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1 Finite sample performance

To examine the validity of our modelling approach, we undertake a Monte Carlo (MC)

analysis. We generate under numerous scenarios, for up to Q = 6 classes (our preferred

specification in the empirical application). For each Q we consider a data generating process

(DGP ) for both the OP and MNL specifications. In each experiment we searched for

models up to two classes in excess of the true DGP (as convergence issues were frequently

encountered otherwise), up to a maximum of Q = 7. Due to the number of models estimated

in each repetition and the time they took to run, the number of Monte Carlo repetitions was

set equal to 100 in all instances.

A range of outputs was collected, but only for the correct DGP class model (OP and

MNL variants): the proportion of times the respective ICs selected the correct model over

all models and approaches considered; the same but just considering whether the correct

class model was selected within only OP or MNL variants (Within IC); three V uong tests

(as above, based on the BIC favoured OP and MNL models; the same for AIC favoured

ones; and finally, the two preferred models, irrespective of approach, based on BIC and

AIC metrics); the average proportion of correct class predictions based on the maximum -

posterior - probability rule (Correct) ; and finally differences between the average estimated

EV s and the true ones, evaluated at both an individual level and then averaged, EVq (xi),

and at sample means, EVq (x) . We should note that as with any MC experiment these

results cannot necessarily be generalised to all other situations; however, they do clearly

demonstrate the validity of the approach in the current context and moreover, give greater

confidence to the empirical findings.

In Table 1 we present the findings from the 2-class and 3-class MNL and OP DGP s,

respectively. As, arguably, the most important metrics here are the model selection ones,

these are highlighted in bold. Thus we can see that for a simple 2-class model, all of the

IC and V uong statistics do an excellent job in correctly selecting the 2-class model. Indeed,

only the AIC does not correctly select this model in all instances. Choosing the preferred

model on the basis of the top two OP and MNL performing models (on the basis of AIC)

the V uong test, V uong (AIC) , correctly selects in 99% of instances; whereas those based on

the best two performing models with respect to the both BIC, V uong (BIC) , and best BIC

and AIC models, V uong (BIC,AIC) , have a 100% record here. Moreover, the percentage

of correct class predictions appears high (at 84%), and all EV s are extremely accurately
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estimated.

Generating for a 3-class model now allows us to consider both theMNL and OP variants.

Thus we can see that when the DGP is a 3-class MNL model, all ICs correctly select the

MNL Q = 3 model over all other Q models, including all possible OP variants. All of

the V uong statistics also correctly select the Q = 3 MNL model; all EV s are extremely

accurately estimated; and the model correctly predicts class membership in some 98% of

instances. The (mis-specified) OP Q = 3 model, does an equally good job at predicting

class membership (also at 98%); estimation of class-specific EV s are on a par with those

from the (correct) MNL Q = 3 model; and finally for all OP variants only, the Within ICs

show that especially if using BIC and CAIC, one would still correctly select the 3-class

model.

These results are effectively mirrored when generating with a OP Q = 3 model (last two

columns, Table 1). Here, apart from the AIC (at 88%), the ICs always correctly select the

true model across all models considered; and these favourable results are also reflected in the

performance of the V uong tests. The remaining performance across OP and MNL Q = 3

models is quite similar, with the former performing slightly better in terms of predicting class

membership (69 compared to 68%), whereas estimation of EVq is very accurate and similar

across both. Finally, if only looking at model selection within all MNL models, the ICs

do a reasonable job at correctly selecting the correct class model, in particular the HQIC

selects this in 100% of instances (although CAIC and BIC are much lower).

Table 2 presents the results when Q = 4. When the DGP is MNL (first two columns),

both the OP andMNL approaches have similar performances with respect to class member-

ship (at 77% each), and estimation of EVq is both very accurate and similar across approaches

(marginally better in the MNL model). In terms of model selection though, somewhat sur-

prisingly, both the BIC and CAIC metrics seem to have difficulty in distinguishing between

the Q = 4MNL and OP models: for example, BIC only correctly predicts theMNL model

in 30% of instances, whereas in all other instances (70%) it favours the OP one. Moreover,

this relatively poor performance of the BIC metric is reflected in the relatively poor per-

formance of the V uong tests here. However, it is interesting to note that the HQIC metric

continues to perform excellently here, correctly selecting MNL Q = 4 in all instances. The

difficulty here for the ICs in choosing across the OP andMNL variants is further evidenced

by the Within IC results for the MNL model, where success rates are at 100% (except
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Table 1: Monte Carlo class 2 and 3 results

DGP 2-class 3-class MNL 3-class OP
MNL OP MNL OP MNL

Correct 0.84 0.98 0.98 0.69 0.68
EV1 (x) 0.00 0.07 0.06 0.01 0.08
EV2 (x) 0.04 0.14 0.04 0.16 0.07
EV3 (x) − 0.15 0.01 0.15 0.31
EV1 (xi) 0.01 0.32 0.18 0.14 0.06
EV2 (xi) 0.33 0.03 0.02 0.08 0.11
EV3 (xi) − 0.27 0.94 0.31 0.24
BIC 1.00 0.00 1.00 1.00 0.00
AIC 0.83 0.00 1.00 0.88 0.00
CAIC 1.00 0.00 1.00 1.00 0.00
HQIC 1.00 0.00 1.00 1.00 0.00
Within IC
BIC − 1.00 1.00 1.00 0.43
AIC − 0.58 1.00 0.88 0.90
CAIC − 1.00 1.00 1.00 0.07
HQIC − 0.87 1.00 1.00 1.00
V uong (BIC) 1.00 0.00 1.00 1.00 0.00
V uong (AIC) 0.99 0.00 1.00 0.88 0.06
V uong (BIC,AIC) 1.00 0.00 1.00 1.00 0.00
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Table 2: Monte Carlo class 4 results

DGP 4-class MNL 4-class OP
OP MNL OP MNL

Correct 0.77 0.77 0.64 0.63
EV1 (x) 0.02 0.00 0.06 0.19
EV2 (x) 0.04 0.02 0.18 0.19
EV3 (x) 0.58 0.04 0.27 0.44
EV4 (x) 0.83 0.07 0.01 0.45
EV1 (xi) 0.02 0.00 0.15 0.24
EV2 (xi) 0.06 0.08 0.10 0.39
EV3 (xi) 0.66 0.05 0.44 0.29
EV4 (xi) 0.39 0.10 0.19 0.48
BIC 0.70 0.30 0.98 0.00
AIC 0.00 0.95 0.93 0.00
CAIC 0.94 0.06 0.84 0.00
HQIC 0.00 1.00 1.00 0.00
Within IC
BIC 1.00 1.00 0.98 0.00
AIC 0.79 0.95 0.95 0.75
CAIC 1.00 1.00 0.84 0.00
HQIC 1.00 1.00 1.00 0.75
V uong(BIC) 0.09 0.00 0.98 0.00
V uong(AIC) 0.11 0.20 0.93 0.00
V uong(BIC,AIC) 0.12 0.30 0.98 0.00

AIC at 95%). It is hard to know what is causing the slightly below par performance of the

IC metrics here, this may have something to do with the particular DGP considered.

The strong performance of the IC metrics return when the DGP is Q = 4 OP (columns

3 and 4, Table 2). HQIC once again achieves a perfect score, with BIC just behind at 98%.

The good performance of these is mirrored in the near 100% performance of the V uong

statistics. However, this time the only IC metrics to have any power in correctly detecting

the correct class MNL model (Within IC), are the AIC and HQIC ones (both at 75%),

with both BIC and CAIC never selecting the Q = 4 MNL model. Once more EV s are

very accurately estimated across both approaches (marginally more-so for OP ) and class

membership prediction rates are high for both (64 and 63%, respectively, for the OP and

MNL models).

Table 3 presents the Q = 5 results. When the true DGP is MNL (columns 2 and 3) all

ICs and V uong tests correctly select theMNL Q = 5 model. This DGP seems to adversely
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affect the performance of the OP model though, with class predictions much inferior (52

compared to 87%); and whilst the EVq quantities are closely estimated by the MNL model,

those for the OP are out now by over just decimal places, as has been the case in all previous

experiments (those at x seem to be worst affected, and are out by up to 3.5 BMI units for

EV4). Within IC metrics behave reasonably well for the OP approach, peaking at 98% for

AIC, but with HQIC also performing well at 75%.

For the OP DGP here (columns, 3 and 4, Table 3), again all IC metrics and V uong tests

correctly select the true model, and class prediction across models is very similar (at 80%,

OP and 78%, MNL). Interestingly, once more this class DGP seems to adversely affect the

ability of the OP model to accurately estimate EVq, even when it is the true DGP. Although

not as biased as before, they are out, on average, by just over 2 BMI units for EV5 (x) and

by nearly 2 for EV4 (xi) . It is unclear why these appear to be adversely affected in the Q = 5

scenario(s), especially so in light of the metrics doing a very good job in correctly identifying

the Q = 5 OP model. TheWithin IC metrics for theMNL model here do an exceptionally

good job of correctly identifying the Q = 5 model, with AIC being the lowest at some 99%.

Finally, Table 4 presents the Q = 6 results; when the true DGP is MNL (columns 2

and 3) all ICs and V uong tests correctly select the MNL Q = 6 model. All class-specific

EV s are accurately estimated by the MNL model, and moreover it correctly estimates 85%

of class membership. However, the Within IC metrics show that these infrequently fail to

correctly identify the correct class OP model; it only correctly predicts class membership

42% of the time; and, especially for the lower class EVq can be out up to as much as 7.55

BMI units. For the OP DGP (Table 4, columns 3 and 4), all metrics effectively correctly

select the OP Q = 6model all of the time; and the model correctly predicts class membership

80% of the time (as compared to the MNL model at 55%). Interestingly, the Within IC

metrics never select the correct class model for the MNL approach. The EVq quantities are

very closely estimated by the OP approach (especially so at the individual-averaged level).

However, those for the MNL can be quite biased, up to 7.55 (EV5 (x)) and 5.88 (EV6 (xi)).

1.1 Summary of finite sample results

The above experiments show, with only a few exceptions, that the model selection metrics

all have exceptionally good performance in correctly selecting the correct/true model. In

particular, the HQIC one has 100% performance in all scenarios considered. Indeed, these
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Table 3: Monte Carlo class 5 results

DGP 5-class MNL 5-class OP
OP MNL OP MNL

Correct 0.52 0.87 0.80 0.78
EV1 (x) 0.27 0.43 0.06 0.07
EV2 (x) 1.60 0.56 0.36 0.05
EV3 (x) 1.68 0.92 1.24 0.03
EV4 (x) 3.52 0.07 1.57 0.38
EV5 (x) 3.37 0.25 2.05 0.71
EV1 (xi) 0.04 0.25 0.07 0.04
EV2 (xi) 1.60 0.04 0.03 0.33
EV3 (xi) 0.57 0.09 0.01 0.87
EV4 (xi) 1.69 0.01 1.94 1.95
EV5 (xi) 0.21 0.16 0.45 0.52
BIC 0.00 1.00 1.00 0.00
AIC 0.00 1.00 1.00 0.00
CAIC 0.00 1.00 1.00 0.00
HQIC 0.00 1.00 1.00 0.00
Within IC
BIC 0.21 1.00 1.00 1.00
AIC 0.98 1.00 1.00 1.00
CAIC 0.10 1.00 1.00 0.99
HQIC 0.75 1.00 1.00 1.00
V uong(BIC) 0.00 1.00 1.00 0.00
V uong(AIC) 0.00 1.00 1.00 0.00
V uong(BIC,AIC) 0.00 1.00 1.00 0.00
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Table 4: Monte Carlo class 6 results

DGP 6-class MNL 6-class OP
OP MNL OP MNL

Correct 0.42 0.85 0.80 0.55
EV1 (x) 4.09 0.00 0.07 0.53
EV2 (x) 7.55 0.02 0.45 4.56
EV3 (x) 6.61 0.19 1.02 3.18
EV4 (x) 4.49 0.31 1.42 1.80
EV5 (x) 0.27 0.03 1.88 7.55
EV6 (x) 2.09 0.01 2.51 4.58
EV1 (xi) 4.09 0.08 0.01 0.43
EV2 (xi) 6.96 0.00 0.19 4.42
EV3 (xi) 6.05 0.16 0.77 2.82
EV4 (xi) 3.83 0.46 0.10 1.62
EV5 (xi) 0.45 0.01 0.32 4.18
EV6 (xi) 3.05 0.01 0.21 5.88
BIC 0.00 1.00 1.00 0.00
AIC 0.00 1.00 1.00 0.00
CAIC 0.00 1.00 0.99 0.00
HQIC 0.00 1.00 1.00 0.00
Within IC
BIC 0.33 1.00 1.00 0.00
AIC 0.33 1.00 1.00 0.00
CAIC 0.33 1.00 0.99 0.00
HQIC 0.67 1.00 1.00 0.00
V uong(BIC) 0.00 1.00 1.00 0.00
V uong(AIC) 0.00 1.00 1.00 0.00
V uong(BIC,AIC) 0.00 1.00 1.00 0.00
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results lead to great confidence in relying on these metrics and tests, both in general, and

in particular for modelling BMI. Typically EVq values are quite closely estimated, even

if the wrong model, but correct class, approach is chosen. Indeed, the metrics quite often

will correctly select the right number of classes, even for the wrong approach. Correct class

predictions are generally very high, with a value of around 80% being common. There is

some evidence that model performance for both approaches, in particular with respect to

estimation of EVq, declines as the true number of classes increases, but intuitively this is to

be expected.

It is interesting to relate these findings back to the analysis of BMI. Reassuringly in

the empirical analysis, there was complete consensus across all IC variants and V uong tests

over the superiority of the OP Q = 6 model. These findings give us great confidence in the

results of our suggested approach and the consequent findings. We do note though, that the

OP Q = 6 experimental results suggest that it might be prudent to take into account the

estimated standard errors of EVq in interpretation of the empirical results.

The fact that theseMC experiments show that both approaches often have quite similar

performance across DGP ’s is not to be taken as an indication that the form of the approach

taken will be inconsequential in practice. Indeed, the results from modelling BMI make

this quite clear, with many quantities of interest being quite distinct across approaches. In

reality, it is likely that neither of these approaches represent an exact description of the

true DGP , but the choice is more so of which one more closely mimics this reality in a

parsimonious manner, as compared with the “clinical laboratory” conditions of the MC

experiments. Given the results presented in this paper, it is our conjecture that this will,

more often than not, be provided by the newly suggested OP approach.

2 Estimation considerations

2.1 Model Identification

The within class model is identified: it is an OP model with a nonlinear index function.

OP models are identified in the absence of multicollinearity. Here, there is no issue of

identification within class. As long as there is variation across classes, the whole model is

identified. The issue of non-identification only arises if the number of classes in the specified

model exceeds what is supported by the data — i.e., the DGP . This possibility of failure

due to over-specification (too many classes) is actually useful, as it becomes evident in the
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results if the model is specified with too many classes — essentially infinite standard errors

and extremely small class probabilities for some of the classes.

A mathematical proof of identifiability would require, first, a definition of identification.

Most observers agree that a sufficient condition is full rank of the Hessian. We can only verify

this based on the logical argument above and on the nonsingularity of the estimator of the

asymptotic covariance matrix of the estimated coefficients. We do not encounter any issues

in the second case save for the aforementioned over-specification. Under this latter condition,

the unidentification seems to reveal itself via the asymptotic covariance matrix. (We note,

this aspect of latent class models is discussed in Heckman and Singer (1984); Heckman,

J. and B. Singer, “A Method for Minimizing the Impact of Distributional Assumptions in

Econometric Models for Duration,” Econometrica, 52, 1984, pp. 271-320.)

2.2 Estimation algorithms; maximum likelihood versus EM

Model parameters were estimated by maximum likelihood. The algorithm used is predom-

inantly the BFGS gradient method. Likelihoods for latent class models are sometimes

maximized by the EM algorithm. However, this method cannot be used for this model

because the class specific functions are not separable: due to the imposed ordering across

classes, β
1
appears in the conditional mean function of all Q class specific functions. The

so-called M step of the EM algorithm involves computation for each class separately, which

would not impose the cross-class equality constraints required here. On the other hand, max-

imum likelihood estimation is generally routine and conveniently allows the construction of

the full model. In estimation we also used algorithmic derivatives, whereas analytical ones

are likely to improve convergence performance. We also used numerical procedures where

appropriate, to evaluate relevant quantities of interest, and corresponding standard errors

were obtained using the Delta method. Robust standard errors were calculated using the

usual outer product of the gradient (OPG) estimator for the parameters of the model.

2.3 Start values

Starting values for the OP procedure were obtained in the following manner.

1. The MNL 2-class model was firstly estimated, using OLS values for the regression

and variance terms (perturbed for one of the classes), βq and V (εq) = σ2q, q = 1, 2.

In estimation to ensure well-defined variances/standard deviations, these entered the
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likelihood functions as σq = exp (ωq) , where ωq is freely estimated. Starting values

for the single parameter vector γ required for a 2-class model, were obtained by a

random draw from N (0, 1) /10. Note that here, and elsewhere where appropriate, the

user-written Gauss code was benchmarked against the available commercial software

(c.f., Limdep/Nlogit and Stata).

2. Based on γ̂ from 1., a 2-class restricted variant was estimated where start values for

βq=2 (restricted) were given by β̂q=2 (unrestrricted) /100.We note here that we do not

consider this as a valid OP variant, as due to the 2-class nature of the model, one class

by definition must embody a higher (lower) EV than the other one; and moreover the

probabilistic expressions for both will be identical. However, we use it simply as a tool

for providing sensible start values for the 3-class variant.

3. For the 3-class OP variant, we require start values for γ, µ
1
, µ

2
, βq and ωq, q = 1, 2, 3.

We set the µ values to simply split the standard normal distribution into equal parts:

µ
1
= Φ−1 (1/3) and µ

2
= Φ−1 (1/3) . We set the start value for β

1
= β̂

1
from 2.; all

other start values were set equal to zero. Note that in estimation we used the in-built

Gauss cmlMT inequality constraint function to ensure the requisite ordering in the µq

parameters throughout. If such a function is unavailable, one could equivalently use

µq = µq−1 + exp (aq) , where aq would be freely estimated.

4. For the 4-class model, a similar progression was followed for start values: µ
1
=

Φ−1 (1/4) ; µ
2
= Φ−1 (1/2) ; µ

3
= Φ−1 (3/4) ; β

1
= β̂

1
(from 3.); all other start val-

ues were set to zero.

5. Start values for the 5-class model continued this progression and so on.

We should note that, so long as sensible start values were given, the maximum likelihood

estimates ended-up at the same values, but speed of convergence was sometimes affected.

However, the procedures described above may not necessarily be optimal for all applications.

In practice it might be advisable to try a range of different start values, and to enter previ-

ously solved final estimates as new start values to ensure that the likelihood has achieved a

global, and not local, maximum.

Note also that Gauss code is freely available at:

https://drive.google.com/drive/folders/1rtoYfs5qfwcI4NcFpq0-pdhLJOZZEa56?usp=sharing.
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Usual LCMs with the MNL form the class probabilities, can be routinely estimated in

packages such as Latent Gold, NLOGIT, Stata v15 and some packages in R; see Grun, B.,

and F. Leisch (2007): “FlexMix: An R Package for Finite Mixture Modelling,”, Discussion

paper, Faculty of Commerce, University of Wollongong, Faculty of Commerce, University of

Wollongong.

3 Illustrative likelihood function

Below is the Gauss script likelihood function for a 3-class model:

proc LC3_MLE(struct PV p, y, x_lc, x_reg, ind);

local gama, mu, beta_1, beta_2, beta_3, sigma_1, sigma_2, sigma_3, zgama, pC1, pC2,

pC3i, pC2i, pC1i, Li, xb1, xb2, xb3, u1, u2, u3, regL1, regL2, regL3, mu1, mu2,

ln_sigma_1, ln_sigma_2, ln_sigma_3, count_i, start_i, stop_i, L1_temp, L2_temp,

L3_temp, L1_i, L2_i, L3_i;

struct modelResults mm;

gama = pvUnpack(p,"gama"); mu = pvUnpack(p,"mu");

beta_1 = pvUnpack(p,"beta_1");

beta_2 = pvUnpack(p,"beta_2");

beta_3 = pvUnpack(p,"beta_3");

ln_sigma_1 = pvUnpack(p,"ln_sigma_1");

ln_sigma_2 = pvUnpack(p,"ln_sigma_2");

ln_sigma_3 = pvUnpack(p,"ln_sigma_3");

sigma_1 = exp(ln_sigma_1);

sigma_2 = exp(ln_sigma_2);

sigma_3 = exp(ln_sigma_3);

/* regression EVs */

xb1 = x_reg*beta_1;

xb2 = xb1 + exp(x_reg*beta_2);

xb3 = xb2 + exp(x_reg*beta_3);

/* class probs */

zgama = x_lc*gama;

mu1 = mu[1];
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mu2 = mu[2];

pC1i = cdfn(mu1-zgama);

pC2i = cdfn(mu2-zgama)-cdfn(mu1-zgama);

pC3i = (1 - cdfn(mu2-zgama));

u1 = y - xb1;

u2 = y - xb2;

u3 = y - xb3;

regL1 = (1/sigma_1) .* pdfn(u1 ./ sigma_1);

regL2 = (1/sigma_2) .* pdfn(u2 ./ sigma_2);

regL3 = (1/sigma_3) .* pdfn(u3 ./ sigma_3);

if panel;

start_i = 1;

stop_i = count[1];

count_i = count[1];

L1_temp = regL1[start_i:stop_i,.];

L1_temp = prodc(L1_temp);

L2_temp = regL2[start_i:stop_i,.];

L2_temp = prodc(L2_temp);

L3_temp = regL3[start_i:stop_i,.];

L3_temp = prodc(L3_temp);

L1_i = L1_temp;

L2_i = L2_temp;

L3_i = L3_temp;

for jrep (2,rows(count),1);

count_i = count[jrep];

start_i = stop_i + 1;

stop_i = start_i + count_i - 1;

L1_temp = regL1[start_i:stop_i,.];

L1_temp = prodc(L1_temp);

L1_i = L1_i|L1_temp;

L2_temp = regL2[start_i:stop_i,.];

L2_temp = prodc(L2_temp);
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L2_i = L2_i|L2_temp;

L3_temp = regL3[start_i:stop_i,.];

L3_temp = prodc(L3_temp);

L3_i = L3_i|L3_temp;

endfor;

regL1 = L1_i;

regL2 = L2_i;

regL3 = L3_i;

endif;

Li = (pC1i .* regL1) + (pC2i .* regL2) + (pC3i .* regL3);

mm.Function = ln(Li);

retp(mm);

endp;
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