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A novel approach to latent class modelling: Identifying
the various types of Body Mass Index individuals

October 2019

Abstract

Given the increasing prevalence of adult obesity, furthering understanding of the
determinants of measures such as Body Mass Index (BMI) remains high on the pol-
icy agenda. We contribute to existing literature on modelling BMI by proposing an
extension to latent class modelling, which serves to unveil a more detailed picture of
the determinants of BMI. Interest here lies in latent class analysis with: a regres-
sion model and predictor variables explaining class membership; a regression model
and predictor variables explaining the outcome variable within BMI classes; and in-
stances where the BMI classes are naturally ordered and labelled by expected values
within class. A simple and generic way of parameterising both the class probabilities
and the statistical representation of behaviours within each class is proposed, that
simultaneously preserves the ranking according to class-specific expected values and
yields a parsimonious representation of the class probabilities. Based on a wide range
of metrics, the newly proposed approach is found to dominate the prevailing one; and
moreover, results are often quite different across the two.

JEL Classification: C3, I12

Keywords: Body Mass Index (BMI), expected values, latent class models, obesity,
ordered probability models.
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1 Introduction and background

TheWorld Obesity Federation (www.worldobesity.org) states that “the epidemic of obesity is

now recognized as one of the most important public health problems facing the world today”.

This is not surprising given that the World Health Organisation (WHO) in 2011 reported

that since 1980 adult obesity rates have doubled worldwide. Indeed, adult obesity is more

prevalent than under-nutrition. Around 670 million adults are obese, and 98 million severely

so (World Health Organisation 2014). Obesity is a condition of excessive body weight in the

form of fat, which is causally linked to a large number of debilitating and life-threatening

disorders. The adverse physical and monetary costs of obesity are well-documented. It

is generally argued by health experts that given the height of an individual, their weight

should lie within a certain range. Accordingly, the most commonly used measure to assess

whether an individual is obese is the Body Mass Index (BMI): the ratio of the individual’s

weight to the square of height. A widely recognised shortcoming of BMI is that it is not an

ideal measure of weight-related health status: for example, it fails to distinguish between fat

and muscle mass, and is affected by the distribution of fat. Nevertheless, its popularity is

attributable to the fact that relative to more accurate anthropometric measurements (skin-

fold tests, waist measurements) it is relatively cheap and easy to collect, and hence obtain

from large-scale nationally representative samples (Wooden, Watson, and Freidin 2008).

Given the serious health related issues associated with obesity, it is not surprising that

modelling BMI and obesity rates has attracted increasing interest from both academics and

policy-makers (Cutler, Glaeser, and Shapiro 2003, Chou, Grossman, and Saffer 2004, Philip-

son and Posner 2008, Mills 2009, Madden 2012, Brown and Roberts 2013, Greene, Harris,

Hollingsworth, and Maitra 2014, Hong, Yue, and Ghosh 2015). It is clearly important to

select an appropriate modelling approach in the context of such a highly policy relevant

application. There is evidence that individuals are essentially (primarily genetically) predis-

posed to be in particular weight-related health statuses (that is, BMI bands) as an obesity

predisposing genotype has been found to be present in 10% of individuals (Herbert, Gerry,

and McQueen 2006). That is, it is (medically) very likely that individuals are genetically

predisposed to being in different BMI classes. Observed BMI outcomes will be then a

combination of the underlying BMI-type range, but tempered by lifestyle choices. More-

over, these different BMI-type classes will undoubtedly react differently (with regard to

their observed BMI levels) to a similar set of lifestyle characteristics. So, with regard to an
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appropriate empirical strategy, which will simultaneously account for, and identify, these dif-

ferent BMI types, and allow for them to react differently to a similar set of characteristics,

several authors have suggested a latent class framework (Deb, Gallo, Ayyagari, Fletcher,

and Sindelar 2011, Greene, Harris, Hollingsworth, and Maitra 2014).

Latent class modelling has been especially popular in health research (Deb and Trivedi

2002, Bago D’Uva 2005b, Bago D’Uva 2005a, Reboussin, Ip, and Wolfson 2008, Bago d’Uva

and Jones 2009, Deb and Holmes 2000, Deb, Gallo, Ayyagari, Fletcher, and Sindelar 2011,

Chung, Anthony, and Schafer 2011). It involves probabilistically splitting the population

into a finite number of homogeneous classes, or types. Typically, within each of these the

same statistical model applies, but with differing parameters allowing the same explanatory

variables to have differing effects across the model/classes (Bago d’Uva and Jones 2009).

The latent class modelling contribution starts from the observation that although the

classes are latent - by definition - researchers often label them ex post according to an

observed attribute such as an expected value (EV ) within each class. Uncovering evidence

of the distinguishing features of the latent classes is an important part of the modelling

process. Moreover, a natural inconsistency arises as the (unrestricted) probabilities driving

these class allocations will typically not respond to this eventual ordered labeling of them. As

an explicit contribution to the literature, we propose a simple way of parameterising both

the class probabilities and the statistical representation of behaviours within each class,

that simultaneously preserves their ranking according to class-specific EV s and which yields

a parsimonious representation of the class probabilities, which is also consistent with the

inherent ordering in such. We do this by explicitly enforcing an ordering in the EV s across

classes combined with an ordered probabilistic specification for the class assignments. This

specification is both consistent with the ordering in theEV s across classes and offers a natural

and informative representation of the class assignment probabilities. The results suggest a

more detailed picture of the determinants of BMI, with six classes being supported by our

proposed approach, as compared to five classes being supported by the standard approach.

All of the metrics clearly support the new approach, and moreover, significant differences in

ex post quantities of interest are found, suggesting that the choice of appropriate approach

is, indeed, important.

In summary, interest here lies in latent class analysis, with: a regression model and

predictor variables explaining BMI class membership; a regression model and predictor
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variables explaining the outcome variable within BMI classes; and instances where theBMI

classes are naturally ordered and labelled by expected values within class. Our aims are:

to uncover both the true number and the underlying characteristics of the (predominantly)

genetically determined BMI types (and moreover, how these relate to those determined by

theWHO); and to determine the differing drivers of observed BMI outcomes within each of

these classes. We are interested in ensuring: a parsimonious form for the class probabilities

that is consistent with the inherent ordering in the classes; and to ensure that EV s are

indeed ordered within each class.

The explicit contribution of the paper is an extension to the methodology of latent class

models (LCMs). Received developments of LCMs include treatments of ordering in a latent

tendency that relates to the probabilities of latent class membership. The structure devel-

oped here extends the concept of ordering to the cross class comparison of the distribution

of the observed outcome. The first of these appears occasionally in the received literature;

whilst the second is new. The two combined lead to a methodological contribution that ties

the empirical model to the theory of the data generating process of the observed data. In

our application, the end result appears to provide a better, and more parsimonious, fit to the

data, although it is important to acknowledge that this will not always be the case. What

we do develop here though, is a modeling framework in which the researcher can learn more

about causal relationships, partial effects, and meaningful simulation of observed outcomes.

2 Statistical and modelling framework

The model of interest here is a LCM with predictors in the class proportions and the

response densities; the use of covariates in the former has been well-studied and widely used

(Vermunt 2010, Bartolucci, Farcomeni, and Pennoni 2012). However, our contribution here

lies in how they enter. The suggested approach produces a solution in which the classes

are ordered (with respect to EV s) for all possible predictor values. When the classes are

ordered, it is logical to use an ordered regression model for these.

The overall density for individual i (i = 1, . . . , N), f(yi|xi,θ), is assumed to be an additive

mixture density of Q distinct sub-densities weighted by their appropriate mixing probabili-

ties, πiq. The outcome variable of interest is yi, affected by the (kx × 1) vector of covariates in

the model, xi, which have different effects in each q class, and θ denotes all of the parameters
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of the model. The corresponding mixed density is

f(yi|xi) =

Q∑

q=1

πiq × f(yi|xi, θq). (1)

Here interest is where πiq is a function of predictors (zi). A very common approach is to

employ a multinomial logit (MNL) form to quantify the effects of zi on the probabilities

of class membership; and implicitly, probabilistically, to allocate individuals to the various

classes (Greene 2012). An element of the specification search is determining the appropriate

number of classes, Q∗. A common approach is to use information criteria (IC) metrics; such

as BIC/SC (Schwarz 1978), AIC (Akaike 1987), corrected AIC, CAIC (Bozdogan 1987),

and Hannon-Quinn, HQIC, (Hannan and Quinn 1979).

2.1 Monotonically increasing expected values

In most empirical applications of LCMs there is an ex post labelling of the classes based

upon estimated EV s within each of the q = 1, . . . , Q classes (Deb and Holmes 2000, Deb

and Trivedi 2002, Bago D’Uva 2005b, Bago D’Uva 2005a, Bago d’Uva and Jones 2009, Deb,

Gallo, Ayyagari, Fletcher, and Sindelar 2011). Although it is an important output of the

modelling process, this ordering of the classes is not ensured during the estimation process.

Here we suggest an easy to implement way to do so, and thereby be consistent with the

research question at hand. Thus, with regard to the modelling of observed BMI outcomes,

we simply wish to ensure that as classes “increase” with respect to EV s, the EV s do actually

rise.

The properties of the output variable to be modelled will dictate the specific functional

form for the specification of the density fq(yi|xi, θq); given the continuous nature of BMI,

for us this is a simple linear regression model. However, it is useful here to consider the

determination of observed yi within each class. Consider a latent index function of the form

y∗i,q = x
′

iβq + εi,q, (2)

where βq are the response parameters and εi,q a disturbance term. The y
∗

i,q of equation (2) will

be related to observations within group yi,q via a mapping dictated by f(yi|xi, θq). Regardless

of the model, EV s on the assumption of underlying ordinality or cardinality of observed yi,q,

are monotonically related to the index x′iβq. This generic approach would be similarly

applicable to any outcome variable of interest, assuming it embodies some underlying form
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of ordering, generally defined. Thus ensuring that x′iβq=1 ≤ x
′

iβq=2 ≤ · · · ≤ x
′

iβQ will ensure

that EVi,q=1 ≤ EVi,q=2 ≤ · · · ≤ EVi,Q.

We define EV ∗i,q as a function of the index x
′

iβq (such that EV
∗

i,q will be positively, and

monotonically related to the true EV , EVi,q). Consider modelling the EV
∗

i,q in the first, or

smallest EV, class (q = 1) as simply

EV ∗i,q=1 = EVi,q=1. (3)

In a linear regression setting, this would amount to setting EVi,q=1 = x
′

iβq=1. Without the

necessity of being model-specific we now want to express the “mean” function in q = 2 which,

by construction we wish to be greater than that for q = 1,

EV ∗i,q=2 = EV
∗

i,q=1 + exp
(
x′iβq=2

)
. (4)

Therefore, in a simple regression setting, we would haveE (yq=1 |x) = x
′

iβq=1 andE (yq=2 |x) =

E (yq=1 |x) + exp
(
x′iβq=2

)
. As long as the relationship between EV and EV ∗ is monotonic,

enforcing EV ∗i,q=1 ≤ EV ∗i,q=2 ≤ · · · ≤ EV ∗i,Q will enforce EVi,q=1 ≤ EVi,q=2 ≤ · · · ≤ EVi,Q.

This progression is simply continued for subsequent classes. This approach ensures that

the EV ’s (generally defined) are ordered across classes, whilst the specification of EVi,q=1

is likely to be model-specific. For example, in a linear regression EVi,q=1 = x′iβq; whilst

EVi,q=1 = exp
(
x′iβq=1

)
in a Poisson count model; and so on.

Assuming that the within class models are linear regressions, then within class 1 partial

effects are given by the respective coefficients in that class (or the appropriate partial effect in

nonlinear models). Coefficients βq,k, q > 2, can be directly interpreted as differential effects

with respect to EV ∗i,q−1. Take for example, the partial effect of xk: in the linear regression

case:

EV ∗
1
= x′β

1
; ∂EV ∗

1
/∂xk = β1,k,

EV ∗q = EV
∗

q−1 + exp
(
x′βq

)
; ∂EV ∗q /∂xk = exp

(
x′βq

)
βq,k + ∂EV

∗

q−1 /∂xk , q = 2, . . .
(5)

Thus the partial effect for xk in q = 2 includes a differential effect to that of q = 1. If β2,k

(i.e., the coefficient of xk in the second class) is negative, so will be the differential effect,

and the magnitude given by the value of this coefficient and the weighting term exp (x′β
2
) .

The signs of these partial effects are not constrained by the exp (·) transformation to be

positive, but will be differentiated by the signs and magnitudes of their various components.

The signs of the differential effects from q = q∗ to q = q∗+1 will be uniquely determined by

6



the sign of the coefficient in that class, βq∗,k. The coefficients are not, as in most nonlinear

models, direct estimates of partial effects; with the exception here of q = 1. A negative

coefficient in a particular class does not necessarily imply a negative partial effect within

that class.

Overall partial effects can be obtained by constructing a weighted average of EV ’s across

classes, and differentiating this with respect to the covariate of interest. In our analysis of

BMI, we use prior probabilities for weights along with numerical derivatives, and apply

the delta method to obtain standard errors. It may be that in any particular application,

neighbouring class EV ’s might converge and/or similarly boundary parameters. This could

well be evidence that too many classes have been estimated, which should be evidenced by

the model metrics discussed in this paper. Moreover, even if EV ’s are very similar across

classes, this does not necessarily imply that partial effects will also be, as EV ’s are a function

of the composite index x′βq as opposed to any single component of this. This is similarly

true of the traditional approach.

We note here that a similar ranking could also be obtained by enforcing other restrictions.

For example, response parameters within the class regressions could be forced to be equal

across classes, and ordering imposed by simple ordering of the constant terms. However, in

general we would recommend against such an approach, as it appears rather arbitrary and

overly restrictive and would appear to have adverse consequences on overall model fit.

2.2 Class probabilities

The specification of the mixing weights can be a substantive part of the model construction.

In a recent latent class study of BMI, Greene, Harris, Hollingsworth, and Maitra (2014)

suggested a model that embodied a latent trait, the presence of the unobservable FTO gene,

for which observable characteristics, zi (such as country of origin), might contain relevant

information. The conditional (on zi) usual multinomial logit (MNL) form for the prior

probabilities,

πiq =
exp

(
z′iγq

)

∑Q

q=1 exp
(
z′iγq

) , (6)

where one of the γq vectors is normalised to zero, is a convenient choice that has been used in

many studies. Indeed, this is now standard in the received applications, and has been built

into many popular software packages. The approach has the advantage of being relatively

unrestrictive. It is also a particularly convenient form for the EM algorithm (see, Alfo,
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Salvati, and Ranalli (2017) and Friedl and Kauermann (2000), for example). We extend

equation (6) in two directions. First, we seek a more parsimonious functional form. The

functional form in equation (6) adds a full kz + 1 parameter vector (including a constant

term) for each class. Model selection criteria that penalize specifications with a large number

of parameters will tend to discriminate against theMNLmodel, possibly unduly so. Second,

we connect the class probabilities to an inherent ordering of the classes. There is no obvious

way to do so with equation (6), but it is relatively straightforward with the specification

proposed below.

The specification search for LCMs is typically driven by information criteria such as

BIC. As stated above, IC metrics are structured so as to penalize large models. TheMNL

form is at a disadvantage to a more parsimonious one in that each new class adds potentially

many parameters to the model. We find that in many empirical exercises, the preferred

number of classes is less than or equal to three. It may well be that more classes could be

identified if the analysis were based on a more compact form for the class probabilities. On

this basis, class-specific results might be distorted by a merging of heterogeneous classes.

Although a variety of approaches appear in the received studies, theMNL form is by far

the most common. However, Fabrizi, Montanari, and Ranalli (2016) do mention an ordered

logit alternative of the form

ln
Prob (q ≤ c |zi )

Prob (q > c |zi )
= µc + z

′

iγ (7)

that would be appropriate if an unobserved continuous variable is assumed to underlie the

class assignment. This is a useful starting point for our extensions, as we have assumed

not only that the class assignments are ordered in this fashion, but also that the ordering

extends to the main outcomes in the classes through the means, EV ∗q > EV
∗

q−1. An ordered

probit (OP ) formulation for the prior probabilities,

πiq = Φ
(
µq − z

′

iγ
)
− Φ

(
µq−1 − z

′

iγ
)
, (8)

where Φ is the standard normal CDF , appears particularly appropriate and has the advan-

tage of a more parsimonious specification. The addition of another class to this formulation

adds only a single additional cut point, µ, again, consistent with a partitioning of the range

of an underlying continuous variable. The assumed form implies

Probi(class = q |zi ) = Prob
(
µq−1 < z

′

iγ + εi < µq
)
, εi ∼ N (0, 1) . (9)
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It is conceivable that the ordered choice form of the class probabilities is restrictive relative

to theMNL form. However, if the type of ordering suggested here is an intrinsic part of the

data generating process, then a model that does not take advantage of that feature, such

as the MNL with covariates, could overfit the data. In essence, the only structure that the

MNL imposes on the discrete outcomes is that only one of them can occur — any inherent

ordering is not modeled. In the simulation experiments presented in the Online Appendix,

Section 1, even with the data generated by an MNL process, applying the OP format does

not adversely affect the results. Indeed, researchers typically do not use the MNL format

when the data are naturally ordered. The format may be likewise out of place here. There

are other ways to restrict the MNL model, perhaps along the lines of Heckman and Singer

(1984) with some device to impose an ordering on the constant terms. However, the OP

approach has an intuitive appeal and is straightforward to implement.

It is interesting to compare how our suggested approach described above, relates to

existing studies. Ordering in the class probabilities has appeared in numerous applications

in the literature, such as Croon (2002), Fabrizi, Montanari, and Ranalli (2016), Vermunt

(2010) and Karabatsos and Sheu (2004). In these studies, the model for the underlying class

probabilities is built upon a latent variable that asserts an ordering to the classes. The class

specific segment of the model is heterogeneous, but not otherwise ordered. Croon (2002),

for example, examines a class specific multinomial distribution, with no implicit comparison

across classes. More recently, Fabrizi, Montanari, and Ranalli (2016) use the segmentation

to deduce the sizes of the latent classes. A class that is higher on the underlying scale is not

necessarily larger. In a similar vein to our proposal, Alfo, Salvati, and Ranalli (2017) consider

a mixture of quantile regression models. The specific quantile examined (for example, the

median), however, is fixed in advance, and is common across the classes. The classes here are

not ordered. The quantile regressions would seem to embody an ordering of sorts - within a

class, the 90th percentile of y|x is necessarily greater than the 80th quantile of y|x. However,

it does not follow, for example, that if class 3 is ranked higher than class 2, that the 90th

percentile in class 3 is necessarily greater (or smaller) than the 90th percentile of class 2. It

is this latter comparison that interests us here.
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2.3 Extension to a random effects panel specification

The application here involves two waves of the British Household Panel Survey, BHPS

(2004, 2006, see below). In general, the extension of the latent class specification to panel

data involves treating waves jointly, holding constant over time the elements of the model

that are specific to the individual. This becomes equivalent to treating the model parameters

θ non-parametrically as a random vector with discrete support — the discrete outcomes define

the classes. Accordingly there is a single set of class probabilities, πiq, q = 1, . . . , Q, for each

individual that is time invariant. For panel data, assuming conditional (on q) independence,

the joint density for the Ti observations for individual i is

f(yi1,...,yi,Ti|xi1,...,xi,Ti) =

Q∑

q=1

πiq ×

Ti∏

t=1

f(yit|xit, θq), (10)

with corresponding log-likelihood

lnL =
N∑

i=1

ln f(yi1,...,yi,Ti|xi1,...,xi,Ti). (11)

Note, model identification of the new procedure is discussed in the Online Appendix, Section

2.1.

3 Data

We analyse data drawn from the BHPS, which is a longitudinal survey of private house-

holds in Great Britain, and was designed as an annual survey of each adult member of a

nationally representative sample of households. The BHPS sample design was based on a

clustered stratified sample of addresses across Great Britain with individuals living at these

addresses being identified as potential panel members. The first wave in 1991 achieved a

sample of some 5,500 households, covering approximately 10,300 adults from 250 areas of

Great Britain (Taylor 2010). In only two waves 14 (2004) and 16 (2006), was information

collected on weight and height, which we use to calculate BMI. Our data comprises of

19,628 observations covering individuals aged 16 and over. Average BMI in the sample is

27.218, with a standard deviation of 5.43 (Table 1), which lies in the lower end of the over-

weight BMI category suggested by the WHO. The WHO classification assigns adults to

either underweight, normal range, overweight or obese categories (WHO 2000); underweight
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is BMI < 18.5; normal is 18.5 ≤ BMI < 24.99; overweight 25 ≤ BMI < 29.99; and obese

BMI ≥ 30.

We treat class membership as time-invariant and search for indicators for different genetic

types to explain membership of these BMI classes. Such an approach would therefore be

consistent with there being an obesity predisposing genotype present in individuals (Herbert,

Gerry, and McQueen 2006). Following the related literature, we include all available time

invariant characteristics, such as birth cohort and gender. We also control for socioeconomic

characteristics relating to family background: the respondent’s parents’ occupation (at re-

spondent age 14). Similarly, we include controls for parents’ education. Finally, we include

time invariant controls for personality: the Big Five personality traits. We follow the stan-

dard practice to mitigate against the potential problem of life-cycle effects influencing these

and condition each personality trait on a polynomial in age (Nyhus and Pons 2005). The

resulting residuals are standardised and used as indicators of personality traits.

In the outcome equation, we again follow the received literature (Cutler, Glaeser, and

Shapiro 2003, Chou, Grossman, and Saffer 2004, Brown and Roberts 2013, Greene, Harris,

Hollingsworth, and Maitra 2014) and control for age, number of children, marital status,

household income, employment status, highest level of educational attainment and region.

Finally, we control for a wide range of health problems: problems with: arms, legs, hands,

etc.; sight; hearing; skin conditions/allergy; chest/breathing; heart/blood pressure; stom-

ach or digestion; diabetes; anxiety, depression, etc.; migraine; and cancer. We follow the

relevant literature and consider a composite variable (Comorbidities) denoting the number

of reported health problems, see for example, Banks, Blundell, and Emmerson (2015) and

Marquesa, Cruzb, Regob, and da Silvab (2016). Descriptive statistics are presented in Table

1.

4 Results

4.1 Model comparison

We firstly compare a range of different latent class models using standard IC metrics in

order to ascertain the preferred approach. Note that as currently the suggested approach

is not available in commercial software, all estimations were obtained using author-written

Gauss script utilising the cmlMT (constrained) maximum likelihood add-in module (tem-

plate Gauss code for estimation, as well as the procedure file used for estimation, are freely
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Table 1: Descriptive statistics, N = 19, 628

Standard
Variable Mean Deviation

BMI 27.218 (5.43)
Female 0.503 (0.50)
Birth cohort 1940 0.165 (0.37)
Birth cohort 1950 0.179 (0.38)
Birth cohort 1960 0.212 (0.41)
Birth cohort 1970 0.165 (0.37)
Birth cohort 1980− 1990 0.094 (0.29)
Big 5 : Agreeableness -0.002 (1.00)
Big 5 : Conscientiousness -0.003 (1.00)
Big 5 : Extraversion -0.002 (1.00)
Big 5 : Neuroticism 0.004 (1.00)
Big 5 : Openness to experience -0.001 (1.00)
Father some education 0.152 (0.36)
Father further education 0.289 (0.45)
Mother some education 0.222 (0.42)
Mother further education 0.177 (0.38)
Father professional/managerial 0.224 (0.42)
Father skilled non−manual 0.069 (0.25)
Father manual/unskilled 0.490 (0.50)
Mother professional/managerial 0.092 (0.29)
Mother skilled non−manual 0.117 (0.32)
Mother manual/unskilled 0.203 (0.40)
Age10 4.804 (1.72)
Number of children 0.587 (0.96)
Married 0.587 (0.49)
(Log of) household income 10.213 (0.73)
Employed 0.608 (0.49)
Not in the labour force (NILF ) 0.144 (0.35)
Degree 0.150 (0.36)
V ocationaldegree 0.303 (0.46)
A− level 0.117 (0.32)
GCSE 0.159 (0.37)
Comorbidities 1.267 (1.44)
Midlands 0.100 (0.30)
North 0.151 (0.36)
Wales 0.166 (0.37)
Scotland 0.175 (0.38)
Northern Ireland 0.167 (0.37)
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Table 2: Model selection metrics

BIC AIC CAIC HQIC Parameters

Linear Regression 121, 086 120, 936 121, 105 120, 985 19
2-class (unrestricted) 115, 537 115, 064 115, 597 115, 219 60
3-class (restricted) 113, 182 112, 552 113, 262 112, 758 80
3-class (unrestricted) 113, 308 112, 512 113, 409 112, 773 101
4-class (restricted) 111, 717 110, 929 111, 817 111, 187 100
4-class (unrestricted) 112, 015 110, 895 112, 157 111, 262 142
5-class (restricted) 111, 143 110, 197 111, 263 110, 507 120
5-class (unrestricted); model b 111, 484 110, 041 111, 667 110, 513 183
6-class (restricted); model a 110,675 109,571 110,815 109,932 140
6-class (unrestricted) 111, 627 109, 861 111, 851 110, 439 224
7-class (restricted) 111, 910 110, 649 112, 070 111, 062 160
7-class (unrestricted); model c 111, 676 109, 586 111, 941 110, 271 265
V uong (BIC) ; a vs b 8.48
V uong (AIC) ; a vs c 14.4
V uong (BIC,AIC) ; a vs a − −

Note: preferred model for each metric in bold.

available - see the Online Appendix Sections 2 and 3 for details including an example like-

lihood function). Further estimation details, including starting values and a discussion of

maximum likelihood techniques versus the EM algorithm (which turns out to be invalid

here), are also discussed in the Online Appendix, Section 2.

We consider 12 models in total, with up to Q = 7 for both approaches (including a simple

linear regression model). In Table 2 we present in bold for each IC metric, the favoured

model (the Parameters column details the total number of parameters estimated in each

specification). As is usual in such exercises, we simply let the IC metrics dictate the optimal

number of classes.

It is reassuring to see that all of the IC metrics unanimously favour the 6-class re-

stricted (OP ) model. However, in terms of identifying the appropriate unrestricted model

for comparison purposes, there is some disagreement amongst the IC metrics with respect to

selecting amongst the unrestricted models: BIC and CAIC favour the 5-class, whilst AIC

and HQIC the 7-class. However, there is much evidence to suggest that AIC is inconsis-

tent and tends to select models that are over-fitted; see for example, Koehler and Murphree

(1988). In particular, in the mixture context, AIC tends to overestimate the correct number

of components/classes (Soromenho 1994). On this basis we select the 5-class unrestricted
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model for comparison purposes.

We also consider three variants of the V uong test for non-nested models. To take into

account potentially large differences in model sizes, we use the BIC bias corrected version

of the V uong statistic (Vuong 1989). Based on the two metrics most commonly used in

the related literature (AIC,BIC): V uong (BIC) considers the two top-performing models

according to BIC; V uong (AIC) the top two according to AIC; and V uong (BIC,AIC) ,

the top one from each. Both the AIC and the BIC select the restricted 6-class model and, in

both instances, this model is preferred to the competing unrestricted 5- and 7-class models.

These findings make a very compelling case for the 6-class restricted model.

In Table 3, we present some summary statistics for the preferred restricted 6-class model

and the 5-class unrestricted model: EV s by BMI class (evaluated at sample means); average

posterior class probabilities; and finally class-specific dispersion parameters. “Overall” EV s

were calculated as the (prior probability) weighted average of the class-specific ones. Table

3 presents the increasing pattern in the EV s from classes 1 to 6 for the restricted 6-class

model and those from classes 1 to 5 (reported in increasing order) for the unrestricted 5-class

one.

For classes 1 to 3, all of the EV s, posterior probabilities and dispersion parameters are

similar across the preferred restricted model and the unrestricted model. For example, the

EV in class 1 (EV1) is 20.14 compared to 20.73; with a probability of 10% (15%) ; and with

a dispersion parameter of 1.464 (1.538) . Similarly, we see that the EV s for class 4 restricted

and unrestricted both lie in the end of the WHO defined overweight range (20− 29.99) ;

and at 27.73 and 29.46, respectively, are close. Furthermore, the proportion of individuals

estimated to be in this class, reflected by the posterior probabilities, is the same for each

model, at 12%, and, similarly, the spread of individuals’ BMIs within-class, 1.2 c.f. 1.4,

respectively, are also close.

There are some differences for the largest EV BMI classes. For example, for class 5, the

EV s are relatively close (29.28 compared to 31.52, for restricted and unrestricted, respec-

tively), and the posteriors are identical, although there are some are some differences in the

dispersion parameters (4.19 compared to 5.99). The difference in the dispersion parameters

could reflect the additional class for the restricted model, class 6, which is characterised

by a relatively high dispersion parameter, at 6.43. From the perspective of these summary

measures, it is clear that the choice of approach can make a significant difference.
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Focusing on the results from the preferred 6-class restricted model, for class 1 the EV of

20.14 sits at the low end of the WHO defined range of normal weight (18.5− 24.99). Based

on the posterior probability, this class is characterised by one of the smallest numbers of

individuals (at 10%). Given the position of the mean within this class (and its dispersion),

this suggests that individuals within this category are more likely to slip into the underweight

one, as opposed to the overweight (25− 29.99) one. Turning to the next class, with a mean

of 22.75, this also sits within the normal weight range, but at the higher end. Judging by the

spread of this distribution however (the lowest of any class), individuals within this class have

a relatively low probability of moving far from the mean. Based on the posterior probability,

18% of individuals are estimated to be in this group. Class 3 (EV = 25.19) falls into the very

lowest part of the overweight range, meaning that although the dispersion is small here (at

1.08), many of these individuals would still be on the borderline of the normal/overweight

range. Around 19% of the population are estimated to be in this class.

Of more concern however, are classes 4, 5 and 6. With means of 27.73, 29.28 and 35.14

respectively, these fall into the (mid and very high ends of) overweight and obese (> 30).

Moreover, for class 5 the average posterior probability is “large” (at 0.31), suggesting that a

worryingly large proportion of the population lie in this class. The dispersion of this distri-

bution is relatively large (at 4.185), especially compared with classes 1-4. This implies that

individuals genetically predisposed to be in this overweight class, can use lifestyle options to

place themselves in healthier weight-related ranges (although, by symmetry, this also implies

that there is significant risk of slipping into obesity as well). However, given the placement

of the mean with respect to this range, it is unfortunately more likely that individuals within

this class will fall into the obese range than the healthy weight one. Finally, there is a wor-

ryingly large proportion in the obese class (9%) ; the spread within this distribution is very

large, again suggesting that for these individuals lifestyle factors, for example, could be used

to move themselves into much healthier weight ranges.

4.2 Parameter estimates

The class membership equation is reasonably well-specified (Table 4), with gender, the birth

cohort controls, personality traits and, to a lesser extent, childhood conditions generally

driving the statistical significance. Positive (negative) OP coefficients imply higher proba-

bilities of being in the highest (lowest) classes (with the intervening ones being less clear:
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Table 3: Expected values, averaged posterior probabilities and dispersion parameters

Q = 6;OP Q = 5;MNL
Expected Post. Expected Post.
V alue prob. Dispersion (σq) V alue prob. Dispersion (σq)

Class 1 20.14 (0.06)
∗∗

0.10 1.464 (0.03) 20.73 (0.05)
∗∗

0.15 1.538 (0.03)
∗∗

Class 2 22.75 (0.04)∗∗ 0.18 1.074 (0.03) 23.69 (0.03)
∗∗

0.21 1.138 (0.03)
∗∗

Class 3 25.19 (0.04)
∗∗

0.19 1.077 (0.03) 26.32 (0.04)
∗∗

0.21 1.248 (0.03)
∗∗

Class 4 27.73 (0.04)
∗∗

0.12 1.165 (0.04) 29.46 (0.05)
∗∗

0.12 1.397 (0.04)
∗∗

Class 5 29.28 (0.11)
∗∗

0.31 4.185 (0.08) 31.52 (0.10)
∗∗

0.31 5.985 (0.06)
∗∗

Class 6 35.14 (0.45)
∗∗

0.09 6.429 (0.18)
Overall 26.76 (0.05)

∗∗

− − 27.76 (0.04)
∗∗

− −
Notes: ∗∗ and ∗ denote significant at 5, and 10% size. Post. prob. is posterior probability.

Greene and Hensher (2010)). Birth cohorts 1960, 1970 and 1980/90 are associated with

being in the higher BMI classes; and Conscientiousness, Neuroticism, Extraversion and

Openness to experience are also strong predictors of class membership. The indicator for

Mother further education is associated with being in lower BMI classes; whereas that for

Father manual/unskilled and Mother manual/unskilled are the opposite.

In Table 5, we present the class-specific partial effects. To aid interpretation, we label

these classes according to the above analyses based on the EV s within each one (Table 3),

and where these lie with respect to the WHO defined ranges: low normal (class 1), high

normal (class 2), low over (class 3), mid over (class 4), high over (class 5) and obese (class

6). As would be expected, the partial effects differ dramatically across the 6 classes in terms

of both size and statistical significance. In the case of age, the partial effects of the linear

term are positive and statistically significant in all 6 classes and increasing in magnitude

from class 1 to class 6. Those of the squared term again differ across classes, and increase

in (absolute) magnitude with class. Within each class then, individuals’ BMI initially rises

with age, peaks, and then starts to decline. The single effect of age (Age) , shows that for

every year one ages in class 6, BMI only increases by some 0.005 per year. On the other

hand, this number is much larger for class 4 at 0.055.

Whilst the number of dependent children appears to have no statistically significant effect

across the six classes, the effect of being married appears to quite significantly (both in

economic and statistical terms) raise BMI in all but class 6. Income has a strong significant

positive effect in classes 1, 2 and 3. Being employed has a large and significant positive effect
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Table 4: Class membership equation; preferred specification

Variable Estimated coefficient Standard error

Female −0.324 (0.02)∗∗

Birth cohort 1940 0.040 (0.04)
Birth cohort 1950 0.014 (0.04)
Birth cohort 1960 0.120 (0.04)∗∗

Birth cohort 1970 0.239 (0.04)∗∗

Birth cohort 1980− 1990 0.225 (0.06)∗∗

Agreeableness −0.007 (0.01)
Conscientiousness −0.076 (0.01)∗∗

Extraversion 0.071 (0.01)∗∗

Neuroticism −0.050 (0.01)∗∗

Openness to experience −0.027 (0.01)∗∗

Father some education −0.048 (0.04)
Father further education −0.031 (0.03)
Mother some education −0.050 (0.03)
Mother further education −0.092 (0.04)∗∗

Father professional/managerial 0.014 (0.04)
Father skilled non−manual 0.001 (0.05)
Father manual/unskilled 0.095 (0.03)∗∗

Mother professional/managerial 0.049 (0.04)
Mother skilled non−manual 0.000 (0.04)
Mother manual/unskilled 0.122 (0.03)∗∗

µ
1

−1.346 (0.05)∗∗

µ
2

−0.631 (0.04)∗∗

µ
3

−0.103 (0.04)∗∗

µ
4

0.206 (0.04)∗∗

µ
5

1.324 (0.07)∗∗

Notes: ∗∗ and ∗ denote significant at 5, and 10% size, respectively.
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in class 1; a significant negative effect in classes 3, 4 and (weakly) 6. On the other hand,

not being in the labour force, has quite large and negative effects (−0.343 and −0.374), but

only in classes 2 and 3, i.e., the high normal and low over classes.

There appears to be considerable heterogeneity in the effects of educational attainment

across the classes. For example, having a degree as the highest level of educational attainment

has a large, and statistically significant negative effect for class 5 and positive significant

effects for classes 2, 3 and 4. Having a vocational degree has an effect (positive, but smaller

compared to the Degree effects) only in class 4. A− level has a negative effect for class 5;

whereas GCSE has an effect (positive) in classes 2, 3 and 4. A “causal protective effect”

of education on BMI has previously been found in the literature (Webbink, Martin, and

Visscher 2010, Brunello, Fabbri, and Fort 2013).

We control for health conditions by entering the composite Comorbidities variable. In-

deed, this variable is a very strong driver of BMI levels across all classes. As the number

of comorbidities rises, it has a small (but significant) negative effect in class 1, being as-

sociated with lower BMI levels for individuals in the low normal category. The effect of

the Comorbidities variable is positive and significant across classes 2 to 6 and increases

in magnitude across the classes, from 0.06 (class 2) to 0.70 (class 6). At the higher BMI

classes, the effect is more pronounced: as the within class EV s increase, the effects of wors-

ening ill-health suggest that these individuals find it harder to maintain a healthy weight

range, via reduced exercise levels and the like. With this health proxy, we note the clear

potential for reverse causation and that our findings are interpreted as correlations rather

than causation (we return to this below). Finally, the regional effects are often statistically

significant, especially in classes 1-4, with considerable heterogeneity in terms of magnitude

apparent across both classes and regions.

Although the above results illustrate how such a LCM approach can highlight differential

partial effects across classes, the approach could also simply be used as a tool to allow for

more unobserved heterogeneity in the modelling exercise. If so, one would assume that the

researcher would primarily be interested only in overall partial effects. Moreover, if the

overall partials from the 6-class restricted and 5-class unrestricted models were similar, it

could be argued that our suggested approach has very little benefit and/or effect in practice.

Hence to explore this issue, Table 6 compares the overall (prior probability weighted) partial

effects across the two models. We also include simple OLS results here as well.
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Table 5: Class-specific partial effects

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
(low (high (low (mid (high (obese)

Variable normal) normal) over) over) over)

Age/10 1.123 2.046 2.529 2.722 3.567∗∗ 5.560∗∗

(0.14)∗∗ (0.11)∗∗ (0.11)∗∗ (0.13)∗∗ (0.30) (0.78)
Age2/1000 −0.876 −1.631 −2.090 −2.259 −3.293 −5.732∗∗

(0.13)∗∗ (0.11)∗∗ (0.10)∗∗ (0.13)∗∗ (0.33)∗∗ (0.83)
Age 0.028 0.048 0.052 0.055 0.040 0.005
Number of children −0.004 −0.054 −0.054 −0.066 −0.085 0.204

(0.05) (0.04) (0.03) (0.04) (0.07) (0.18)
Married 0.481 0.520 0.386 0.414 0.468 −0.008

(0.09)∗∗ (0.06)∗∗ (0.06)∗∗ (0.08)∗∗ (0.14)∗∗ (0.44)
(Log of) household income 0.148 0.101 0.101 −0.024 0.202 −0.068

(0.06)∗∗ (0.04)∗∗ (0.04)∗∗ (0.05) (0.11)∗ (0.32)
Employed 0.562 −0.031 −0.292 −0.351 0.212 −1.215

(0.13)∗∗ (0.08) (0.08)∗∗ (0.12)∗∗ (0.24) (0.66)∗

Not in the labour force −0.003 −0.343 −0.374 −0.100 −0.177 −0.237
(0.14) (0.09)∗∗ (0.10)∗∗ (0.13) (0.27) (0.69)

Degree 0.177 0.227 0.276 0.292 −0.898 −1.067
(0.12) (0.09)∗∗ (0.10)∗∗ (0.13)∗∗ (0.26)∗∗ (0.72)

V ocational degree 0.180 −0.015 −0.021 0.224 0.023 −0.162
(0.11)∗ (0.07) (0.07) (0.10)∗∗ (0.14) (0.54)

A− level 0.196 −0.094 −0.021 0.083 −0.589 0.260
(0.15) (0.10) (0.10) (0.14) (0.23)∗∗ (0.59)

GCSE 0.041 0.233 0.384 0.497 0.185 −0.651
(0.13) (0.08)∗∗ (0.09)∗∗ (0.11)∗∗ (0.18) (0.64)

Comorbidities −0.062 0.056 0.127 0.185 0.376 0.703
(0.03)∗∗ (0.02)∗∗ (0.02)∗∗ (0.02)∗∗ (0.04)∗∗ (0.12)∗∗

Midlands 0.254 0.539 0.718 0.936 0.216 0.795
(0.14)∗ (0.10)∗∗ (0.09)∗∗ (0.11)∗∗ (0.31) (0.70)

North 0.385 0.368 0.332 0.436 0.281 0.163
(0.13)∗∗ (0.09)∗∗ (0.09)∗∗ (0.11)∗∗ (0.20) (0.62)

Wales 0.433 0.696 0.749 0.368 0.670 1.039
(0.12)∗∗ (0.08)∗∗ (0.08)∗∗ (0.11)∗∗ (0.17)∗∗ (0.57)∗

Scotland 0.225 0.265 0.354 −0.038 0.319 −0.020
(0.12)∗ (0.09)∗∗ (0.08)∗∗ (0.11) (0.17)∗ (0.66)

Northern Ireland 0.553 0.977 1.163 0.768∗∗ 0.743 0.713
(0.12)∗∗ (0.08)∗∗ (0.08)∗∗ (0.12) (0.19)∗∗ (0.63)

Notes: ∗∗ and ∗ denote significant at 5, and 10% size, respectively.
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Table 6: Overall partial effects: OP vs MNL vs Constants-only

Q = 6;OP Q = 5;MNL OLS CONSTANTS

Female −1.230 (0.09)∗∗ −0.339 (0.08)∗∗ −0.782 (0.08)∗∗ −0.852 (0.07)∗∗

Birth cohort 1940 0.153 (0.15) −0.165 (0.13) − − − −
Birth cohort 1950 0.055 (0.15) −0.109 (0.13) − − − −
Birth cohort 1960 0.456 (0.15)∗∗ 0.097 (0.13) − − − −
Birth cohort 1970 0.909 (0.17)∗∗ −0.090 (0.15) − − − −
Birth cohort 1980− 1990 0.853 (0.21)∗∗ −0.179 (0.18) − − − −
Agreeableness −0.027 (0.27) −0.256 (0.53) −0.038 (0.04) 0.024 (0.13)
Conscientiousness −0.288 (0.32) 0.001 (0.33) −0.336 (0.04)∗∗ −0.248 (0.16)
Extraversion 0.271 (0.23) 0.075 (0.75) 0.267 (0.04)∗∗ 0.222 (0.23)
Neuroticism −0.190 (0.16) −0.170 (0.64) −0.279 (0.04)∗∗ −0.258 (0.31)
Openness to experience −0.101 (0.23) 0.110 (0.54) −0.061 (0.04) −0.103 (0.35)
Father some education −0.183 (0.14) 0.112 (0.12) −0.033 (0.12) 0.161 (0.12)
Father further ed. −0.118 (0.11) 0.262 (0.09)∗∗ −0.025 (0.10) 0.165 (0.09)∗

Mother some ed. −0.189 (0.12) 0.088 (0.11) −0.210 (0.11)∗ −0.043 (0.10)
Mother further ed. −0.348 (0.14)∗∗ −0.042 (0.12) −0.285 (0.12)∗∗ −0.340 (0.12)∗∗

Father prof./manage. 0.051 (0.14) 0.134 (0.12) 0.042 (0.13) 0.162 (0.12)
Father skill. non−man. 0.004 (0.19) −0.235 (0.18) 0.123 (0.17) −0.078 (0.17)
Father man./unskill. 0.362 (0.12)∗∗ −0.028 (0.10) 0.431 (0.11)∗∗ 0.233 (0.10)∗∗

Mother prof./manage. 0.187 (0.16) 0.015 (0.14) 0.198 (0.14) 0.148 (0.14)
Mother skill. non−man. 0.001 (0.14) 0.322 (0.13)∗∗ −0.067 (0.12) 0.048 (0.12)
Mother man./unskilled 0.464 (0.11)∗∗ −0.385 (0.10)∗∗ 5.219 (0.01)∗∗ 0.457 (0.09)∗∗

Age/10 2.928 (0.14)∗∗ 3.547 (0.12)∗∗ 2.558 (0.15)∗∗ 2.656 (0.13)∗∗

Age2/1, 000 −2.615 (0.14)∗∗ −3.285 (0.03)∗∗ −2.525 (0.15)∗∗ −2.439 (0.13)∗∗

Age 0.042 0.039 0.013 0.031
Number of children −0.038 (0.03) 0.072 (0.03)∗∗ −0.030 (0.04) −0.006 (0.04)
Married 0.414 (0.07)∗∗ 0.278 (0.07)∗∗ 0.391 (0.09)∗∗ 0.334 (0.08)∗∗

(Log of) household inc. 0.107 (0.05)∗∗ 0.039 (0.05) 0.082 (0.06) −0.012 (0.06)
Employed −0.092 (0.11) −0.078 (0.11) 0.059 (0.14) −0.056 (0.12)
Not in the labour force −0.225 (0.12)∗ −0.145 (0.12) −0.213 (0.16) −0.194 (0.14)
Degree −0.232 (0.12)∗∗ −0.559 (0.11)∗∗ −0.913 (0.14)∗∗ −0.391 (0.15)∗∗

V ocational degree 0.031 (0.08) −0.030 (0.08) −0.225 (0.11)∗∗ −0.024 (0.11)
A− level −0.157 (0.11) −0.067 (0.11) −0.347 (0.14)∗∗ −0.099 (0.14)
GCSE 0.184 (0.09)∗∗ −0.193 (0.10) −0.121 (0.12) 0.122 (0.11)
Comorbidities 0.233 (0.02)∗∗ 0.336 (0.02)∗∗ 0.580 (0.03)∗∗ 0.297 (0.02)∗∗

Midlands 0.515 (0.13)∗∗ 0.124 (0.12) 0.466 (0.14)∗∗ 0.357 (0.14)∗∗

North 0.325 (0.10)∗∗ −0.293 (0.10) 0.249 (0.12)∗∗ 0.094 (0.12)
Wales 0.663 (0.09)∗∗ 0.443 (0.10)∗∗ 0.527 (0.12)∗∗ 0.513 (0.11)∗∗

Scotland 0.234 (0.09)∗∗ 0.119 (0.10) 0.195 (0.12)∗∗ −0.048 (0.11)
Northern Ireland 0.850 (0.09)∗∗ 0.735 (0.10)∗∗ 0.880 (0.12)∗∗ 0.678 (0.11)∗∗

Notes: ∗∗ and ∗ denote significant at 5, and 10% size, respectively.
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As compared to the within class partial effects, variables in the class equation(s) now

also have effects on overall BMI values. Although the general pattern of results is broadly

consistent across the two models, there are some substantive differences in terms of size and

statistical significance for a number of explanatory variables (suggesting that the unrestricted

model may be yielding unreliable results). For example, take the class equation(s) first:

females, for example, have a significant negative overall effect in both, but of quite distinctly

different magnitudes (−1.23,−0.3). None of the birth cohort variables have an effect in the

MNL approach, whereas three of them do in the OP one. Both approaches agree on the

non-importance of the personality traits with respect to observed BMI levels (as opposed to

class membership). There is a wide divergence in the significance of the parental variables;

indeed, for the Mother manual/unskilled control, which is significant in both, its effect

actually switches in sign across approaches. Interestingly, of the 20+ variables in the class

equation part of the model, the MNL approach suggests that only four have a significant

(at 10% or above) effect. The OP approach finds significance for more of these. It is

hard to speculate on what is causing this. It may be that estimating multiple parameters

per covariate compared to one in the OP approach, adversely affects statistical significance

as the MNL unnecessarily “over-fits” these class probabilities and/or that effects across

classes possibly cancel each other out; either way, the OP approach will not suffer from such

potential drawbacks.

Next considering the output equation, we can again see that the overall partial effects are

“better explained” by the OP equation with respect to the number of statistically significant

variables: thirteen in the OP approach compared to just eight in the MNL one. Thus

with respect to statistical significance, there are several differences across the approaches,

but there are also differences in the estimated magnitudes of significant variables (although

direction of effect appears relatively consistent). For example, the implied nonlinear age

profile appears quite different in shape across both (although the overall effect of age is

quite similar). The effect of being married differs across the models (0.414 versus 0.278),

whereas the effect of comorbidities is similar. Finally, there are divergences in magnitudes

and statistical significance across the region indicators. With respect to comparisons with

the OLS results, we see that although the general findings agree with directions of effects, it

is evident that there are clear differences with regards to both magnitudes and significance

levels.
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The results so far suggest that the choice of approach is important. To further explore

this we take a closer look at some estimated densities. In Figure 1 we plot the implied

estimated densities by class for the new 6-class OP approach. The (enforced) ordering in

these densities is evident, as their measures of central tendency (and generally dispersion)

clearly increase over classes. From these, it is clear that the spread of classes 1-4 is very

similar, and quite tightly centred around their respective means. The implication of these

findings is that individuals within these classes are very unlikely to move from their respective

expected values corresponding to WHO ranges of: (low) normal ; (high) normal ; (low)

overweight ; and (mid) overweight. However, the increased dispersion of class 5 (EV = 29),

and even more-so, 6 (EV = 35) is also clearly evident, corresponding to WHO ranges of

(high) overweight and obese.

An implication of these findings, is that although the two highest BMI range classes

have high, and unhealthy, EV s, it does appear that behavioural choices, for example, could

help these individuals into more healthy BMI ranges. On the contrary, individuals in the

other, more healthy ranges, classes 1-3, appear to be very likely to be closely bound to

their class-specific EV s (as are those in class 4). Given their spread, we can see that large

parts of the distributions of classes 5 and 6 overlap with each other, as well as with those

of both classes 3 and 4. This effect is probably more pronounced for the obese (class 6)

group, who do have quite significant chances of moving themselves into more healthy weight

ranges. Interestingly, as Figure 1 makes clear, an individual with an observed BMI of say

25, could conceivably be in any of these middle (2-5 class) groups. On the other hand, an

observed BMI of say 35, is clearly only really likely to belong to either classes 5 or 6. Thus,

from a policy perspective, it is extremely important to be able to identify which group any

particular individual belongs to, which highlights the importance of the current research.

Finally, in Figure 2 we present the actual density of the raw BMI data for comparison,

along with: that from our preferred 6-class OP approach (prior probability weighted of the

above individual densities); that from the preferred MNL specification (5-class); and that

from a simple linear regression. Clearly, a simple linear regression approach is not a sensible

contender here. However, it is evident that the suggested approach does an excellent job

in predicting the empirical density. Indeed, it is difficult to distinguish the actual from the

predicted densities here. The same could also be said of the 5-class MNL approach though.

However, such a similar extremely high “level of fit” is achieved much more parsimoniously
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Figure 1: Individual Class Densities

Figure 2: Actual versus Predicted Densities

23



in the OP approach compared to the MNL one (140 versus 183 parameters). Again, we

suggest that this is a further validation of the suggested approach.

In summary, it is clear that the choice of approach matters: they imply quite different

overall partial effects; a different number of classes; and different behaviours within each

class. The new approach appears to provide just as good a fit as the much more heavily

parameterised existing one. Differences in the overall partial effects highlight the possibility

that an inappropriate modelling strategy may lead to incorrect inference and policy pre-

scriptions relating to measures to tackle high BMI levels and obesity. And finally there

is overwhelming support from the model selection metrics for the new approach over the

traditional one.

4.3 Robustness checks

An obvious robustness check against which to compare our model results, is to consider a

constants-only variant. So here, following much of the LCM literature, the class-assignment

prior probabilities are simply modelled as constants, and there are no restrictions placed on

the specifications of the mean function. We re-estimate our model removing all covariates

from the class equations, and include these in the outcome equation (apart from the birth

cohorts as we already include a quadratic in age). Again we treat the model as a panel data

one. In Table 7 we present the model selection metrics from this exercise, along with the

ones for our preferred model.

Once more we find strong evidence of a Q = 6 model being optimal, with all of the

IC metrics similarly favouring the constants-only 6-class model. Thus, there appears to be

strong evidence here for a 6-class model. Moreover, it is also clear that across-the-board

our preferred OP approach is preferred to the constants-only approach. However, again,

if the researcher is primarily interested in overall partial effects and, if the two approaches

yield very similar results in this respect, one would presumably favour the less complicated

approach. In Table 6 we compare (prior probability weighted) overall marginal effects from

the preferred constants-only approach, along with those from the corresponding OP , MNL

and OLS ones (previously discussed) under the CONSTANTS heading.

It is clear that the approach undertaken can be substantial for these summary partial

effects, with often large absolute and relative changes in magnitudes, and even changes in

signs and significance levels. For example, the constants-only approach suggests a much
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Table 7: Model selection metrics; comparison with constants-only approach

BIC AIC CAIC HQIC

6-class (panel) 110, 675∗∗ 109, 571 110, 815∗∗ 109, 932∗∗

2-class (constants) 115, 373 114, 813 115, 444 114, 997
3-class (constants) 113, 175 112, 332 113, 282 112, 608
4-class (constants) 111, 964 110, 836 112, 107 111, 205
5-class (constants) 111, 392 109, 981 111, 571 110, 443
6-class (constants) 111, 165∗ 109, 470∗ 111, 380∗ 110, 025∗

7-class (constants) 111, 578 109, 599 111, 829 110, 247
Note: preferred model for each metric denoted by ∗∗; preferred model for the constants-only versions by ∗.

smaller gender effect compared to the preferred OP one (well under and over unity, respec-

tively). The parental characteristics generally agree with respect to significance levels, but

can be quite similar (Mother further ed.) or divergent (Father man./unskill.). Interest-

ingly, (Father further ed.), whilst negative and insignificant in the OP model, is positive

and (weakly) significant in the constants-only one. The nonlinear effect of age is much more

pronounced in the OP model, as is the combined (linear) effect. The magnitude of the

significant effect of Degree in both, is almost double in the OP approach; whereas that for

Married is quite similar (0.414 compared to 0.334). Finally, the regional effects appear to

be much more prominent in the OP model, and indeed, the strong positive Scotland effect

here, is not only insignificant in the constants-only, but also negative.

As noted before, we would surmise that the variables exhibiting the largest differences

are probably those most severely affected by ignoring the omitted covariates (and possible

mis-specification) in (of) the class equation. Also, as with the other comparisons considered,

it is clear that the method chosen can quite often (but not across-the-board) have large

consequences.

The panel data approach employed here, being based on multiple observations per in-

dividual, should intuitively be better able to identify the inherent classes than a pooled

approach. However, if the model has been mis-specified in some manner, or individuals

potentially move across classes over time, then the panel approach adopted could also be

potentially mis-specified. Therefore an obvious robustness check is to compare our panel

data model results against a pooled, or cross-sectional, variant. For reasons of space, we do

not report the full set of results from this exercise (available on request). Instead we simply

discuss the findings relating to the IC metrics. We find that amongst the pooled variants

the IC metrics all favour the 7-class restricted model. Similarly, all the V uong statistics pro-
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vide further evidence supporting the 7-class restricted model amongst the pooled variants.

However, all of the pooled models are inferior to the 6-class panel model. Hence, comparing

the pooled results with the preferred panel one, given the much improved IC metrics and

likelihood values, one would clearly prefer the panel variant(s) to the cross-sectional ones.

Fully utilising the repeated nature of observations of individuals within class therefore aids in

better identification of/allocation to, the correct respective classes, and consequently results

in a better specified/performing model.

The next robustness check we consider, is that in our (BMI) output equation we include

the composite health indicator, Comorbidities, with the rationale that BMI is affected by

this general proxy for “health”. However, clearly the strong possibility of reverse causation

exists here, with health not only causing the BMI level (in part), but also BMI levels (in

part) contributing to the various health levels. If we had appropriate identifying variables

for this composite health proxy, that could be considered orthogonal to BMI, we might be

able to apply techniques for allowing for this endogeneity (Rivers and Vuong 1988, Terza,

Basu, and Rathouz 2008). As always, such variables are hard to find and justify, so instead

we simply remove this variable and re-estimate the model. Reassuringly the broad results

are effectively unchanged: indeed the metrics generally favour the OP 6-class model, as

above. Moreover, estimated EV s and other quantities of interest, are also all very similar.

For example, EV s in this model were (compared to above): 20 (20) ; 23 (23) ; 25 (25) ; 28

(28) ; 29 (29) and 36 (35) .

Similar reverse causation arguments could however, also be levelled at the personality

traits. In general, these are assumed to be fixed for most of an individual’s life. It could be

that BMI levels potentially affect personality traits. So, as a further robustness check, we

also remove these variables from the model. Once more, the results are remarkably robust:

the ICs still favoured the 6-class OP approach (as did all of the V uong tests), and EV s

were remarkably similar (at 20, 23, 25, 28, 29 and 36).

Finally, clearly there is the potential for significant differences by gender, both in the

number of BMI classes and the behaviour within these. Thus we restricted sub-samples to

both males and females, and we find that overall, splitting the sample by gender has no real

substantive effect on our results (available on request). For example, the Q = 6 OP model

is strongly preferred for both genders; EV s are very similar across all of the split gender and

the pooled samples, and indeed, all would fall into the same WHO BMI ranges.
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5 Conclusions

To evaluate the health of the nation, policy-makers place a great deal of emphasis on BMI

levels and the distribution of such. In this paper, we have furthered understanding of the

determinants of BMI, a key indicator of health risk, by proposing an extension to the latent

class methodology. Our extension allows for the ranking of expected values across classes

in estimation as well as developing a functional form for the class probabilities that is more

parsimonious than the familiar multinomial logit model. Our newly proposed approach leads

to the estimation of six BMI classes. This compares very quite favourably with the four

broad categories (Underweight, Normal, Overweight and Obese) as identified by the WHO.

Moreover, the estimated partial effects differed dramatically across the classes in terms of

sign, size and statistical significance. All metrics employed, clearly favoured the newly

suggested approach. Indeed, the experimental evidence (provided in the Online Appendix),

suggested that, in particular the BIC, HQIC and V uong metrics/statistics, are all very

useful in correctly selecting the appropriate model.

Furthermore, we find substantive differences in terms of size and statistical significance

in the overall partial effects for many of the explanatory variables across the two approaches.

These differences highlight the importance of selecting an appropriate approach for modelling

BMI. Differing results across the two suggest that choosing incorrectly could easily lead to

incorrect associations in terms of the magnitude and even the sign of the effect, which in

turn may lead to inappropriate policy prescriptions. Overall, our findings serve to highlight

the importance of selecting an appropriate modelling approach in the context of a policy-

relevant area such as BMI. To design appropriate strategies for tackling high BMI levels

and obesity, policy-makers need to fully understand their determinants and our proposed

modelling approach, which is widely applicable across a wide range of research topics across

the social sciences, is an important step in this direction.
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