y1

∣

∣

∣

∣

∣

xe

y1

θ̈1 ≃ − v̇1
d6

.

(17)

It has to be noticed that this simplification is not needed to
obtain the MIMO strict-feedback form. This linearization
have been done in this paper in order to reduce the size of
the equation obtained.

Finally, it is assumed that the weight projection and
the centrifugal and Coriolis accelerations on the second
cylinder are neglected. Indeed, as this cylinder works
around an horizontal position, the weight influence on the
dynamic behavior can be neglected. Centrifugal and Cori-
olis accelerations can be neglected by assuming that the
first piston velocity and acceleration stay low. These as-
sumptions lead to rewrite the M, C, and G matrices given
in (6) and (9) as follows:

M(qa) =





Mr22
d26 cos θ5

0

0 M





C(qa, q̇a) =





2Mr2ṙ2ṙ4
d26 cos θ5

0





G(qa) =





−Mgr2 sin θ1
d6 cos θ5

0



 .

(18)

By defining the state and control vectors X and U as
follows:

X = [x1 x2 x3 x4 x5 x6 x7 x8]
T U = [u1 u2 u3 u4]

T (19)

where

x1 = y2 x5 = y1 u1 = qmA2

x2 = v2 x6 = v1 u2 = qmT2

x3 = Fpneu2 x7 = Fpneu1 u3 = qmA1

x4 = Kpneu2 x8 = Kpneu1 u4 = qmT1.

(20)

The state model can be written215















































ẋ1 = x2

ẋ2 = f2(x1, x2) + g2x3

ẋ3 = g3(x2)x4 + g3,1u1

ẋ4 = f4(x1, x2, x3, x4, u1) + g4,2(x1)u2

ẋ5 = x6

ẋ6 = f6(x1, x2, x5, x6) + g6(x1, x5)x7

ẋ7 = g7(x6)x8 + g7,3u3

ẋ8 = f8(x5, x6, x7, x8, u3) + g8,4(x5)u4

. (21)

It has to be noticed that the forces Fe1 and Fe2 are
not taken into account in the control model. Indeed these
forces are defined as disturbances and they are not mea-
sured. With these assumptions the state model given in
(21) respects the MIMO strict feedback form introduced220

in (12), so the control synthesis by Backstepping method
is now applicable.

5. CONTROLLER SYNTHESIS

The model obtained previously is now in a strict feed-
back form. The Backstepping method can be, therefore,
applied to synthesize the control laws. The presented
method is based on Abry et al. works (Abry et al., 2015)
but has been adapted to the 2 DOF robot presented in
section 2. The four virtual mass flow rates are the control
inputs. The two active mass flow rates qmA1 and qmA2 will
be designed to track the desired position of the pistons yd1
and yd2 respectively for cylinder 1 and 2. To define the
trajectory, the derivatives of these positions are needed,
thus yd1 and yd2 are required to be C3 function of time.
The time derivatives of yd1 and yd2 are defined as follows:

dyd1
dt

= vd1
d2yd1
dt2

= ad1
d3yd1
dt3

= jd1

dyd2
dt

= vd2
d2yd2
dt2

= ad2
d3yd2
dt3

= jd2.
(22)

The two pressurization mass flow rates qmT1 and qmT2 will
be designed to track respectively the desired pneumatic225

stiffnesses Kpneud1 and Kpneud2 trajectories, this two ref-
erence trajectories must be C1 functions of time.
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5.1. Cylinder 2 position tracking

Step 1: The cylinder 2 position tracking error z1 is
defined as

z1 = y2 − yd2. (23)

The open loop dynamics of z1 is given by

ż1 = v2 − vd2 (24)

where v2 is seen as a virtual input. The latter is chosen as

v∗2 = vd2 − C1z1 (25)

where C1 is a strictly positive constant.
Step 2: the cylinder 2 velocity tracking error z2 is

defined as
z2 = v2 − v∗2 . (26)

The closed-loop dynamics of the cylinder 2 position er-
ror and the open-loop dynamics of the velocity error are
respectively

ż1 = z2 − C1z1

ż2 =
Fpneu2 − Fpext2 − Ff2

M
− ad2 + C1ż1

(27)

where Fpneu2 is assumed to be a virtual input. It is chosen
as

F ∗pneu2 = Fpext2 + Ff2 +M
(

ad2 + z1
(

C2
1 − 1

)

−z2 (C1 + C2))
(28)

where C2 is a strictly positive constant.230

Step 3: the cylinder 2 pneumatic force tracking error
z3(t) and its integral are defined as

z3 = Fpneu2 − F ∗pneu2 z3i =
∫

z3dt. (29)

So the closed-loop dynamic of z2 error and the open-loop
dynamic of z3 are given by

ż2 =
z3
M

− z1 − C2z2

ż3 = Ḟpneu2 − b2
Fpneu2 − Fpext2 − Ff2

M
−M

(

jd2

+
(

C2
1 − 1

)

(z2 − C1z1)−
( z3
M

− z1

− C2z2

)

(C1 + C2)
)

.

(30)

The first real control input qmA2 is designed as follows:

qmA2 = f0 + f1z1 + f2z2 + f3z3 + f4z3i (31)

with

f0 =
l2 (b2 (Fpneu2 − Fpext2 − Ff2) +MKpneu2v2)

2MkrT

+
l2Mjd2
2krT

f1 =
Ml2

(

2C1 + C2 − C3
1

)

2krT

f2 =
l2
(

M2
(

C2
1 + C1C2 + C2

2 − 1
)

− 1
)

2MkRT

f3 = − l2 (C1 + C2 + C3)

2krT

f4 = −Ki3l2
2krT

where C3 and Ki3 are strictly positive constants. z3i error
is added in order to eliminate the steady state error of
Fpneu2. Then a Lyapunov function candidate, denoted V1,
is choosen as

V1 =
z21
2

+
z22
2

+
z23
2

+Ki3
z23i
2
. (32)

Using (27), (30), and (31), the derivative can be computed

V̇1 = −C1z
2
1 − C2z

2
2 − C3z

2
3 . (33)

5.2. Cylinder 2 pneumatic stiffness tracking

Step 4: the cylinder 2 pneumatic stiffness error z4 is
defined as

z4 = Kpneu2 −Kpneud2. (34)

The open-loop dynamic of this error is given by

ż4 =
A1v2y2Kpneu2 −A2v2Fpneu2 −B1,2y2qmA2

Lp2(y2)Ln2(y2)

+
B2qmT2

Lp2(y2)Ln2(y2)
− K̇pneud2.

(35)

The second real input qmT2 is designed as follows:

qmT2 =
K̇pneu2 − C4z4

B2
Lpi(yi)Lni(yi) +

A2v2Fpneu2

B2

−A1v2y2Kpneu2

B2
+

2y2qmA2

l2
(36)

where C4 is a strictly positive constant. Due to the partic-
ular form of the model, it can be noticed that this input
depends on qmA2 the previous input designed during the
first step. Then a second Lyapunov function candidate V2

is chosen as

V2 =
z24
2
. (37)

By substituting qmT2 with the expression obtained in (36),
the time derivative of V2 is

V̇2 = −C4z
2
4 . (38)

5.3. Cylinder 1 position tracking

Step 5: As for the cylinder 2 the cylinder 1 position
and velocity errors, respectively z5 and z6 are defined as

z5 = y1 − yd1
z6 = v1 − v∗1

(39)

where v∗1 is a virtual control. The open-loop dynamic of
z5 is given by the equation

ż5 = v1 − vd1. (40)

Then the virtual control v∗1 is designed as

v∗1 = vd1 − C5z5 (41)
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where C5 is a strictly positive constant. Thus the closed-
loop dynamic of the cylinder 1 piston position obtained is
given by

ż5 = z6 − C5z5. (42)

Step 6: The tracking error dynamic of the cylinder 1
piston position can be written as follows:

ż6 =
d6

y2 + k2

(

g sin θ1 −
d6 cos θ5

M(y2 + k2)
(Ff1 + Fpext1

−Fpneu1)

)

− v1v2
y2 + k2

− ad1 + C5ż5

(43)

where Fpneu1 is assumed to be a virtual input and is chosen
as

F ∗pneu1 = Fpext1 + Ff1 +
M(y2 + k2)

2

d26 cos θ5

(

ad1 + (C2
5

−1)z5 − (C5 + C6)z6) +
Mv1v2(y2 + k2)

d26 cos θ5

−Mg sin θ1(y2 + k2)

d6 cos θ5

(44)

where C6 is a strictly positive constant.
Step 7: the pneumatic effort tracking error z7 is de-

fined as
z7 = Fpneu1 − F ∗pneu1. (45)

The closed-loop dynamic of z6 and respectively the open-
loop of z7 are given by

ż6 =
d26 cos θ5

M(y2 + k2)2
z7 − z5 − C6z6

ż7 = Ḟpneu1 − Ḟ ∗pneu1.
(46)

To simplify the expression, Ḟ ∗pneu1 is not given here but in
appendix Appendix A235

The design of the third real control qmA1 is given by

qmA1 =
l1

2krT

(

Ḟ ∗pneu1 +Kpneu1v1 − C7z7 −Ki7z7i

− d6 cos θ5
M(y2 + k2)2

z6

) (47)

where C7 and Ki7 are strictly positive constants. z7i is
the integral of z7 error and is given by z7i =

∫

z7dt. This
integral error is added in order to eliminate the steady
state error of Fpneu1. Then a Lyapunov function candidate
denoted V3 is choosen as

V3 = C5
z25
2

+ C6
z26
2

+ C7
z27
2

+Ki7
z27i
2
. (48)

By using the results obtained in (42), (46), and (47) The
derivative of this function is

V̇3 = −C5z
2
5 − C6z

2
6 − C7z

2
7 . (49)

5.4. Cylinder 1 pneumatic stiffness tracking

Step 8: The cylinder 1 pneumatic stiffness tracking
error z8 is defined as

z8 = Kpneu1 −Kpneud1. (50)

The open-loop dynamic of z8 is given by its time derivative

ż8 =
A1v1y1Kpneu1 −A2v1Fpneu1 −B1,1y1qmA1

Lp1(y1)Ln1(y1)

+
B2qmT1

Lp1(y1)Ln1(y1)
− K̇pneu1.

(51)

Then the last real control is chosen as follows:

qmT1 =
K̇pneu1 − C8z8

B2
Lp1(y1)Ln1(y1) +

A2v1Fpneu1

B2

−A1v1y1Kpneu1

B2
− 2y1qma1

l1
(52)

where C8 is a strictly positive constant. Finally a last
Lyapunov function is chosen

V4 =
z28
2
. (53)

Using (52), its derivative can be computed

V̇4 = −C8z
2
8 . (54)

5.5. Stability analysis

Using the Backstepping method, the four controls qmA1,
qmT1, qmA2, and qmT2 have been designed in order to en-
sure the closed-loop global asymptotic convergence of the
positions and pneumatic stiffnesses of cylinders 1 and 2
tracking errors. Indeed, the following Lyapunov candidate
is chosen for the whole system:

V = V1 + V2 + V3 + V4. (55)

It can be noticed that V is positive definite. Its time
derivative can be deduced from (33), (38), (49), (54)

V̇ = −
8
∑

i=1

Ciz
2
i . (56)

As the time derivative of V is negative definite the Lya-
punov theory ensures the global asymptotic convergence
of the system.240

6. DISTURBANCE REJECTION AND CLOSED-

LOOP STIFFNESS

The controller synthesis method has been chosen be-
cause Abry et al. have shown that the tuning of some gains
allows to control the system disturbance response (Abry
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et al., 2015). Indeed, it is possible to tune the closed-
loop stiffness and damping of each actuator by adapting
the control gains. It is important to distinguish the pneu-
matic stiffness and the closed-loop stiffness. Indeed, the
pneumatic stiffness described in (15) is a state of the sys-
tem. This state represents the actuator natural tendency
to counteract an external effort applied on the piston. This
response depends on the piston position but also on the
chambers pressures. On the other hand, the closed-loop
stiffness describe how the controlled actuator will react
to a position error due to an external force or disturbance.
Thus for the two pneumatic actuators the closed-loop stiff-
nesses can be expressed as

Kcl2 =
dFe2

dz1

Kcl1 =
dFe1

dz4

(57)

with z1 = y1−yd1 et z4 = y2−yd2. Fe1 and Fe2 are respec-
tively the external or disturbance forces apply on cylinder
1 and 2. By assuming that the disturbance rejection is
quasi-static, the external forces become

Fe2 = −(Fpneu2 − Fpext2 − Ff2)

Fe1 = Ff1 −
M(y2 + k2)

d6 cos θ5

(

g sin θ1 −
v1v2
d6

)

−Fpneu1 + Fpext1.

(58)

Then, thanks to the integral actions introduced in (31) and
(47) the pneumatic efforts z3 et z7 converge quickly to zero.
Therefore, it can be assumed that Fpneu1 = F ∗pneu1 and
Fpneu2 = F ∗pneu2. Thus, (57) can be expressed as follows:

Kcl2 = −M
d
(

ad2 + z1
(

C2
1 − 1

)

− z2 (C1 + C2)
)

dz1

Kcl1 = −
d

(

M(y2 + k2)
2

d26 cos θ5

(

ad1 + (C2
5 − 1)z5

)

)

dz5

+

d

(

M(y2 + k2)
2

d26 cos θ5
(C5 + C6)z6

)

dz5
.

(59)

By taking into account that z2 = v2 − vd2 + C1z1 et z6 =
v1 − vd1 + C5z5, and neglecting the variation of cos θ5 in
Kcl2

Kcl2 = M(C1C2 + 1)

Kcl1 =
M(y2 + k2)

2

d26 cos θ5
(C5C6 + 1).

(60)

Identically, the closed-loop dampings of the two cylinders
can be defined as

Bcl2 =
dFe2

dṽ2

Bcl1 =
dFe1

dṽ1

(61)

with ṽi = vi − vdi. After simplifications, the closed-loop
dampings are given by

Bcl2 = M(C1 + C2)

Bcl1 =
M(y2 + k2)

2

d26 cos θ5
(C5 + C6).

(62)

By solving the equations (60) and (62) for desired closed-
loop stiffnesses and dampings, C1, C2, C5, and C6 can be
computed

C1 =
Bcl2 +

√

B2
cl2 − 4M (Kcl2 −M)

2M

C2 =
Bcl2 −

√

B2
cl2 − 4M (Kcl2 −M)

2M

C5 = d26 cos θ5
Bcl1 +

√
∆

2M(y2 + k2)2

C6 = d26 cos θ5
Bcl1 −

√
∆

2M(y2 + k2)2

(63)

with

∆ = B2
cl1 − 4

M(y2 + k2)
2

d26 cos θ5

(

Kcl1 −
M(y2 + k2)

2

d26 cos θ5

)

.

It can be noticed that the values of C1 and C2, and
respectively C5 and C6 are interchangeable. Moreover, to
ensure stability C1, C2, C5, and C6 have to be strictly
positive. Therefore, the following condition are necessary

Kcl1 >
M(y2 + k2)

2

d26 cos θ5
Kcl2 > M

Bcl1 ≥ 2

√

M(y2 + k2)
2

d26 cos θ5
(Kcl1 −

M(y2 + k2)
2

d26 cos θ5
)

Bcl2 ≥ 2
√

M(Kcl2 −M).

(64)

The presented method is used to tune some of the
control gains in order to set the closed-loop stiffness and
damping of each actuator. Most of the time, the part
which will interact with the environment is the end-effector.
So, in order to tune the equivalent stiffness of the end-
effector in Cartesian space Kclx and Kcly, the closed-loop
stiffnesses Kcl1 and Kcl2 have to be computed. To do so
it is necessary to introduce the kinematic Jacobian matrix
denoted J(y1, y2).

[

dxc

dyc

]

= J(y1, y2)

[

dy1
dy2

]

(65)

where dxc and dyc are respectively the Cartesian end-
effector positions xc and yc differentials.

By assuming that the only disturbances applied on the
cylinders are the result of a disturbance applied on the
end-effector, because of the force velocity duality it comes

[

Fe1

Fe2

]

= JT

[

Fex

Fey

]

. (66)
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Fig. 6. Architecture of the Backstepping position and stiffness controller

The equivalent closed-loop stiffnesses are obtained by com-
puting the following equations:

Kcl1 =

[

1
0

]T

JT

[

Kclx 0
0 Kcly

]

J

[

1
0

]

Kcl2 =

[

0
1

]T

JT

[

Kclx 0
0 Kcly

]

J

[

0
1

]

.

(67)

The global architecture of the controller is shown on Fig.245

6.

7. SIMULATION RESULTS

The aim of this section is to compare the performances
of the control law defined in section 5 with a classical linear
impedance controller (see Fig. 7). Indeed, two simulations250

with different objectives are presented in the following sub-
sections. These simulations have been obtained using the
simulation model presented in the section 3. The first sim-
ulation have been set in order to compare the accuracy of
the controllers while tracking desired position and pneu-255

matic stiffness trajectories. The second simulation have
been done to illustrate the controllers ability to reject dis-
turbances with the desired stiffness behavior.

The chosen parameters for the simulation have been
identified on the BirthSIM robot (Herzig et al., 2014, 2015)260

and are presented in table 3.
It can be noticed that for all simulations presented in

this paper, the control gains C3, C4, Ki3, C7, C8, and Ki8

which are not dependent of the closed-loop stiffness and
damping tuning are set to the following constant values:265

C3 = 150, C4 = 200, Ki3 = 1500, C7 = 150, C8 = 200 ,
Ki8 = 1500.

7.1. Position and pneumatic stiffness tracking

In this simulation, the objective is to compare the track-
ing performances of desired trajectories in position and270

Table 3
Robot parameters

Mechanical parameters

M 2 kg Sp1 4.91× 10−4 m2

g 9.81 m.s−2 Sn1 4.12× 10−4 m2

Fc1 15 N Sp2 4.91× 10−4 m2

Fv1 50 N.s.m−1 Sn2 4.10× 10−4 m2

Fv2 50 N.s.m−1 d3 644× 10−3 m

Fc2 15 N d6 477.5× 10−3 m

l1 0.2 m2 k1 457× 10−3 m

l2 0.4 m2 k2 250× 10−3 m
γ5 0.7401 rad

Thermodynamic parameters

r 287 J.kg−1.K−1 Tenv 298 K
γ 1.4 SI Patm 105 Pa

pneumatic stiffness of both controllers. The following po-
sition trajectories have been chosen as xcd(t) = 0.3+0.004t
and ycd(t) = −0.03 + 0.025 sin(500xct(t)). The pneumatic
stiffness trajectory of each actuator has been defined as
a succession of random steps. The transition between275

these steps have been smoothed with tanh function to re-
spect the C1 continuity for Kpneud1 and Kpneud2. The
initial conditions are xc(0) = 0.281 m, yc(0) = −0.010
m, Kpneu1(0) = 1091 N/m, and Kpneu2(0) = 540 N/m.
Fig. 8 shows the results of the position and pneumatic280

stiffness tracking. For this simulation, the closed-loop
stiffnesses and dampings have been set to constant values
Kclx(t) = 2000 N/m, Kcly(t) = 2000 N/m, Bcl1(t) = 300
N.s/m, and Bcl2(t) = 400 N.s/m.

Fig. 8a and Fig. 8b show that the targeted Cartesian285

positions and pneumatic stiffnesses are reached relatively
quickly for both controllers. According to the Fig. 8c the
Backstepping controller is more accurate than the linear
impedance controller, in particular on the Cartesian y axis.
Indeed, the Backstepping controller takes into account a290
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Fig. 8. Position and pneumatic stiffness tracking simulation results. The bs subscripts refer to the Backstepping position and stiffness
controller whereas cimp subscripts refer to the linear impedance controller.

part of the nonlinear inertial dynamic whereas the linear
impedance controller does not. Concerning the tracking
performances of pneumatic stiffnesses trajectories, both
controller have similar accuracy. Finally Fig. 8d illustrates
the motion of the end-effector in the Cartesian plane and295

the robot workspace.

7.2. Disturbance rejection

The aim of the second simulation is to show the behav-
ior of the two DOF robot and the controller when submit-
ted to a disturbance. Thus, the references of Cartesian po-300

sitions and pneumatic stiffnesses have been set to constant
values which are xcd(t) = 0.350 m, ycd(t) = −5× 10−3 m,
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Fig. 9. Disturbance rejection simulation results. The bs subscripts refer to the Backstepping position and stiffness controller whereas cimp

subscripts refer to the linear impedance controller.

Kpneud1 = 6000 N/m, and Kpneud2 = 3000 N/m. Dur-
ing the simulation, disturbance forces are applied on the
robot end-effector. These forces denoted Fex, and Fey are305

respectively applied along the Cartesian x and y axis. The
two disturbances are repeated 6 times during the simula-
tion with a 90◦ phase shift between them. For the three
first disturbances, the closed-loop dampings Bcl1 and Bcl2

are set respectively at 250 N.s/m and 500 N.s/m whereas310

the closed-loop stiffnesses vary gradually between each dis-
turbance from 1500 N/m up to 3000 N/m. Then, for the
three last disturbances, the sequences of closed-loop stiff-
nesses are repeated whereas the closed-loop dampings are
doubled. These settings are illustrated on Fig. 9a.315

According to the Fig. 9b, the behaviors expected for
closed-loop stiffnesses and dampings tuning are successful.
Indeed, increasing the closed-loop stiffness reduces the dis-
placement due to a disturbance forces and increasing the
damping increases the settling time of this displacement.
Fig. 9c shows the position of the end-effector in Cartesian
plane. On this figure, the first second which corresponds
to the stabilization time has been removed. Finally, the
Fig. 9d illustrates the joint position. On this figure the
expected joint positions y1exp and y2exp, xcexp and ycexp
are obtained by adding the estimated displacement due to

perturbations to the targeted trajectories. Thus

y1exp = yd1 +
Fe1

Kcl1
y2exp = yd2 +

Fe2

Kcl2

xcexp = xcd +
Fex

Kclx
ycexp = ycd +

Fey

Kcly

.

(68)

This simulation shows that the performances of the
closed loop stiffness tuning are similar for both controller.
Table 4 compares the Cartesian closed-loop stiffnesses mea-
sured, denoted Kclxm and Kclym for the the stiffness on
x and y Cartesian axis respectively, with the Cartesian320

closed-loop stiffnesses set, denoted Kclx and Kcly, for each
direction of force disturbance. This table also gives the
corresponding relative errors of Cartesian stiffnesses, de-
noted EKclx

and EKcly
. According to the results, the per-

formances to reject the disturbances with a desired closed325

loop stiffness are nearly the same for both controllers.
It can be noticed that even if the joint positions reach

the expected positions, the Cartesian closed-loop stiffnesses
are not necessary obtained. This phenomenon can be
explained by two reasons, the first one is that the non-330

diagonal elements of the joint stiffness matrix have not
been taken into account in the controller synthesis. The
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Table 4
Cartesian closed-loop stiffnesses errors
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e
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o
n

↑

Kcly [N/m] 1500 2250 3000
∆yc[mm] 33.08 22.29 16.58

Kclym[N/m] 1511 2243 3001
EKcly

[%] 0.77 -0.30 0.04

←

Kclx[N/m] 1500 2250 3000
∆xc[mm] -33 -22 -16.6

Kclxm[N/m] 1515 2273 3012
EKclx

[%] 1.01 1.01 0.40

տ

Kcly [N/m] 1500 2250 3000
∆yc[mm] 36.75 23.64 17.5

Kclym[N/m] 1361 2115 2857
EKcly

[%] -9.30 -6.00 -4.76

Kclx[N/m] 1500 2250 3000
∆xc[mm] -32.8 -22.1 -16.4

Kclxm[N/m] 1524 2262 3049
EKclx

[%] 1.63 0.55 1.63
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↑

Kcly [N/m] 1500 2250 3000
∆yc[mm] 33.7 22.29 16.66

Kclym[N/m] 1483 2243 3001
EKcly

[%] -1.09 -0.30 0.04

←

Kclx[N/m] 1500 2250 3000
∆xc[mm] -33 -22 -16.6

Kclxm[N/m] 1515 2273 3012
EKclx

[%] 1.01 1.01 0.40

տ

Kcly [N/m] 1500 2250 3000
∆yc[mm] 37.06 23.85 17.5

Kclym[N/m] 1349 2096 2857
EKcly

[%] -10.06 -6.83 -4.76

Kclx[N/m] 1500 2250 3000
∆xc[mm] -32.8 -22 -16.4

Kclxm[N/m] 1524 2273 3049
EKclx

[%] 1.63 1.01 1.63

second reason is that the classical transformation used to
compute the joint stiffness matrix from the Cartesian stiff-
ness matrix (c.f. (67)) is not conservative, so this trans-335

formation is valid only when the robot is at its unloaded
equilibrium. Some conservative transformations have been
studied (Chen and Kao, 2000) but these transformations
need to measure or observe the disturbance force value.
The results show that the bigger the position errors are,340

the bigger the Cartesian closed-loop stiffness errors are.

8. EXPERIMENTAL RESULTS

This section gives some experimental results to com-
pare the two controllers presented in this paper. As in the
section 7, this section will be divided into two subsections.345

The section 8.1 gives the results for a reference position
tracking. The section 8.2 illustrates the behavior of the
system when a disturbance force is applied.

8.1. Position tracking

For this experiment, the targeted trajectory is a circle350

in the Cartesian space. Indeed, the Cartesian coordinate of
the end-effector references are defined as follows: xcd(t) =
0.45 + 0.04 cos(2t/6) and ycd(t) = 0.025 + 0.04 sin(2t/6).
The closed loop stiffnesses and dampings are set as Kclx =
3000 N/m, Kcly = 3000 N/m, Bcl1 = 300 N.s/m and355

Bcl2 = 300 N.s/m. Fig. 10 shows the result for the posi-
tion tracking for each controllers. Fig. 11 gives the posi-
tion error.
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Fig. 10. Experimental Cartesian position tracking
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Fig. 11. Experimental tracking errors

According to those figures, the behavior expected on
the y axis is obtained. Indeed, the oscillations of the po-360

sition errors due to the inertial dynamic can be observed.
And for the y axis, the Backstepping position and stiffness
controller is more accurate than the impedance controller,
as expected with the simulation results in section 7.1. On
the other hand, it can be noticed that a stick and slip ef-365

fect occurred on the x axis. Indeed, for both controllers,
the horizontal cylinder piston is sometimes stuck by the
friction. This phenomenon is due to the 2 kg load added
to the end-effector. As shown on the figure 1 there is no
linear guide to distribute the load on the end-effector. As370

a consequence, the cylinder rod is bending which increase
a lot the frictions. To avoid that issue, a linear guide will
be added to the cylinder 2 in the future. It can be no-
ticed that the Coulomb friction model is not suitable to
model the stick and slip phenomenon. To increase the ac-375

curacy of the model, a LuGre friction model could replace
the Coulomb model (Armstrong-Hélouvry et al., 1994). As
expected in the previous section, the performances of both
controllers for position tracking on x axis are equivalent,
but the high peaks on the x axis for the Backstepping con-380

troller position error show that the latest is more disturbed
by the stick and slip phenomenon.

8.2. Disturbance rejection

As in the section 7.2, for this experiment, a constant
position reference is set and some disturbance forces are385
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applied on x and y axis. Those disturbances have been
applied manually. A NANO25 ATI force and torque sen-
sor have been added to the end-effector to measure the
disturbance forces applied. Due to the difficulty to apply
manually a constant force on both directions at the same390

time, it has been decided to keep the forces applied on
the two directions separately. The experiment has been
repeated 5 times for each controller at different position
references.

Fig. 12 and Fig. 13 illustrate one of the trials with395

Backstepping position and stiffness controller and one of
the trials with the impedance controller respectively. Fig.
12a and Fig. 13a give the disturbance forces applied and
the closed loop stiffness references for the two controllers
respectively. Fig. 12b and Fig. 13b show the time re-400

sponse of end-effector Cartesian coordinates to the distur-
bance forces. These figures show that the two controllers
reject the disturbance force as expected. The manually
applied disturbance forces are noisy. Due to this noise,
it is, unfortunately, impossible to conclude on the closed405

loop damping. It has to be noticed that the forces are ap-
plied directly to the 6 axis force and torque sensor. The x
component of the disturbance force measured when a force
on y axis is applied is due to the grabbing of the sensor.
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Fig. 12. Disturbance rejection experimental results for the
Backstepping controller.

Table B.6 and table B.7 give the results for each trial410

for the Backstepping position and stiffness controller and
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Fig. 13. Disturbance rejection experimental results for the
impedance controller.

the impedance controller respectively. A summary of the
results is given on table 5. Where Kclx and Kcly are the
stiffness references, Kclxm and Kclym are the average val-
ues of the stiffnesses computed from the five trials, EKclx

415

and EKcly
are the average values of the stiffness errors com-

puted from the five trials and finally σKclx
and σKcly

are
the standard deviations of the stiffnesses computed from
the five trials.

Table 5
Summary of the experimental results for the closed loop stiffness
tuning

C
o
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tr
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r
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st
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p
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g

D
ir
e
c
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o
n →

Kclx[N/m] 1000 2000 3000

Kclxm[N/m] 851 1748 2444

EKclx
[%] -14.9 -12.6 -18.5

σKclx
[N/m] 255.7 245.2 347.7

↓

Kcly [N/m] 1000 2000 3000

Kclym[N/m] 911 1764 2568

EKcly
[%] -8.9 -11.8 -14.4

σKcly
[N/m] 75.1 160.8 378.5

Im
p
e
d
a
n
c
e

D
ir
e
c
ti
o
n →

Kclx[N/m] 1000 2000 3000

Kclxm[N/m] 1002 1835 2921

EKclx
[%] 0.2 -8.2 -2.6

σKclx
[N/m] 234.7 494.3 847.8

↓

Kcly [N/m] 1000 2000 3000

Kclym[N/m] 997 1787 2885

EKcly
[%] -0.3 -10.6 -3.8

σKcly
[N/m] 182.0 307.9 1173.8
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Table 5 shows that the Impedance controller is, in av-420

erage more accurate than the Backstepping position and
stiffness controller for the closed loop stiffness tuning. On
the other hand, the standard deviation of the closed loop
stiffnesses obtained is smaller for the Backstepping con-
troller than for the impedance controller. That means that425

the Backstepping controller has a better repeatability on
the stiffness tuning than the impedance controller.

9. CONCLUSIONS AND FUTURE WORKS

In this study, a two DOF pneumatic robot design and
model are proposed. The assumptions and transforma-430

tions to synthesize a position controller with the Backstep-
ping method are provided. Then a strategy of gain tuning,
which leads to a closed-loop stiffness and damping control,
is presented. Finally, the performances of this controller
are illustrated with some simulation and experimental re-435

sults. These performances are discussed and compared to
a classical linear impedance controller with gravity com-
pensation. This simulation approach is generally used
to design a controller for pneumatic or hydraulic actu-
ator before experimental implementation (Smaoui et al.,440

2006).According to the simulation result, the Backstep-
ping position controller with the closed loop stiffness tun-
ing strategy is more accurate for the position tracking than
the linear impedance controller. Concerning, the perfor-
mances for the closed loop stiffness tuning, they are simi-445

lar for the two controllers. The experimental results have
confirmed those expectations. Indeed the Backstepping
position and stiffness controller is more accurate for the
position tracking in particular on the y axis, but this con-
troller is also more sensitive to stick and slip phenomenon.450

These results are in agreement with the experimental re-
sults given by Herzig et al. (2016) for a 1 DOF pneumatic
robot.

The performance of the presented controller can be im-
proved by adding a linear guide to the horizontal cylinder455

to avoid the bending of the cylinder rod. Another way to
improved the accuracy of the model and the controller for
the position tracking is adding a LuGre model which is
suitable to model the stick and slip phenomenon.

On the other hand, a way to improve the closed-loop460

stiffness accuracy of the controller is to use a stiffness ma-
trix transformation which is conservative. In order to do
that without adding a force sensor, the disturbances have
to be observed. So adding a robust observer for the exter-
nal disturbance force could be an interesting improvement465

the presented controller.
Finally, from the experiment results given in this paper,

the damping tuning cannot be analyzed. Indeed, in the
future, the robot will be coupled to an antagonist robot
which will apply the disturbance forces. This robot will470

allow disturbance forces without noise to be applied, but
also to study the behavior of the controller to sinusoidal
disturbances and then analyze the dynamic disturbance
rejection.

Appendix A. Calculation of the first pneumatic ef-475

fort virtual input time derivative

Ḟ ∗

pneu1 =
Mv2d

2

6
cos θ5 +M(y2 + k2)d26θ̇5

d4
6
cos2 θ5

[−gd6 sin θ1

+2v1v2 + (y2 + k2)
(

ad1 +
(

C2

5 − 1
)

z5 − (C5 + C6) z6
)]

+
M(y2 + k2)

d2
6
cos θ5

[

−gd6θ̇1 cos θ1 + 2

(
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(g sin θ1
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d6 cos θ5
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(
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−
v1v2
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+2v1

(
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(
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)
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(
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(A.1)

Appendix B. Experimental results for closed loop

stiffness tuning tables

Table B.6 and B.7 give the results for the closed loop
stiffness tuning for each trials for the Backstepping posi-
tion and stiffness controller and the impedance controller
respectively. In those tables Fex, Fey, are the average value
of the force on x axis and the average value of the force on
y axis, respectively, when the disturbance is applied on the
relative direction. ∆xc and ∆yc are the average values of
the displacement of the end-effector due to the disturbance
on respectively x and y axis, when the relative disturbance
is applied. Then the Cartesian closed-loop stiffnesses mea-
sured, denoted Kclxm and Kclym and the relative errors of
Cartesian stiffnesses, denoted EKclx

and EKcly
, are com-

puted as follows:

Kclxm =
Fex

∆xc

Kclym =
Fey

∆yc

EKclx
=

Kclxm −Kclx

Kclx

EKcly
=

Kclym −Kcly

Kcly

.

(B.1)
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Table B.6
Experimental results for closed loop stiffness tuning with the Backstepping position and stiffness controller

Trial 1 2 3 4 5

Kclx[N/m] 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000

Fex[N] 128.1 108 136 66.5 114.3 92.4 97 95.7 126.6 134 125.2 129.3 45.7 91 105.8

∆xc[mm] 119.2 65.8 47.8 94 63.9 46.1 119.5 69.2 49 117.7 62.9 49.4 87.2 46.9 48.9

Kclxm[N/m] 1074 1640.6 2845.8 707.8 1788.1 2005.3 811.3 1383.1 2585.2 1138.5 1988.8 2619.1 523.9 1938.3 2162.6

EKclx
[%] 7.4 -18 -5.1 -29.2 -10.6 -33.2 -18.9 -30.8 -13.8 13.9 -0.6 -12.7 -47.6 -3.1 -27.9

Kcly [N/m] 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000

Fey [N] -56.8 -68.2 -74.4 -63.5 -79.3 -77.2 -71.4 -73.1 -76.8 -63.1 -60.8 -74.3 -62.2 -63 -67.6

∆yc[mm] -72.8 -45 -37.9 -68.4 -45.2 -31 -73.4 -37.5 -26.4 -66.9 -34.5 -28.4 -66.9 -34.2 -23.7

Kclym[N/m] 780.1 1513.7 1964.4 928.6 1753.7 2494.1 971.9 1951.2 2912.5 943.7 1762.8 2613.5 929.1 1839.4 2855.2

EKcly
[%] -22 -24.3 -34.5 -7.1 -12.3 -16.9 -2.8 -2.4 -2.9 -5.6 -11.9 -12.9 -7.1 -8 -4.8

Table B.7
Experimental results for closed loop stiffness tuning with the impedance controller

Trial 1 2 3 4 5

Kclx[N/m] 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000

Fex[N] 151.4 181.3 185.3 154.2 169.5 227.3 100 108.9 119.9 98.4 102.8 160.2 116.1 147.2 142.9

∆xc[mm] 129.1 78.8 64.9 117.2 72.5 53.7 124.1 86.2 64.5 126.6 72.8 56.4 123.4 79 50.7

Kclxm[N/m] 1172.7 2301.6 2854.4 1315.7 2338.5 4234.7 805.8 1263.7 1858.9 777.1 1410.9 2841.8 940.7 1862.1 2817.3

EKclx
[%] 17.3 15.1 -4.9 31.6 16.9 41.2 -19.4 -36.8 -38 -22.3 -29.5 -5.3 -5.9 -6.9 -6.1

Kcly [N/m] 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000

Fey [N] -75.1 -64.4 -84.4 -65 -79.6 -83.6 -65.1 -68.3 -64.1 -41.8 -58 -64.4 -56.8 -51.9 -55.3

∆yc[mm] -65.4 -30 -20.2 -53.5 -38.5 -20.4 -76.8 -41.8 -25.9 -52.3 -34.9 -38.3 -58.5 -36.4 -27.7

Kclym[N/m] 1147.9 2145.8 4170.7 1216.1 2069.7 4092.8 847.4 1633.9 2478.4 800.2 1660.9 1680.3 971.4 1424.9 2000.5

EKcly
[%] 14.8 7.3 39 21.6 3.5 36.4 -15.3 -18.3 -17.4 -20 -17 -44 -2.9 -28.8 -33.3

References

Abry F, Brun X, Sesmat S, Bideaux E, Ducat C. Electropneumatic
cylinder backstepping position controller design with real-time
closed-loop stiffness and damping tuning. Control Systems Tech-
nology, IEEE Transactions on 2015;PP(99). doi:10.1109/TCST.490

2015.2460692.
Andersen B. The analysis and design of pneumatic systems. Wiley,

1967.
Armstrong-Hélouvry B, Dupont P, Canudas De Wit C. A survey of

models, analalysis tools and compensation methods for control of495

machines with friction. Automatica 1994;30(7):1083–138.
Bobrow J, McDonell B. Modeling, identification, and control of a

pneumatically actuated, force controllable robot. Robotics and
Automation, IEEE Transactions on 1998;14(5):732–42. doi:10.
1109/70.720349.500

Chen SF, Kao I. Conservative congruence transformation
for joint and cartesian stiffness matrices of robotic hands
and fingers. The International Journal of Robotics Re-
search 2000;19(9):835–47. doi:10.1177/02783640022067201.
arXiv:http://ijr.sagepub.com/content/19/9/835.full.pdf+html.505

Freeman R, Kokotovic P. Design of softer robust nonlinear control
laws. Automatica 1993;29(6):1425 –37. doi:http://dx.doi.org/
10.1016/0005-1098(93)90007-G.

Hayati S. Hybrid position/force control of multi-arm cooperating
robots. In: Robotics and Automation. Proceedings. 1986 IEEE510

International Conference on. volume 3; 1986. p. 82–9. doi:10.
1109/ROBOT.1986.1087650.

Herzig N, Moreau R, Leleve A, Pham M. Stiffness control of pneu-
matic actuators to simulate human tissues behavior on medi-
cal haptic simulators. In: 2016 IEEE International Conference515

on Advanced Intelligent Mechatronics (AIM). 2016. p. 1591–7.
doi:10.1109/AIM.2016.7576997.

Herzig N, Moreau R, Redarce T. A new design for the birthsim
simulator to improve realism. In: Engineering in Medicine and
Biology Society, 2014. EMBC 2014. Annual International Confer-520

ence of the IEEE. 2014. p. 2065–8.
Herzig N, Moreau R, Redarce T, Abry F, Brun X. Non linear po-

sition and closed loop stiffness control for a pneumatic actuated
haptic interface: the birthsim. In: 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2015. p.525

1612–8.

Hogan N. Stable execution of contact tasks using impedance control.
In: Robotics and Automation. Proceedings. 1987 IEEE Interna-
tional Conference on. volume 4; 1987. p. 1047–54. doi:10.1109/
ROBOT.1987.1087854.530

Huang Y, Vanderborght B, Van Ham R, Wang Q, Van Damme M,
Xie G, Lefeber D. Step length and velocity control of a dy-
namic bipedal walking robot with adaptable compliant joints.
Mechatronics, IEEE/ASME Transactions on 2013;18(2):598–611.
doi:10.1109/TMECH.2012.2213608.535

Khalil W, Kleinfinger J. A new geometric notation for open and
closed-loop robots. In: Robotics and Automation. Proceedings.
1986 IEEE International Conference on. IEEE; volume 3; 1986. .

Paul RP. Robot Manipulators: Mathematics, Programming, and
Control. MIT Press, 1982.540

Salisbury J. Active stiffness control of a manipulator in cartesian
coordinates. In: Decision and Control including the Symposium
on Adaptive Processes, 1980 19th IEEE Conference on. 1980. p.
95–100. doi:10.1109/CDC.1980.272026.

Shearer JL. Study of pneumatic processes in the continuous control545

of motion with compresses air part I. ASME Trans 1956;78:233–
42.

Shen X, Goldfarb M. Simultaneous force and stiffness control of a
pneumatic actuator. Journal of Dynamic Systems Measurement
and Control-Transactions 2007;129(4):425–34.550

Smaoui M, Brun X, Thomasset D. Systematic control of an elec-
tropneumatic system: integrator backstepping and sliding mode
control. Control Systems Technology, IEEE Transactions on
2006;14:905–13. doi:10.1109/TCST.2006.880183.

Taheri B, Case D, Richer E. Force and stiffness backstepping-555

sliding mode controller for pneumatic cylinders. Mechatronics,
IEEE/ASME Transactions on 2014;19(6):1799–809. doi:10.1109/
TMECH.2013.2294970.

Van Ham R, Sugar T, Vanderborght B, Hollander K, Lefeber D.
Compliant actuator designs. Robotics Automation Magazine,560

IEEE 2009;16(3):81–94. doi:10.1109/MRA.2009.933629.
Yao B, Tomizuka M. Adaptive robust control of {MIMO}

nonlinear systems in semi-strict feedback forms. Auto-
matica 2001;37(9):1305 –21. doi:http://dx.doi.org/10.1016/
S0005-1098(01)00082-6.565

16

http://dx.doi.org/10.1109/TCST.2015.2460692
http://dx.doi.org/10.1109/TCST.2015.2460692
http://dx.doi.org/10.1109/TCST.2015.2460692
http://dx.doi.org/10.1109/70.720349
http://dx.doi.org/10.1109/70.720349
http://dx.doi.org/10.1109/70.720349
http://dx.doi.org/10.1177/02783640022067201
http://arxiv.org/abs/http://ijr.sagepub.com/content/19/9/835.full.pdf+html
http://dx.doi.org/http://dx.doi.org/10.1016/0005-1098(93)90007-G
http://dx.doi.org/http://dx.doi.org/10.1016/0005-1098(93)90007-G
http://dx.doi.org/http://dx.doi.org/10.1016/0005-1098(93)90007-G
http://dx.doi.org/10.1109/ROBOT.1986.1087650
http://dx.doi.org/10.1109/ROBOT.1986.1087650
http://dx.doi.org/10.1109/ROBOT.1986.1087650
http://dx.doi.org/10.1109/AIM.2016.7576997
http://dx.doi.org/10.1109/ROBOT.1987.1087854
http://dx.doi.org/10.1109/ROBOT.1987.1087854
http://dx.doi.org/10.1109/ROBOT.1987.1087854
http://dx.doi.org/10.1109/TMECH.2012.2213608
http://dx.doi.org/10.1109/CDC.1980.272026
http://dx.doi.org/10.1109/TCST.2006.880183
http://dx.doi.org/10.1109/TMECH.2013.2294970
http://dx.doi.org/10.1109/TMECH.2013.2294970
http://dx.doi.org/10.1109/TMECH.2013.2294970
http://dx.doi.org/10.1109/MRA.2009.933629
http://dx.doi.org/http://dx.doi.org/10.1016/S0005-1098(01)00082-6
http://dx.doi.org/http://dx.doi.org/10.1016/S0005-1098(01)00082-6
http://dx.doi.org/http://dx.doi.org/10.1016/S0005-1098(01)00082-6

	INTRODUCTION
	ROBOT HARDWARE DESIGN
	SIMULATION MODEL
	Kinematic model
	Dynamic Model
	Thermodynamic model
	Servovalves model

	CONTROL MODEL
	CONTROLLER SYNTHESIS
	Cylinder 2 position tracking
	Cylinder 2 pneumatic stiffness tracking
	Cylinder 1 position tracking
	Cylinder 1 pneumatic stiffness tracking
	Stability analysis

	DISTURBANCE REJECTION AND CLOSED-LOOP STIFFNESS
	SIMULATION RESULTS
	Position and pneumatic stiffness tracking
	Disturbance rejection

	EXPERIMENTAL RESULTS
	Position tracking
	Disturbance rejection

	CONCLUSIONS AND FUTURE WORKS
	Calculation of the first pneumatic effort virtual input time derivative
	Experimental results for closed loop stiffness tuning tables

