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Nonlinear Position and Stiffness Backstepping Controller for a Two Degrees of
Freedom Pneumatic Robot

Nicolas Herzig®*, Richard Moreau®, Tanneguy Redarce®, Frédéric Abry®, Xavier BrunP®

%Dyson School of Design Engineering, Imperial College London, South Kensington, SW7 2AZ, London, United Kingdom
b Laboratoire Ampére UMR CNRS 5005, Université de Lyon, INSA-Lyon, F-69621 Villeurbanne Cedex, France

Abstract

This paper presents an architecture of a 2 Degrees of Freedom pneumatic robot which can be used as a haptic interface.
To improve the haptic rendering of this device, a nonlinear position and stiffness controller without force measurement
based on a Backstepping synthesis is presented. Thus, the robot can follow a targeted trajectory in Cartesian position
with a variable compliant behavior when disturbance forces are applied. An appropriate tuning methodology of the
closed-loop stiffness and closed-loop damping of the robot is given to obtain a desired disturbance response. The models,
the synthesis and the stability analysis of this controller are described in this paper. Two models are presented in
this paper, the first one is an accurate simulation model which describes the mechanical behavior of the robot, the
thermodynamics phenomena in the pneumatic actuators, and the servovalves characteristics. The second model is the
model used to synthesize the controller. This control model is obtained by simplifying the simulation model to obtain a
MIMO strict feedback form. Finally, some simulation and experimental results are given and the controller performances

are discussed and compared with a classical linear impedance controller.

Keywords:
control.

Backstepping controller design, damping control, electropneumatic robot, nonlinear control, stiffness

1. INTRODUCTION

Many robotic applications require an interaction be-
tween the end-effector of the robot and an uncertain envi-
ronment. For instance, for human rehabilitation, for hap-
tic interfaces, or for prosthetic devices, human-robot inter-
actions are necessary. When these interactions occur, most
of the time, a compliant behavior of the robot is required
in order to avoid human injuries or to avoid damaging the
robot itself. But on the other hand, these robots have to
be stiff for some tasks. Therefore it is necessary to con-
trol the stiffness and damping of the robots. To ensure
a compliant behavior of a robot, various Variable Stiff-
ness Actuators (VSAs) or Variable Impedance Actuators
(VIAs) have been developed during last decades. These
actuators allow the equilibrium position and the stiffness
to be tuned independently. Van Ham et al. (2009) present
a state of the art in the design of VSAs. Most of these ac-
tuators are designed with two internal motors and passive
compliant elements. An advantage of this design is that
the position and stiffness control of the VSA is obtained
by controlling the position of two electric motors. The
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main drawbacks of this kind of VSAs are the cost and the
stiffness range. Indeed, these actuator are often expensive
because two electric actuators are needed to control one
Degree Of Freedom (DOF). The range of the stiffness is
also often limited (Huang et al., 2013) due to the use of
passive stiffness components.

Another approach to obtain a compliant behavior for
the robot is based on control strategies such as stiffness
control (Salisbury, 1980), impedance control (Hogan, 1987)
or hybrid force position control (Hayati, 1986). Most of
these strategies have been developed for electromechani-
cally actuated robots. The disadvantages of the electrome-
chanical actuation are that, in order to implement these
control strategies, a force/torque sensor is needed. This
sensor is required to measure the environment interaction
which implies knowing where this interaction will occur.
Moreover, these sensors are often expensive and fragile.
If force/torque sensors are not used, the actuators have
to be backdrivable which mean reducing gear ratio and,
consequently, the torque or force range of the robot.

On the other hand, due to their nonlinear behaviors,
pneumatic cylinders were traditionally only use as bi-stable
position actuators. The recent development of new ser-
vovalves and modern robust nonlinear control laws based
on sliding mode and Backstepping allowed the develop-
ment of position or force controller. Thus, since pneu-
matic cylinders are inexpensive and have a good power to
weight ratio, there has been a recent surge of interest for
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this technology. If the independent force/stiffness or po-
sition/stiffness nonlinear controls of one pneumatic actua-
tor have been addressed in literature (Shen and Goldfarb,
2007; Taheri et al., 2014; Abry et al., 2015), the extension
of these nonlinear control strategies to multi DOF has not
yet been studied. Thus, this article presents an nonlinear
position/stiffness control strategy for a 2 DOF pneumatic
robot adapted from the Abry et al. position and stiffness
controller developed for a pneumatic cylinder (Abry et al.,
2015). The synthesis of this controller is based on the
Backstepping method and a gain tuning strategy which
allows to reach a desired behavior of stiffness and damp-
ing.

The presented 2 DOF pneumatic robot is a part of a
haptic interface. This haptic device will be used to develop
a childbirth simulator. Herzig et al. (2014) and Herzig
et al. (2015) give more details about the interest of us-
ing this kind of haptic interface to simulate a childbirth
delivery.

This paper is structured as follows: In section 2 the 4
hardware architecture of the 2 DOF actuated robot is
given. Then the models used for simulations and for con-
trol synthesis are described respectively in sections 3 and
4. The controller synthesis based on the Backstepping
method is described in section 5. In section 6 response,,
to an external disturbance force and a strategy to ensure
a desired closed-loop stiffness by control gains tuning are
discussed. Simulation results and a comparison with a
classical linear impedance controller without force sensor
are presented in section 7. Section 8 deals with the exper-
imental results to compare performances of the two con-
trollers for position tracking and disturbance rejection. Fi-
nally, section 9 provides a conclusion and describes future
works.

2. ROBOT HARDWARE DESIGN

The 2 DOF robot studied in this paper is illustrated in
Fig. 1. Tts architecture is based on the BirthSIM (Herzig
et al., 2014, 2015) design, which is composed of two pneu-
matic cylinders. The main characteristics of these two
cylinders, respectively denoted cylinder 1 and cylinder 2
for the vertical one and the horizontal one, are given in ta-
ble 1. The second cylinder has been chosen with a square
rod in order to prevent the inner rotation.

Table 1

Main characteristics of the cylinders 105

Reference DSNU-25-400-PPV-A-Q DSNU-25-200-PPV-A

Notation cylinder 2 cylinder 1
Position horizontal vertical
Stroke 400 mm 200 mm
Piston diameter 25 mm 25 mm
Theoretical for(}e at 205 N 205 N
6 bar, advancing
Theoretical force at 247 N 247 N 110

6 bar, retracting

Rod geometry 9mm X 9mm (square) 010mm (circle)

Fig. 1. 2 DOF actuated pneumatic haptic interface

Four Festo MPYE-5-M5-010-B proportional servovalves
supply the cylinder chambers. These servovalves control
the air mass flow rates which enter or exit the chambers.
Their characterization map is given in 3.4. The pres-
sures inside the chambers are measured with Honeywell
40PC100G2A sensors. Moreover, the end-effector Carte-
sian position and orientation are measured using a Track-
star magnetic tracker. Finally, the controller board is a
dSPACE MicroLabBox which is suitable for control proto-
typing. Fig. 2 illustrates the global hardware architecture
of the studied robot.

dSPACE
Us Uz Up Uy Py Py P PraYeXe

Fig. 2. Hardware architecture of the 2 DOF pneumatic robot

It has to be noticed that to avoid some usual issues
concerning the compression of air in air tubes, the diame-
ter of the air tubes have been chosen small and the length
of those tubes have been shortened to the maximum. In-
deed, this issue is known for generating delays and also
has an impact on the control strategies.

3. SIMULATION MODEL

This section presents the models which are used to test
the control law in simulation. To describe the behavior of
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the robot, mechanical and thermodynamic models have to
be defined.

3.1. Kinematic model

The Forward Kinematic Model (FKM) and Inverse Kine-
matic Model (IKM) provide the relations between the lo-
cation of the end-effector and the joint coordinates. In-
deed, the FKM gives the position and orientation of the
end-effector as a function of the joint variables whereas
the IKM gives the joint variables as a function of the end-
effector location. To obtain these models, the Khalil and
Kleinfinger method has been used (Khalil and Kleinfinger,
1986). This method is particularly suitable for robots with1o
closed chains. Fig. 3 presents the kinematic scheme of the
studied robot.

Table 2
Kinematic parameters of the 2 DOF pneumatic robot

j aj) o w b d T v a 0
1 0 0 0 O 0 0 0 0 0,
2 1 1 1.0 0 rn 0 I 0
3 0 0 0 0 —dg 0 Y3 0 93
4 3 110 0 rn 0 -Z 0
5 4 0 0 0 0 0 0 —g 05
6 1 2 0 0 —-dg 0 -3 0 0

135

Link O

140
Fig. 3. Kinematic scheme of the 2 DOF pneumatic robot

The parameters defined with the Khalil and Kleinfinger
method are given in Table 2.

As the robot has a closed kinematic chain, joint vari-
ables can be separated in three categories. The active joint
variables, which are the variables of actuated joints, the*
passive joint variables and the cut joint variables. Here,
the active joint vector q,, the passive joint vector g, and
the cut joint vector ¢. are defined as

Then, by solving the constraint equations, the passive
joint and cut joint variables are computed as functions of
the active joint variables

6, = y3 — arcsin

ﬁ—@—%)

2dsdg
2 d2 _ d2
03 = — arcsin QW (2)
d2 _ d2
05 = arcsin (T‘l—grfdﬁ?’) .

It can be noticed that in the working space of the robot,
01(r4) is bijective.

The FKM can be obtained from the transformation
matrix which models the transformation from the R, frame
into the Ry frame (¢f. Fig. 3). As the studied robot is
two DOF actuated, only two Cartesian coordinates can be
controlled. z. and y. denote the coordinates of Oz (end-
effector center) in Ry frame. It can be deduced that

T, = rosinby
Yo = —T9 COS b1 (3)
where 6 is given by (2).

To obtain the IKM, the Paul method (Paul, 1982) has
been applied. It leads to the following equations:

01 = atan2(z¢, —y.)
ro = —Y.cos 0y + x.sin
r4 = \/dg + dg — 2dsdg Sin(91 — 73).

(4)

3.2. Dynamic Model

The dynamic behavior of the two DOF robot presented
in this paper can be modeled by the folowing Newton-Euler
formulation:

(5)

where M denotes the symetric and positive definite inertia
matrix, C is the centrifugal and Coriolis matrix, D is the
vector which contains dissipative terms due to friction, G is
the gravity terms vector, fyneq, and f are respectively the
vector of pneumatic forces and external forces generated by
the environment or the user in the case of haptic interface.

To simplify the dynamic model and to reduce the pa-
rameters which have to be identified, the following assump-
tions have been taken:

M(Qa)da + C(qaa (ja) + D(Qa) + G(Qa) = fpneu + fe

e All the links are assumed to be rigid

e The friction in all revolute joints are neglected com-
pared to the friction of the pistons in cylinders (pris-
matic joints)

e Only the end-effector mass is taken into account. It
is denoted M and is assumed to be a point mass at
O5. All moments of inertia are neglected.
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With these assumptions, M and C matrices can be
tained as follows:

Mr%m

d3d3 cos(6, — 73) cos 05
0 M

Ai-a-d) |
2d3d% cos?(61 — 73)

d3d? cos(6; — v3) cos 05
- M73r3ry

d2d2 cos?(01 — v3)

where cos(f; — 7v3) and cos 5 can be deduced from (2)

2 2 2\ 2
ry —ds —dg
— = 1—-( =-— 165
COS(el ,73) \/ ( 2d3d6 )

(7)
r2 — d2 + 2 2
O =1 — | 2376
CcoS ( Srade

M(qq) =

C(qa7(ja) =

2791y + 1Ty (

—~
D
=

MT27:'4

160

The friction model used takes into account the Coulomb,
friction and the viscous friction. Thus, the parameters F;
and F,; denote respectively the Coulomb and viscous fric-
tion parameters of the cylinder i'. These parameters have
been identified experimentally with a dedicated test bench.
Furthermore, the cylinders used here are not symmetrical
so the pneumatic forces have to be modeled as sums of two
phenomena. Indeed Fp,eu; and Fpeqe; respectively repre-
sent the pneumatic force due to the pressure difference
between the two chambers and the force applied by the
atmospheric pressure on the rod of the cylinder. These
two forces are given by the following expressions:

Fpneui = PpiSpi - Pnzsnz (8)
Fpea:ti = Patm(spi - Snz)

where P,; and P,; are the absolute pressures in the P and
N chambers, Py, is the atmospheric pressure, and Sp;
and S,,; are the effective piston areas in chambers P and,,,
N.

Thus, the remaining elements of (5) which describe the
dynamic behavior of the robot are given by

D) = [frrsentt = bt [T

Feosgn(ra) + Fyats Fra
_ M gry sin 64
G(qa) = dG COS 95
— Mg cos (9)

f — Fpneul - Fpeztl
prew Fpneu2 - Fpeth
_ Fel
fe N Fe2
where ¢ is the Earth gravity coefficient, sgn is the sign
function, and F.; and F,o are respectively the forces ex-

erted by the environment on the piston of cylinder 1 and
2.

n the rest of this paper, the indices i refer to cylinder i with
1 €{1,2}.

For the sake of clarity, a new couple of variable y; and
Yo is defined as follows:

y1 =14 — k1

Y2 =T2 — ko (10)

where k; and ko are positive constants. y; € [—11/2;11/2]
and yo € [—12/2;12/2] are respectively the cylinder 1 and 2
piston positions. [y and lo are the strokes of the cylinders.

8.8. Thermodynamic model

In this section, the objective is to model the thermody-
namic behavior of a cylinder chamber. This kind of model
has been addressed in literature (Shearer, 1956). Fig. 4
shows a scheme of a pneumatic cylinder chamber. P de-
notes the air pressure in the chamber, V' is the chamber
volume, T', T.,,, and Ty are respectively the temperature
of the air inside the chamber, the temperature of the envi-
ronment and the temperature of the pressure source. ¢,
is the mass flow rate. It is defined as positive for an en-
tering air flow. d@) denotes the heat exchange between the
air inside the chamber and the environment. It has to be
noticed that the heat exchange between the two chambers
is neglected. The assumptions made to model the thermo-

PVT

env

\/ >
Ts 3Q

q,, Em—)

Fig. 4. Model of a cylinder chamber

dynamic behavior of the chamber are as follows:
e Air is a perfect gas

e Only the convection is taken into account to model
the heat exchanges

e Air leakages are neglected

With these assumptions, the states equations which
model the thermodynamic phenomena are

dP v av v 1

= v (Tt = PG )+ g WS (o =)
dT T av

@ PV (“”dt”’"”TmT”’”

+ hSconw (Tenv - T) (7 - 1))

T =Ts, for g >0
Tn=T, forq <0
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where 7 is the heat capacity ratio of a perfect gas, r is
the specific gas constant of air, i is the heat transfer co-
efficient, and Scony is the convective heat transfer surface.
These equations have been written for a chamber. In the
case of the studied robot there are four distinct chambers,
so the thermodynamic variables will be distinguished with
the subscripts n1, pl, n2, and p2 which refer to the epony-
mous chambers.

3.4. Servovalves model
In literature, two methods are described to model the

. . 205
servovalves behavior. Both are based on an experimental

characterization. The first one consists in defining a func-
tion (most of the time polynomial) fitting the behavior of
the servovalve (Bobrow and McDonell, 1998). The second
one consists in an experimental characterization map of
the servovalve. To simulate the behavior of the four servo-
valves of the studied system, the second method has been
chosen. Fig. 5. shows the experimental characterization
map obtained. It gives the mass flow rate entering the
chamber for a given control voltage and a chamber pres-
sure. It can be noticed that once again the behavior of
these components is not linear.

;lll"'

Yoageiliny, 7
AL
n."'l,.{':{{.{.{{g ,'

22
L

Ay (915)

7 10

P_. (bar) Tension u_. (V)

Fig. 5. Characterization map of a Festo MYPES servovalve 210

4. CONTROL MODEL

The model described in the previous section is not
adapted to apply the Multi-Input Multi-Output (MIMO)
Backstepping method. Indeed, the latter is based on a re-
cursive control design (Freeman and Kokotovic, 1993; Yao
and Tomizuka, 2001). To apply this method, it is suit-
able to rewrite the state model in a strict-feedback form.
The strict-feedback form MIMO n order system can be
described by

l-’ik = fik (:cl, ...,LEik,Ul, ...,uk_l) —+ glk (1171, veey ZL’Z'k,
U, ...,uk_l)xiﬁ_l + 5ik7j,€gi,mk(x1, vy Ly s

Uy, ...,uk,l)uk
Yk = hk(l‘l, ...,l‘jk)
(12)

where

kEe{l,..,m}
ik € {Jk—1, s Jk}

k

Je= 2
b=1

n=> ng
k=1

Tj .y Tj, are the ny states of the k" block, uy, ..., U,
and y1,...,ym define the m control inputs and outputs.
0i,.j, denotes the Kronecker delta. Finally f, g, and h
denote nonlinear functions.

To write the previous model in a strict-feedback form
and then synthesize the Backstepping controller, a change
of variables and some model reductions are needed. These
reductions can be justified by more assumptions. The first
step to reduce the model consists in simplifying the ther-
modynamics model. Indeed, common assumptions taken
to obtain a control model for a pneumatic cylinder are
that air inside the chambers of the cylinder follow a poly-
tropic behavior without heat exchange (Andersen, 1967).
The second assumption is that the temperature variation
of this air is neglected so T is assumed to be constant.
These two assumptions lead to replace (11) by

dP,; K
= T qmpi — PpiSpivi
dt Spini (yz) ( D pir~p )

(13)
dPy; k
— T 1L PSS
dt Snﬁan(yz) (7" Qmni + nzSnz'Uz)

with

l;
Lyi(yi) = 5 Y

Lyi(yi) = % + i

where k is the polytropic coefficient chosen experimentally,
l; is the stroke of the cylinder, r is the specific gas constant
for dry air, T' is the ambient temperature, gmp; and gmn;
are the respective mass flow rates defined as positive en-
tering the chambers P and N.

Secondly, the A-T transform is applied to change the
variables of the system. This transform have been pre-
sented by Abry et al. (2015). It can be compared to the
Park transform which is used for electric motor control but
this transform is adapted to pneumatic actuators control.
For each cylinder, the A-T transform introduces two vir-
tual flow rates ¢;,4; and g,,7; which respectively are the
active and pressurization mass flow rates. These latter can
be defined as follows:

1 1
dmAi li Lyi(yi) Ly, (i) [Qmpi}
=2 . 14
|:qui:| 2 1 1 Gmni (14)

The aim of this change of variables is to define two new
states Fpney; the pneumatic force given in (8), and Kppeus
the pneumatic stiffness. The pneumatic stiffness is the



position derivative of the pneumatic force free response.

Thus
dF, ; P, Sy P, Shi
K . — pneutr — k < pr~pr + ni~ni > . 15
et dy; Lpi(yi)  Lni(y:) (15)
So the pneumatic model becomes
deneui 2krT
5, = 7 Qdm i_Kneuii
dt I, dmAi T Rpneuit
deneui _ AlviyiKpneui - AQUinneui - Bl,iyiQmAi
dt Lpi (yz)an (yz) 215
B mT1
+ 2qmT
(16)
with
A =2(k+1) Ay =k(k+1)
2k%rT
Bl,i = " B2 = k2T’T.

li

On the other hand, to simplify the dynamic model, the
first and second time derivatives of 6; are linearized around
the equilibrium point denoted z. where y; = /d% — d2 —
k‘1, v = 0, and 1.}1 =0

: 90, 90,
0, ~ 2L a3
1 B ) v + o ) U1 N
9'1 N 7271 e e
.6 . . 17
o | L oh| b "
! B 61‘;1 ! 8711 ! 8y1 9
. 1Te Te Te
o U1
0 ~——.
1 o

It has to be noticed that this simplification is not needed to
obtain the MIMO strict-feedback form. This linearization
have been done in this paper in order to reduce the size of
the equation obtained.

Finally, it is assumed that the weight projection and
the centrifugal and Coriolis accelerations on the second
cylinder are neglected. Indeed, as this cylinder works
around an horizontal position, the weight influence on the
dynamic behavior can be neglected. Centrifugal and Cori-
olis accelerations can be neglected by assuming that the
first piston velocity and acceleration stay low. These as-
sumptions lead to rewrite the M, C, and G matrices given
in (6) and (9) as follows:

Mr32
d2 cos 05
0 M
2M’I“27.“2 f‘4
d2 cos 05
0
M gry sin 6,

M(Qa) =

225

C(Qaada) = (18)

G(qa) = dg cos 05

0

By defining the state and control vectors X and U as
follows:

X = [.131 T2 T3 Tyg T T T7 $8]T U = [u1 U2 U3 U4]T (19)

where
T1 = Y2 T5 = Y1 U1 = gmA2
T2 = U2 Te = U1 U2 = dmT2 (20)
xr3 = Fpneu2 xTr = Fpneul U3 = dmA1
Ty = Kpneu2 Trg = Kpneul U4 = mT1-
The state model can be written
3'31 = T2
&o = fa(x1,22) + gox3
&3 = g3(x2)za + g311
T4 :f4(xlax27x37x47u1)+g4,2(x1)u2 (21)

T5 = Xg

i = fo(r1,22,25,76) + go(21,25)77
&7 = g7(we)Ts + g7,3u3

iy = fs(xs, x6, T7, T8, u3) + g8,4(T5)us

It has to be noticed that the forces F,y and F.o are
not taken into account in the control model. Indeed these
forces are defined as disturbances and they are not mea-
sured. With these assumptions the state model given in
(21) respects the MIMO strict feedback form introduced
in (12), so the control synthesis by Backstepping method
is now applicable.

5. CONTROLLER SYNTHESIS

The model obtained previously is now in a strict feed-
back form. The Backstepping method can be, therefore,
applied to synthesize the control laws. The presented
method is based on Abry et al. works (Abry et al., 2015)
but has been adapted to the 2 DOF robot presented in
section 2. The four virtual mass flow rates are the control
inputs. The two active mass flow rates ¢,, 41 and ¢, 40 will
be designed to track the desired position of the pistons y4;
and ygo respectively for cylinder 1 and 2. To define the
trajectory, the derivatives of these positions are needed,
thus y41 and yg4o are required to be C? function of time.
The time derivatives of y41 and yg4o are defined as follows:

dyar - Pya a Pyar ia

e~ gz T s M 99
dyaz _ y dglydz . dgyd2 _ (22)
dt d2 a2 d2 a3 Jd2-

The two pressurization mass flow rates ¢,,71 and g, 12 will
be designed to track respectively the desired pneumatic
stiffnesses Kpneudr and Kppeud2 trajectories, this two ref-
erence trajectories must be C! functions of time.



5.1. Cylinder 2 position tracking

Step 1: The cylinder 2 position tracking error z; is

defined as

21 = Y2 — Yd2- (23)

The open loop dynamics of z; is given by

2.'1 = V2 — Vg2 (24)

where vy is seen as a virtual input. The latter is chosen as

’l); = V42 — Clzl (25)

where (1 is a strictly positive constant.

Step 2: the cylinder 2 velocity tracking error zs is

defined as

29 = Vg — V3. (26)

The closed-loop dynamics of the cylinder 2 position er-
ror and the open-loop dynamics of the velocity error are

respectively

ZH1=2—0Cin
FpneuQ - Fpea:t? - Ff2

i —age + Ci1%

29 =

where Fj;,cq 2 is assumed to be a virtual input. It is chosen

as
p*neu2 = Fpezt2 + Ff2 +M (adz + 2 (012 — ]_)
—22 (C1 + (7))

20 where Cy is a strictly positive constant.

Step 3: the cylinder 2 pneumatic force tracking error

z3(t) and its integral are defined as

zZ3 = Fpneuz — F* Z3; = f ngt. (29)

pneu2

So the closed-loop dynamic of z5 error and the open-loop

dynamic of z3 are given by

Z’Qzﬁ—zl—OQZQ
M F, —F - F
2.:3 _ FpneuQ _ b2 pneu2 J\Zea:tQ f2 M (de
z (30)
+ (012 — 1) (22 — Clzl) — <M3 — 21

- cgzg) (Cy + 02)) .

The first real control input g, 42 is designed as follows:

Gmaz = fo + f1z1 + fazo + fazg + fazsi (31)

with
f _ 12 (b2 (Fpneu2 - Fpezt2 - Fj?) + MKpneu2U2)
0 2MkrT
laMjao
2krT

Ml, (201 + Oy —C%)
fi=

2krT
Iy ((M? (C{ 4 C1C2 4+ C3 —1) — 1)

fo= IMERT
oo L (Ci+ 0+ Cy
57 2%rT

K’LBZZ
fa

= T %T

(27)

(28)

where C3 and K3 are strictly positive constants. zs; error
is added in order to eliminate the steady state error of
Fprewz. Then a Lyapunov function candidate, denoted V7,
is choosen as

2 2 2 2

z z z Z3:
Vi 2 B e BB 39
=5t K (32)

Using (27), (30), and (31), the derivative can be computed

Vl = *Clz% — CQZ% — ngg (33)
5.2. Cylinder 2 pneumatic stiffness tracking

Step 4: the cylinder 2 pneumatic stiffness error z4 is
defined as

24 = Kpneu2 - Kpneud2- (34)

The open-loop dynamic of this error is given by

P A1U2y2Kpneu2 - A2U2Fpneu2 - Bl,QyQQmA2
4 =

Lp2(y2)Ln2(y2) (35)
Bagmra Koo
-~ 7 ~Nr 7/ N neud2 -
Lya(y2)Lna(y2)
The second real input ¢,,72 is designed as follows:
KpneuQ - C'Z.LZ4 A2U2Fpneu2
mr2 = — 5 Lpi(Yi) Lni(yi) + ——FH——
GmT2 5 pi (Yi) Lni (i) + By
A1y Kpneuz n 2Y2GmA2
By lo
(36)

where C} is a strictly positive constant. Due to the partic-
ular form of the model, it can be noticed that this input
depends on ¢, 42 the previous input designed during the
first step. Then a second Lyapunov function candidate V5

is chosen as )

z
Vo= (37)

By substituting ¢,,,72 with the expression obtained in (36),
the time derivative of V5 is

V2 = —C4Zi. (38)

5.8. Clylinder 1 position tracking

Step 5: As for the cylinder 2 the cylinder 1 position
and velocity errors, respectively z5 and zg are defined as

25 = Y1 — Yd1 (39)
26 = V1 — V]

where v} is a virtual control. The open-loop dynamic of
z5 is given by the equation

25 = V1 — V{1- (40)
Then the virtual control v] is designed as

'Uik = Vq1 — 052’5 (41)
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where Cj is a strictly positive constant. Thus the closed-
loop dynamic of the cylinder 1 piston position obtained is
given by

2':5 = Z6 — 0525. (42)

Step 6: The tracking error dynamic of the cylinder 1
piston position can be written as follows:

. dg < . dg cos 05
26 = sinfy — ——— (Fr1 + Fpes
0 Yo + ko g ! M(y2+k52)( fl peatt (43)
V1V .
_Fpneul)) - s :-2162 — adi + C5Z5

where Fj,cq1 is assumed to be a virtual input and is chosen
as

* M(y2 + k2)2 2
pneul = Fpeat1 + Fr1+ T RZeosls (ag1 + (C3
Muviva(y2 + k2)
—1)z5 — (C5 + C, — s (44
)25 — (Cs + Cs)26) + & cos 0 (44)
_Mgsin@l(yg —+ kg)
dg cos 05

where C§ is a strictly positive constant.
Step 7: the pneumatic effort tracking error z7 is de-
fined as
27:Fpneu1_F*

pneul*

(45)

The closed-loop dynamic of z¢ and respectively the open-
loop of z7 are given by

. d2 cos 05 o

26 — —— 5 R7 — k5 — Z

6 M(y2+k'2)2 7 5 6<6 (46)
7 = Fpneul - F;neul'

To simplify the expression, F;‘mul is not given here but in
appendix Appendix A
The design of the third real control g, 41 is given by

1 .
*
dmAl = = (Fpneul + Kpnewivi — Crzr — Kirzr;

2krT
~dgcosts B ) (47)
M (ys + ka)2 ™"

where C7 and K7 are strictly positive constants. z7; is
the integral of z7 error and is given by z7; = [ z7dt. This
integral error is added in order to eliminate the steady
state error of Fpeq1. Then a Lyapunov function candidate
denoted V3 is choosen as

2 2 2 2
Vo=Cs2 +Coe +Cr o + K lt (48

By using the results obtained in (42), (46), and (47) The
derivative of this function is

Vs = —Cs22 — Ce22 — Cr22. (49)

5.4. Cylinder 1 pneumatic stiffness tracking

Step 8: The cylinder 1 pneumatic stiffness tracking
error zg is defined as
zZ8 = Kpneul - Kpneudl- (50)

The open-loop dynamic of zg is given by its time derivative

 Ayoiyi Kpnewr — A201 Fpneut — B11Y1Gma1

z
) Ly (1) Lo (41) 51)
Botmrr )
Lpi(y1) Lo (1) 7"
Then the last real control is chosen as follows:
Kpneul — CBZS AQvleneul
1= =2 L () L, S et
dmT1 B, p1 (Y1) L1 (y1) + B,
N Alvllepneul _ 2yIQma1
BQ ll
(52)

where Cg is a strictly positive constant.
Lyapunov function is chosen

Finally a last

Vi=5 (53)
Using (52), its derivative can be computed
Vi = —Cgz2. (54)

5.5. Stability analysis

Using the Backstepping method, the four controls ¢, 41,
QmT1s QmAa2, and g2 have been designed in order to en-
sure the closed-loop global asymptotic convergence of the
positions and pneumatic stiffnesses of cylinders 1 and 2
tracking errors. Indeed, the following Lyapunov candidate
is chosen for the whole system:

V=Vi+Vo+V3+4+V,. (55)
It can be noticed that V is positive definite. Its time
derivative can be deduced from (33), (38), (49), (54)
. 8
V==Y Ci. (56)
i=1

As the time derivative of V is negative definite the Lya-
punov theory ensures the global asymptotic convergence
of the system.

6. DISTURBANCE REJECTION AND CLOSED-
LOOP STIFFNESS

The controller synthesis method has been chosen be-
cause Abry et al. have shown that the tuning of some gains
allows to control the system disturbance response (Abry



et al., 2015). Indeed, it is possible to tune the closed-
loop stiffness and damping of each actuator by adapting
the control gains. It is important to distinguish the pneu-
matic stiffness and the closed-loop stiffness. Indeed, the
pneumatic stiffness described in (15) is a state of the sys-
tem. This state represents the actuator natural tendency
to counteract an external effort applied on the piston. This
response depends on the piston position but also on the
chambers pressures. On the other hand, the closed-loop
stiffness describe how the controlled actuator will react
to a position error due to an external force or disturbance.
Thus for the two pneumatic actuators the closed-loop stiff-
nesses can be expressed as

dF,
Kcl2 = d212

dF (57)
Kcll =

dZ4

with z1 = y1 —yq1 et 24 = Y2 — Y42 Fe1 and Fo are respec-
tively the external or disturbance forces apply on cylinder
1 and 2. By assuming that the disturbance rejection is
quasi-static, the external forces become

F62 = _(Fpneu2 - Fpeth - Ff2)
M (y2 + ko) . V102
Fe = F _—_— e - — =
! 1 d6 COS 05 gsmo d6 (58)
_Fpneul + Fpextl-

Then, thanks to the integral actions introduced in (31) and
(47) the pneumatic efforts z3 et z7 converge quickly to zero.
Therefore, it can be assumed that Fpneu1 = Fj,., and
Fpneuwz = Fpeyo- Thus, (57) can be expressed as follows:

d(age + 21 (CF —1) — 22 (C1 + C2))

Kch =-M
9 le
M(ys + k
d ( (ggios 652) (adl +(C3 - 1)Z5>>
K1 =— 6
cll dZ5 (59)
M ko)?
d (52/24_2)(05 + 06)26)
& cos 05
+ .
dZ5

By taking into account that zo = vo — vgo + C121 et zg =
v1 — vg1 + Cs25, and neglecting the variation of cosf5 in
Kcl2

Ko = M(C1Cy + 1)

M (ya + k2)?
Kgyi=———-—""> 1).
1 42 cos 05 (C5C6 4 1)

(60)

Identically, the closed-loop dampings of the two cylinders
can be defined as

dF,

Bcl2 = 4o 2
o 102 (61)

cll — df]l

with 9; = v; — vg;. After simplifications, the closed-loop
dampings are given by

B = M(Cy + Cy)

B — M (ys + k2)?
cll — 2

dg cos 05

(Cs5 + Cs). (62)

By solving the equations (60) and (62) for desired closed-
loop stiffnesses and dampings, C7, Cs, C5, and Cg can be
computed

o = Bz + \/B%, —4M (K2 — M)

9M
Beiz — /B2y — AM (Koa — M)

2M
Bui + VA (63)
2M(y2 + k2)2
Bcll - \/Z

2M (y2 + k2)?

Cy =

Cs = d2 cos 05

Ce = d3 cos 05
with

M ko)? M ko)?
A=B% —4 (y2 + ka) (K(:ll (y2 + 2)>

d? cos 05 d2 cos 05

It can be noticed that the values of C; and Cs, and
respectively Cs and Cy are interchangeable. Moreover, to
ensure stability C7, Cy, Cs, and Cg have to be strictly
positive. Therefore, the following condition are necessary

M (y2 4 k2)?
K A2 T R2)
e = d2 cos 05
Kle >M
2 2 (64)
el = d2 cos 05 el d? cos 05
Bcl2 Z 2 M(Kle _M)

The presented method is used to tune some of the
control gains in order to set the closed-loop stiffness and
damping of each actuator. Most of the time, the part
which will interact with the environment is the end-effector.
So, in order to tune the equivalent stiffness of the end-
effector in Cartesian space K., and K, the closed-loop
stiffnesses K. and K2 have to be computed. To do so
it is necessary to introduce the kinematic Jacobian matrix
denoted J(y1,y2)-

] = st | 2] (65)

where dzr. and dy. are respectively the Cartesian end-
effector positions x. and y,. differentials.

By assuming that the only disturbances applied on the
cylinders are the result of a disturbance applied on the
end-effector, because of the force velocity duality it comes

L{:j =J7 ﬁx] . (66)

ey
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The aim of this section is to compare the performances
of the control law defined in section 5 with a classical linear
impedance controller (see Fig. 7). Indeed, two simulations
with different objectives are presented in the following sub-
sections. These simulations have been obtained using the
simulation model presented in the section 3. The first sim-
ulation have been set in order to compare the accuracy of
the controllers while tracking desired position and pneu-,,
matic stiffness trajectories. The second simulation have
been done to illustrate the controllers ability to reject dis-
turbances with the desired stiffness behavior.

The chosen parameters for the simulation have been
identified on the BirthSIM robot (Herzig et al., 2014, 2015)
and are presented in table 3.

It can be noticed that for all simulations presented in
this paper, the control gains C3, Cy, K;3, C7, Cs, and Kjg
which are not dependent of the closed-loop stiffness and
damping tuning are set to the following constant values:,
Cs = 150, C4y = 200, K;3 = 1500, C7 = 150, Cs = 200 ,
K,;s = 1500.

280

7.1. Position and pneumatic stiffness tracking
In this simulation, the objective is to compare the track—290
ing performances of desired trajectories in position and

10

pneumatic stiffness of both controllers. The following po-
sition trajectories have been chosen as x.4(t) = 0.3+0.004¢
and yeq(t) = —0.03 + 0.025 sin(5002+(t)). The pneumatic
stiffness trajectory of each actuator has been defined as
a succession of random steps. The transition between
these steps have been smoothed with tanh function to re-
spect the C' continuity for Kpnewdr and Kppeuaz. The
initial conditions are z.(0) = 0.281 m, y.(0) = —0.010
m, Kpney1(0) = 1091 N/m, and Kppeu2(0) = 540 N/m.
Fig. 8 shows the results of the position and pneumatic
stiffness tracking. For this simulation, the closed-loop
stiffnesses and dampings have been set to constant values
Ko (t) = 2000 N/m, Kqy(t) = 2000 N/m, Be(t) = 300
N.s/m, and B2 (t) = 400 N.s/m.

Fig. 8a and Fig. 8b show that the targeted Cartesian
positions and pneumatic stiffnesses are reached relatively
quickly for both controllers. According to the Fig. 8c the
Backstepping controller is more accurate than the linear
impedance controller, in particular on the Cartesian y axis.
Indeed, the Backstepping controller takes into account a
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Fig. 8. Position and pneumatic stiffness tracking simulation results. The bs subscripts refer to the Backstepping position and stiffness
controller whereas cimp subscripts refer to the linear impedance controller.

part of the nonlinear inertial dynamic whereas the linear 7.2. Disturbance rejection

impedance controller does not. Concerning the tracking The aim of the second simulation is to show the behav-
performances of pneumatic stiffnesses trajectories, both ior of the two DOF robot and the controller when submit-
controller have similar accuracy. Finally Fig. 8d illustratessn ted to a disturbance. Thus, the references of Cartesian po-
the motion of the end-effector in the Cartesian plane and  sitions and pneumatic stiffnesses have been set to constant
the robot workspace. values which are z.4(¢) = 0.350 m, yeq(t) = =5 x 1073 m,

11
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Kpneuwa1 = 6000 N/m, and Kppeygz = 3000 N/m. Dur-
ing the simulation, disturbance forces are applied on the
robot end-effector. These forces denoted F,,, and F¢, are
respectively applied along the Cartesian x and y axis. The
two disturbances are repeated 6 times during the simula-
tion with a 90° phase shift between them. For the three
first disturbances, the closed-loop dampings B;; and B2
are set respectively at 250 N.s/m and 500 N.s/m whereas
the closed-loop stiffnesses vary gradually between each dis-
turbance from 1500 N/m up to 3000 N/m. Then, for the
three last disturbances, the sequences of closed-loop stiff-

nesses are repeated whereas the closed-loop dampings are,,

doubled. These settings are illustrated on Fig. 9a.
According to the Fig. 9b, the behaviors expected for

closed-loop stiffnesses and dampings tuning are successful.

Indeed, increasing the closed-loop stiffness reduces the dis-

placement due to a disturbance forces and increasing the,

damping increases the settling time of this displacement.
Fig. 9¢ shows the position of the end-effector in Cartesian
plane. On this figure, the first second which corresponds
to the stabilization time has been removed. Finally, the

Fig. 9d illustrates the joint position. On this figure the,

expected joint positions Yieqp and Yaerp, Teezp aNA Yeewp
are obtained by adding the estimated displacement due to

25

30

12

perturbations to the targeted trajectories. Thus

Fel Fe2
Y1exp = Yd1 + Ki Y2exp = Yd2 + K
ﬁll cl2
Teeap = Ted + K; Yeesp = Yod + TZ, (68)

This simulation shows that the performances of the
closed loop stiffness tuning are similar for both controller.
Table 4 compares the Cartesian closed-loop stiffnesses mea-
sured, denoted K jzm and Ky for the the stiffness on
x and y Cartesian axis respectively, with the Cartesian
closed-loop stiffnesses set, denoted K, and Ky, for each
direction of force disturbance. This table also gives the
corresponding relative errors of Cartesian stiffnesses, de-
noted Fr,,, and Ek,,, . According to the results, the per-
formances to reject the disturbances with a desired closed
loop stiffness are nearly the same for both controllers.

It can be noticed that even if the joint positions reach
the expected positions, the Cartesian closed-loop stiffnesses
are not necessary obtained. This phenomenon can be
explained by two reasons, the first one is that the non-
diagonal elements of the joint stiffness matrix have not
been taken into account in the controller synthesis. The
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Cartesian closed-loop stiffnesses errors
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second reason is that the classical transformation used to
compute the joint stiffness matrix from the Cartesian stiff-
ness matrix (c.f. (67)) is not conservative, so this trans-,
formation is valid only when the robot is at its unloaded
equilibrium. Some conservative transformations have been
studied (Chen and Kao, 2000) but these transformations
need to measure or observe the disturbance force value.
The results show that the bigger the position errors are
the bigger the Cartesian closed-loop stiffness errors are.

7365

8. EXPERIMENTAL RESULTS

This section gives some experimental results to com-smn
pare the two controllers presented in this paper. As in the
section 7, this section will be divided into two subsections.
The section 8.1 gives the results for a reference position
tracking. The section 8.2 illustrates the behavior of the
system when a disturbance force is applied. 375

8.1. Position tracking

For this experiment, the targeted trajectory is a circle
in the Cartesian space. Indeed, the Cartesian coordinate of
the end-effector references are defined as follows: x.q(t) =3%
0.45 + 0.04 cos(2t/6) and y.q(t) = 0.025 + 0.04sin(2¢/6).
The closed loop stiffnesses and dampings are set as K., =
3000 N/m, K., = 3000 N/m, By, = 300 N.s/m and
Bg2 = 300 N.s/m. Fig. 10 shows the result for the posi-
tion tracking for each controllers. Fig. 11 gives the posi-
tion error. 385
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According to those figures, the behavior expected on
the y axis is obtained. Indeed, the oscillations of the po-
sition errors due to the inertial dynamic can be observed.
And for the y axis, the Backstepping position and stiffness
controller is more accurate than the impedance controller,
as expected with the simulation results in section 7.1. On
the other hand, it can be noticed that a stick and slip ef-
fect occurred on the x axis. Indeed, for both controllers,
the horizontal cylinder piston is sometimes stuck by the
friction. This phenomenon is due to the 2 kg load added
to the end-effector. As shown on the figure 1 there is no
linear guide to distribute the load on the end-effector. As
a consequence, the cylinder rod is bending which increase
a lot the frictions. To avoid that issue, a linear guide will
be added to the cylinder 2 in the future. It can be no-
ticed that the Coulomb friction model is not suitable to
model the stick and slip phenomenon. To increase the ac-
curacy of the model, a LuGre friction model could replace
the Coulomb model (Armstrong-Hélouvry et al., 1994). As
expected in the previous section, the performances of both
controllers for position tracking on z axis are equivalent,
but the high peaks on the x axis for the Backstepping con-
troller position error show that the latest is more disturbed
by the stick and slip phenomenon.

8.2. Disturbance rejection

As in the section 7.2, for this experiment, a constant
position reference is set and some disturbance forces are
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applied on z and y axis. Those disturbances have been
applied manually. A NANO25 ATI force and torque sen-
sor have been added to the end-effector to measure the
disturbance forces applied. Due to the difficulty to apply
manually a constant force on both directions at the same
time, it has been decided to keep the forces applied on
the two directions separately. The experiment has been
repeated 5 times for each controller at different position
references.

Fig. 12 and Fig. 13 illustrate one of the trials with
Backstepping position and stiffness controller and one of
the trials with the impedance controller respectively. Fig.
12a and Fig. 13a give the disturbance forces applied and
the closed loop stiffness references for the two controllers
respectively. Fig. 12b and Fig. 13b show the time re-
sponse of end-effector Cartesian coordinates to the distur-
bance forces. These figures show that the two controllers
reject the disturbance force as expected. The manually
applied disturbance forces are noisy. Due to this noise,
it is, unfortunately, impossible to conclude on the closed
loop damping. It has to be noticed that the forces are ap-
plied directly to the 6 axis force and torque sensor. The x
component of the disturbance force measured when a force
on y axis is applied is due to the grabbing of the sensor.
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Fig. 12. Disturbance rejection experimental results for the
Backstepping controller.

Table B.6 and table B.7 give the results for each trial
for the Backstepping position and stiffness controller and
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Fig. 13. Disturbance rejection experimental results for the
impedance controller.

the impedance controller respectively. A summary of the
results is given on table 5. Where K, and K, are the
stiffness references, Kcizm and Ky, are the average val-
ues of the stiffnesses computed from the five trials, Ex,,,
and F,,, are the average values of the stiffness errors com-
puted from the five trials and finally o, and ok, are

the standard deviations of the stiffnesses computed from
the five trials.

Table 5
Summary of the experimental results for the closed loop stiffness
tuning

Keoia [N/m] 1000 2000 3000

2 2| o | KewmIN/m] 851 1748 2444
Bls Ex_, %] -14.9  -12.6  -18.5
2|3 oK, IN/m] 2557 2452  347.7
gz Koy [N/m] 1000 2000 3000

R R I B O i
3 Kopqy L0 -8. -11. -14.
£ OK ., ['fV/m] 75.1  160.8  378.5
8 Koo N/m] 1000 2000 3000
2 | | = | Ketwm[N/m] 1002 1835 2021
=8 Ex,,;, %] 0.2 -8.2 -2.6
2|8 ok, [N/m] 2347 4943  847.8

g | & Koy [N/m] 1000 2000 3000

E | R L | BemlN/m) 997 1787 2885
Erx gy, (%] -0.3  -10.6 -3.8

Ok, [N/m] 1820 307.9 1173.8
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Table 5 shows that the Impedance controller is, in av-s
erage more accurate than the Backstepping position and
stiffness controller for the closed loop stiffness tuning. On
the other hand, the standard deviation of the closed loop
stiffnesses obtained is smaller for the Backstepping con-
troller than for the impedance controller. That means that
the Backstepping controller has a better repeatability on
the stiffness tuning than the impedance controller.

9. CONCLUSIONS AND FUTURE WORKS

In this study, a two DOF pneumatic robot design and
model are proposed. The assumptions and transforma-
tions to synthesize a position controller with the Backstep-
ping method are provided. Then a strategy of gain tuning,
which leads to a closed-loop stiffness and damping control,
is presented. Finally, the performances of this controller
are illustrated with some simulation and experimental re-
sults. These performances are discussed and compared to
a classical linear impedance controller with gravity com-
pensation. This simulation approach is generally used
to design a controller for pneumatic or hydraulic actu-
ator before experimental implementation (Smaoui et al.,
2006).According to the simulation result, the Backstep-
ping position controller with the closed loop stiffness tun-
ing strategy is more accurate for the position tracking than
the linear impedance controller. Concerning, the perfor-
mances for the closed loop stiffness tuning, they are simi-
lar for the two controllers. The experimental results have
confirmed those expectations. Indeed the Backstepping
position and stiffness controller is more accurate for the
position tracking in particular on the y axis, but this con-
troller is also more sensitive to stick and slip phenomenon.
These results are in agreement with the experimental re-
sults given by Herzig et al. (2016) for a 1 DOF pneumatic
robot.

The performance of the presented controller can be im-
proved by adding a linear guide to the horizontal cylinder
to avoid the bending of the cylinder rod. Another way to
improved the accuracy of the model and the controller for
the position tracking is adding a LuGre model which is
suitable to model the stick and slip phenomenon.

On the other hand, a way to improve the closed-loop
stiffness accuracy of the controller is to use a stiffness ma-
trix transformation which is conservative. In order to do
that without adding a force sensor, the disturbances have
to be observed. So adding a robust observer for the exter-*
nal disturbance force could be an interesting improvement
the presented controller.

Finally, from the experiment results given in this paper,
the damping tuning cannot be analyzed. Indeed, in the
future, the robot will be coupled to an antagonist robot__
which will apply the disturbance forces. This robot will
allow disturbance forces without noise to be applied, but
also to study the behavior of the controller to sinusoidal
disturbances and then analyze the dynamic disturbance
rejection.

0

15

Appendix A. Calculation of the first pneumatic ef-
fort virtual input time derivative

Mvzd% cosOs + M(y2 + kz)d%ég)
dg cos? 65
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Appendix B. Experimental results for closed loop
stiffness tuning tables

Table B.6 and B.7 give the results for the closed loop
stiffness tuning for each trials for the Backstepping posi-
tion and stiffness controller and the impedance controller
respectively. In those tables F.,, F7(Ey, are the average value
of the force on z axis and the average value of the force on
y axis, respectively, when the disturbance is applied on the
relative direction. Az, and Ay, are the average values of
the displacement of the end-effector due to the disturbance
on respectively x and y axis, when the relative disturbance
is applied. Then the Cartesian closed-loop stiffnesses mea-
sured, denoted Kcizm and Keyym and the relative errors of

Cartesian stiffnesses, denoted Ff,, and Ek,,, , are com-
puted as follows:
F. Feoy
Kejom = ﬁ Kclym =
Aze Ae (B.1)
EK _ Kclacm — Rclx e _ Kclym - Kcly
ete Kcla: ety Kcly
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Table B.6

Experimental results for closed loop stiffness tuning with the Backstepping position and stiffness controller

Trial 1 2 3 I 5
K, [N/m] 1000 2000 3000 1000 2000 3000 1000 3000 3000 1000 3000 3000 1000 2000 3000
Fex V] 128.1 108 136 66.5 114.3 92.4 o7 95.7 126.6 134 125.2 129.3 45.7 o1 105.8
Awg[mm] 119.2 65.8 17.8 54 63.9 16.1 119.5 69.2 19 1177 62.9 19.4 87.2 16.9 18.9
K zm N/m] | 1074 | 1640.6 | 2845.8 | 707.8 | 1788.1 | 2005.3 | 811.3 | 1383.1 | 2585.2 | 1138.5 | 1988.8 | 2619.1 | 523.0 | 1938.3 | 2162.6
B, (%] 74 18 5.1 29.2 S10.6 332 189 30.8 138 13.9 0.6 127 476 31 27.9
Koy [N/m] 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
Fey[N] 56.8 -68.2 744 63.5 79.3 772 714 73.1 76.8 -63.1 -60.8 74.3 62.2 63 -67.6
Ayclmm] 72.8 a5 -37.9 68.4 45.2 31 73.4 37.5 26.4 66.9 34.5 28.4 66.9 34.2 23.7
K jym[N/m] | 7801 | 15187 | 19644 | 928.6 | 1753.7 | 2494.1 | 9719 | 1951.2 | 2912.5 | 943.7 | 1762.8 | 2613.5 | 929.1 | 1839.4 | 28552
Bk, %] 22 243 345 7 123 T16.9 2.8 2.4 2.9 5.6 19 129 R s I8

cly

Table B.7

Experimental results for closed loop stiffness tuning with the impedance controller
Trial 1 2 3 4 5
Ko [N/m] 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
Fem[N] 151.4 181.3 185.3 154.2 169.5 227.3 100 108.9 119.9 98.4 102.8 160.2 116.1 147.2 142.9
Awg[mm] 129.1 78.8 64.9 117.2 72.5 53.7 124.1 86.2 64.5 126.6 72.8 56.4 123.4 79 50.7
K jom[N/m] | 1172.7 | 2301.6 | 2854.4 | 1315.7 | 2338.5 | 4234.7 | 805.8 | 1263.7 | 1858.9 | 777.1 | 1410.0 | 2841.8 | 940.7 | 1862.1 | 2817.3
B, 1% 7.3 5.1 2.9 31.6 16.9 112 S04 36.8 38 22.3 295 5.3 5.9 6.9 6.1

clz

Koy, [N/m] 1000 2000 3000 1000 3000 3000 1000 3000 3000 1000 2000 3000 1000 2000 3000
Fey [N 751 64.4 844 65 79.6 83.6 65.1 68.3 64.1 a1s 58 “64.4 56.8 51.9 55.3
Ayclmm] 654 30 202 535 385 204 768 als 359 52.3 34.9 383 585 364 277
Reolym N/m] | 1147.9 | 21458 | 4170.7 | 1216.1 | 2069.7 | 4092.8 | 847.4 | 1633.9 | 2478.4 | 800.2 | 1660.0 | 1680.3 | 9714 | 1424.9 | 20005
Fx ., 7] 18 73 39 21.6 35 36.4 153 183 174 20 a7 vy 29 288 333
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