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The paper studies a layout problem of variable number of ellipses with variable sizes placed into 
an arbitrary disconnected polygonal domain with maximum packing factor. The ellipses can be 
continuously translated and rotated. Restrictions on the dimensions of the ellipses are taken into 
account. Tools for the mathematical modeling of placement constraints (distance constraints be-
tween ellipses and containment of ellipses into a polygonal domain) using the phi-function tech-
nique are introduced. The tools make it possible to formulate the layout problem in the form of 
MIP model that is equivalent to a sequence of nonlinear programming subproblems. We develop 
a new solution algorithm that involves the feasible starting point algorithm and optimization pro-
cedure to search for efficient locally optimal solutions of the layout problem. This algorithm can 
be used in the design of parts for «support-free» additive manufacturing, taking into account the 
conditions for its static/ dynamic strength. Results of the algorithm implementation for a topolog-
ically optimized flat part with the analysis of a stress state are provided.  

 
Keywords: ellipses; layout; phi-function technique; mathematical model; nonlinear optimization; 
additive manufacturing 

 

1. Introduction 

The layout problem presented in this work is motivated by designing parts (3D objects) with com-

plex geometry for their production using additive manufacturing (AM) technology (Gibson, Rosen, and 

Stucker 2015; Liu and Ma 2016; Araújo Luiz et al. 2018), also known as 3D printing. AM is the process 

of creating parts as opposed to traditional subtractive manufacturing methods. AM is an appropriate name 

to describe the technologies that build 3D objects by adding layer-upon-layer of material. In (Araújo Luiz 

et al. 2018) a review of existing general cutting and packing taxonomies in AM is presented and new 

specifications for classifying the problems encountered in AM are discussed. In particular, the build vol-

ume packing task in AM is formulated as a three-dimensional irregular problem of packing nonconvex 

polyhedra in an optimized cuboid container (see, e.g., (Romanova et al. 2018)). 

In this paper we consider another application of packing problems in AM. The popular AM ap-

proach implies inserting in the part geometry so-called “supports” at the pre-manufacturing/production 
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stage (Leary et al. 2016). The supports then have to be removed thus increasing duration and cost of pro-

duction. The “support-free” technologies are free from this disadvantage. In (Gibson, Rosen, and Stucker  

2015) based on identified design for additive manufacture rules, a method is proposed that modifies 

the theoretically optimal topology as required to ensure manufacturability without requiring additional 

support material.  

Paper (Mokwon et al. 2018) presents a novel method for generating support-free elliptic hollowing 

for 3D shapes avoiding additional supporting structures. To pack ellipses in the polygon the Voronoi dia-

gram is used. In this paper novel mathematical techniques for preparing part geometry for “support-free” 

production are presented. The main idea is replacing material-free part volumes not suitable for AM tech-

nologies (see, e.g., (Leary et al. 2016)) by an elliptical cavity system.  

The parameters of our algorithm are the minimum allowed distance between ellipses and re-

strictions on their sizes. In contrast to (Gibson, Rosen, and Stucker 2015), our design is less sensitive to 

orientation of the part during its additive production. The part produced with elliptical cavities is also 

more durable due to the absence of sharp internal corners (stress concentrators).  The parts with simple 

geometric shape cavities are more suitable for subsequent “finishing” technological operations. It is im-

portant for improving the quality of the part surfaces to increase their fatigue strength and durability, 

while making it more visually aesthetics (Huang and Xie 2010).  The approach can be naturally combined 

with existing optimal design algorithms focused on ensuring the part strength while minimizing its weight 

(see, e.g., (Liu and Tovar 2014)). This may lead to creating a system of automated part design for direct 

“support-free” production with the ability to predict even at the design stage their static/dynamic/fatigue 

strength depending on the type of operational loads. The optimal layout for ellipses in a system of discon-

nected polygonal regions, considered in the paper, is closely connected with the problem of minimizing 

the mass of the finished part. Special technical requirements (Lachmayer and Lippert 2017), e.g. mini-

mum wall thickness, minimum/maximum radius of curvature of the internal surfaces can also be taking 

into account.  

In this work a case study of implementing our algorithm for preparing a part for additive manufac-

turing is presented. The initial geometry of the part is obtained by topological optimization. The result of 

the design is compared with alternative geometries for maximum mechanical stresses under the action of 

a static cantilever load. These calculations are performed using the finite element method using a special-

ized software package.  

From mathematical point of view, this paper considers a new problem of optimal layout ellipses in a 

disconnected polygonal region with convex components of connectedness. This problem arises in compu-

tational geometry and operational research (Leao Aline et al. 2019; Fasano 2015). In recent years the 

problem of optimal placement for ellipses was intensively studied by different authors (see, e.g., 

(Litvinchev, Infante, and Ozuna 2015a; Pankratov, Romanova, and Litvinchev 2018; Stoyan, Pankratov, 

and Romanova 2016; Kampas, Castillo, and Pintér 2019; Emmendorfer, Oro, and Beckel  2015; Kallrath 
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and Rebennack 2014; Birgin, Lobato, and Martinez 2016; Pankratov, Romanova, and Litvinchev  2019) 

and the references therein).  

In (Litvinchev, Infante, and Ozuna 2015a) a problem of packing different circular objects in a rec-

tangular container is considered maximizing the total number of objects placed into the container. Vary-

ing the norm used in the definition of the circular object different shapes can be obtained, including ellip-

ses. Using a grid approximation of the container the packing problem is stated as a large scale linear 0-1 

optimization problem with binary variables representing assignment of centers to the nodes of the grid. 

Valid inequalities are used to strengthening the original formulation. Modifications of the main model are 

proposed to take into account nesting and/or thickness of the circles. The paper (Pankratov, Romanova, 

and Litvinchev 2018) studies packing ellipses in a rectangular container of minimum area. New tools are 

proposed for non-overlapping and containment constraints. A mathematical model for the packing prob-

lem is stated as a nonlinear programming problem. Two algorithms to find feasible starting points for 

identical and non-identical ellipses are proposed. The optimization procedure is used as a compaction al-

gorithm to search for local optimal solutions. Paper (Stoyan, Pankratov, and Romanova 2016) introduces 

quasi-phi-functions for an analytical description of placement constraints for free rotated and translated 

objects. For the packing ellipses into a minimum-area rectangle a mathematical model is formulated using 

quasi-phi-functions. The nonlinear programming problem is solved by an efficient solution technique 

proposed in the paper. In (Kampas, Castillo, and Pintér 2019) the authors present a model and numerical 

solution approach for packing ellipses into an optimized regular polygon. The optimization strategy is 

based on the concept of embedded Lagrange multipliers. They proceed simultaneously towards these ob-

jectives using the “LGO” solver system for global-local nonlinear optimization. The paper (Emmen-

dorfer, Oro, and Beckel  2015) presents a heuristic developed for packing problems of a number of non-

identical ellipses of variable sizes into an irregular polygon. Packed ellipses are tangent to the master el-

lipse, initially positioned at the center of the polygon. Superposition restrictions are imposed and checked 

at each stage. In (Kallrath and Rebennack 2014) the packing ellipses in a rectangle of minimum area is 

considered. The ellipses allow free rotations. A mathematical programming formulation for this problem 

is presented. For more than 14 ellipses the paper proposes heuristics. In (Birgin, Lobato, and Martinez 

2016) continuous nonlinear programming models and algorithms for packing n -dimensional ellipsoids in 

a minimum-area container are introduced. Two different models for the non-overlapping and models for 

the inclusion of ellipsoids within half-spaces and ellipsoids are presented. The authors apply a multi-start 

strategy combined with a clever choice of starting guesses and nonlinear programming local solver. Paper 

(Pankratov, Romanova, and Litvinchev 2019) considers packing ellipses with arbitrary orientation into a 

convex polygon. The objective is to find a minimum homothetic coefficient for the polygon still contain-

ing a given collection of ellipses. New phi-functions and quasi phi-functions to describe placement con-

straints are introduced. The packing problem is stated as a nonlinear programming problem. A solution 

approach is proposed combining a new starting point algorithm and a new algorithm  to search for locally 
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optimal solutions.  

Paper contributions: 

1. New statement of the ellipse packing problem that has application in AM for the topological op-

timisation of final products.  

2. New tools for the mathematical modelling of distance and containment constraints for a varia-

ble number of variable-size free rotated ellipses packed into a disconnected polygonal domain. 

3. Novel mathematical models of the ellipse packing problem. 

4. New algorithm for constructing starting feasible points for the ellipse packing problem. 

5. New local optimisation procedure that reduces the ellipse packing problem dimension. 

 

This paper is organized as follows. In Section 2 we give a new statement of the layout problem of 

ellipses in a disconnected polygonal domain. Section 3 describes new tools for the mathematical model-

ing of distance and containment constraints for a variable number of variable-size free rotated and trans-

lated ellipses packed into a disconnected polygonal domain. Section 4 gives new mathematical models of 

the problem. A novel algorithm for constructing feasible starting points and new optimization procedure 

to reduce the computational cost of the ellipse packing problem are presented in section 5. In Section 6 

we demonstrate the efficiency of the proposed algorithm. 

 

2. Problem statement 

 

We describe a polygonal domain by the union of a finite number of disjoint convex polygons: 

1 21
, ,

N

q q qq
 P P P

 
1 2 1 2, {1,..., }, ,Nq q I N q q    where qP  is a convex polygon.  

Let us consider a family E  of ellipses with variable semi-axes , , , ,
a

a a b b a b d d
b

         where 

, , ,a b d d     are the given constants, i.e. { , , , }
a

E a b a a b b d d
b

        E .  

Our aim is to generate the N  ellipse subsets  , , , {1,..., },qq q q
N qiE i J q I J n    E E  that can 

be fully arranged without overlapping inside the appropriate convex polygons , ,q Nq IP  with the maxi-

mum packing factor. 

In addition, a minimum allowable distance 0  between each pair of the ellipses q
iE  and q

jE  is 

given for , , .q
i j J i j   

A subset q
E  of variable-size moving ellipses is denoted by ( ) { ( ), }q qq q q

i iu E u i J E , where 

5
1 2( , ,..., ) q

q

nq q qq

n
u u u u R  is a vector of variable parameters of the ellipses ( ), ,q q q

i iE u i J  



 5 

( , , , , )q q q q q q
i i i i i iu x y a b  , ( , )q q q

i i iv x y  is a translation vector; q
i  is a rotation angle; ,q q

i ia b  are semi-

axes of the ellipse q
iE . 

 

Ellipse Layout Problem in a Disconnected Polygonal Domain (ELD). Find such ellipse subsets 

* * ** *
1 2( ), ( , ,..., ), ,q

q q qq q q
N

n
u u u u u q I E  that can be fully arranged within the appropriate convex poly-

gons , ,q Nq IP  with the maximum occupied area 
*

* ** *

1

( )
qn

q qq
q i i

i

F u a b



 , taking into account the given 

minimum allowable distance   between the ellipses. 

A value * * * *
1

( ) ( )
N q

qq
F u F u


  is taken as a solution of the problem of the maximum filling of the 

whole disconnected domain  , where * 1* 2* *( , ,..., )N
u u u u . 

The problem is equvalent to a sequence of N  independent layout subproblems for each Nq I  in 

the following formulation. 

Ellipse Layout Problem in a Convex Polygon (ELC). Find *q
u  and *

qn  such that the ellipses 

*
*( ) , ,

q

q q q
i i n

E u i I E  are packed in a convex polygon qP , taking into account distance constraints, such 

that the packing factor will reach its maximum value. 

In ELC problem the following layout constraints are met: 

 Containment constraints: ( )q q
qi iE u P  for each 

qni I ; 

 Distance constraints for the ellipses ( )q q
i iE u  and ( )q q

j jE u  for each 
qni j I  : 

 

dist( ( ),q q
i iE u ( )q q

j jE u ) ,   

 

where 0 , 
,

dist( , ) min d( , )
q q

i i j j

q q
i ji j

e E e E

E E e e
 

 , d( , )i je e  is the Euclidean distance between the two 

points , .i je e  

In this study, we use the phi-function technique (Stoyan et al. 2015; Stoyan, Pankratov, and Roma-

nova 2015; Stoyan and Romanova 2013; Chernov, Stoyan, and Romanova 2010) as the powerful tool of 

mathematical modeling of the layout constraints. 

 

 

3. Mathematical modelling tools 
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In this section we introduce a phi-function to describe containment constraint ( )q q
i iE u   and 

normalized quasi phi-function to describe distance constraint dist( ( )q q
i iE u , ( )q q

j jE u ) . 

For the phi-function and quasi-phi-function definitions we refer the reader to (Stoyan, Pankratov, 

and Romanova 2016; Chernov, Stoyan, and Romanova 2010). 

In order to define our functions for the sake of simplicity we omit the index q  for ellipses.  

 

3.1 Phi-function for containment constraints 

 
Containment of the ellipse ( )i iE u  into   for ELD  

Let 
1 2 1 2

1

, ,
N

q q q q q

q

  P P P P P , 1 2 1 2, {1,..., }, ,Nq q I N q q    where qP  is a convex 

polygon. 

We define the phi-function of ( )i iE u  and object * 2 \ intR    in the form 

 

 
*

( ) max ( )i qi

N

EE
i i

q I
u u




  

P
, (1) 

 

where ( , , , , )i i i i i iu x y a b  , 
*

( )i qE

iu
P

 is the phi-function of ( )i iE u  and the object * 2 \ intq qRP P  (Fig. 

1) defined in the next Subsection. 

 

 

Fig. 1 – Ellipse ( )i iE u  and object *  

 

Containment of the ellipse ( )i iE u  into qP  for ELC 

Let qP  be a convex polygon given in the form 
1

,
qm

q qs

s

P



P  where {( , ):qsP x y  

cos sin 0}q
s qs qs qsx y           is a half plane; constqs  ; constqs  ; {( , ): 0}q

qs sL x y   ; 
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0q
s   is the normal equation of the s -th side of qP  (

qms I ). 

The phi-function of the ellipse ( )i iE u  from the family E  and the object *
qP  can be defined in the 

form 

 

 
*

*( ) min{ ( ), },i qE q
i i misu u s I   

P
  (2) 

where 

 *( ) ( , ) ( , , )q q q
i i i i i iis is isu x y d a b     (3) 

 

is the phi-function of the ellipse ( )i iE u  and half plane * 2 \ intqs qsP R P , 

( , , , , )i i i i i iu x y a b  , 2 2 2 2( , , ) cos ( ) sin ( )q
i i i i i qs i i qsisd a b a b         , 

( , )q
i iis x y  cos sini qs i qs qsx y     . 

 

The inequality *( ) 0q
iis u   provides the non-overlapping of ( )i iE u  and qsP . 

Therefore, according to (2), the inequality 
*

( ) 0i qE

iu 
P

 implies the containment constraint 

( )i iE u  qP , i.e. *int ( ) inti i qE u P . 

 

3.2 Normalized quasi phi-function for distance constraints 

 

Let us construct a normalized quasi-phi-function for the ellipses ( )i iE u  and ( )j jE u  with variable 

placement parameters ( , , )i i ix y  , ( , , )j j jx y   and variable sizes ( , )i ia b , ( , )j ja b  that describes analyti-

cally the distance constraint dist( ( ), ( ))i i j jE u E u  . 

The key idea is based on the following statement. Let 2{( , ) :cos sin 0}ij ij ijL x y R x y     
 
be a 

straight line, passing through the coordinate system origin O, where ij  is an angle between the straight 

line ijL  and axis O X . 

 We assume that the distance between two ellipses iE  and jE  is equal to   under some parameters 

iu  and ju . It means that there is always exists an angle *
ij  such that the distance between the projections 

of the ellipses on this line, denoted by *
ije  and *

jie , is equal to 
 
(Fig. 2a). We note that the distance 

 

between ije  and jie
 
is less than or equal to   for the other values of variable ij  (Fig. 2b). 
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A normalized quasi-phi-function ( , , )i jE E

i j iju u   of the ellipses ( )i iE u  and ( )j jE u  from the 

family E  can be defined in the form 

 

 ( , , )i jE E

i j iju u   ( , ) ( , ) ( , , , ) ( , , , )ij i ij ji j ij ij i ij i i ji j ij j jf v f v g a b g a b         , (4) 

 

where 1
ij R  , ( , , , , )i i i i i iu x y a b  , ( , , , , ),j j j j j ju x y a b 

 

( , ) cos sinij i ij i ij i ijf v x y     , ( , ) cos sinji j ij j ij j ijf v x y     , 

2 2 2 2( , , , ) cos ( ) sin ( )ij i ij i i i i ij i i ijg a b a b        , 

2 2 2 2( , , , ) cos ( ) sin ( )ji j ij j j j j ij j j ijg a b a b        . 

 

The quasi-phi-function (4) is a normalized one, because max ( , , )i j

ij

E E
i j iju u


   is the normalized 

phi-function of the ellipses ( )i iE u  and ( )j jE u .  

 

 

a 

 

b 
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c 

Fig. 2 – Illustration to the normalized quasi-phi-function i jE E . The distance between ellipses iE  and 

jE  is equal to 0  and the distance between their projections ije  and ije  is equal to  : a)    , 

i jE E  ; b)   , i jE E   ; c) 0  , int intij jie e  , 0i jE E   

 

Thus *max ( , , ) ( , , )i j i j

ij

E E E E
i j ij i j iju u u u


      .  

We note that if int ( ) int ( )i i j jE u E u   values of the normalized quasi-phi-function 

( , , )i jE E

i j iju u   for any ij are negative (Fig.2c). 

Besides, the quasi-phi-function (4) is considerably simpler than the quasi-phi-function for the two 

ellipses considered in (Stoyan, Pankratov, and Romanova 2016). It contains one auxiliary variable (in 

construct to four variables in (Stoyan, Pankratov, and Romanova 2016)) and just one function (in con-

struct to six functions in (Stoyan, Pankratov, and Romanova 2016)). 

 

Thus, based on the features of the normalized quasi-phi-function (Stoyan, Pankratov, and Romano-

va 2016) we can conclude that ( , , )i jE E

i j iju u    implies dist( ( ), ( ))i i j jE u E u  . 

 

4. Mathematical model 

 

4.1 Model of ELD 

Let us consider a collection of ellipses iE  ( ni I ), from the family E , where 
2

1

N
q

q

S
n

b

 
  

 
 , qS  is 

the area of q P  . 

The ELD problem can be formulated in the form of the following Mixed Integer Problem (MIP): 
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 * *

( , , )
( , , ) arg max ( , , )

z u W R

z u F z u




  
   , (5) 

 

{( , , ) : ( , , ) 0, ,i jE E

i j i j ij i j nW z u R z z u u z z i j I
           

                     
(6) 

*

( ) 0, , , },, ,iE i
i i i i i i n

i

a
z u a b b b a a d d i I

b

             

where 

1
1

( , , ) , ( ,..., ), {0,1},
n

i i i n i

i

F z u z a b z z z z


        

1 2( , ,..., )nu u u u , ( , , , , )i i i i i iu x y a b  ; 12 13 , 1( , ,..., )n n    ; 
( 1)

6
2

n n
n


   , 

( , , )i jE E

i j iju u   is the normalized phi-function for the ellipses ( )i iE u  and ( )j jE u  defined in 

(4); ( )iE
iu

  is the phi-function for the ellipse ( )i iE u  and object   defined in (1). Note that in (5)-

(6) , ,z u   are variables to optimize. Here binary variables are defined as follows: 1iz 
 if the ellipse 

( )i iE u
 belongs to   and 0iz   otherwise. 

This model can be applied for the layout of variable radius circles. In this particular case we set 

i i ia b r   and replace: the quasi-phi-function ( , , )i jE E

i j iju u   by the normalized phi-function 

( , , , , , )i jC C

i i i j j jx y r x y r  for two circles ( , , )i i i iC x y r  and ( , , )j j j jC x y r ; the phi-function 
*

( )iE
iu

  

by the phi-function 
*

( , , )iC
i i ix y r

  for the circle ( , , )i i i iC x y r  and the object  . The number of varia-

bles of the circular layout problem is 3n  . 

By (1) the problem (5)-(6) is equivalent to N independent subproblems of layout ellipses in a con-

vex polygon qP  ( Nq I ) (ELC problem). We describe the q -th subproblem in Subsection 4.2. 

 

4.2 Mixed Integer Model of ELC 

Now we consider a collection of the ellipses , ,
q

q
niE i I  of dimensions q

ia  and , ,
q

q
nib i I  where 

2

q
q

S
n

b

 
  

 
, qS  is the area of qP . 

The ELC problem can be formulated in the form of the following Mixed Integer Problem (MIP): 

 

 * *

( , , )

( , , ) arg max ( , , )
q q q q

q

q q q q q q
q

z u W R

z u F z u




  
   , (7) 
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 {( , , ) : ( ( , , ) ) 0,
q q
i jq

q

E Eq q q q qq q q
q ni j i j ijW z u R z z u u i j I

            , (8) 

*

( ) 0, , ,, , }
q
i q

q

q
Eq q q q q q i

ni i i i i i q
i

a
g u a b b b a a d d i I

b
          

P
, 

where 

1

( , , )
qn

q q qq q q
q i i i

i

F z u z a b



    , 

1 1 2( ,..., ), ( , ,..., ),
q q

q q q q qq q

n n
z z z u u u u   12 13 , 1

( , , , , ), ( , ,..., ),
q q

q q q q q q q q qq
i i i i i i n n

u x y a b          

( 1)
6 , {0,1}.

2

q q q
q q i

n n
n z


      

q q
i jE E  is the normalized quasi-phi-function for the ellipses ( )q

i iE u  and ( )q q
i jE u  defined in (4); 

q
i qE




P

 is the phi-function for the ellipse ( )q q
i iE u  and object *

qP  defined in (2). Here binary variables 

are defined as follows: 1q
iz 

 if the ellipse ( )i iE u
 belongs to qP  and 0q

iz   otherwise. 

 

The MIP model (7)-(8) is equivalent to
 qn  independent nonlinear programming (NLP) subprob-

lems of packing 1,2,..., qt n  ellipses. Each subproblem (called ELP) searches for the placement parame-

ters and sizes of the maximum total area t  ellipses within a convex polygon qP . 

 

4.3 Nonlinear Continuous Model of ELP 

Now we assume that qq
iE E  ( ti I ), and introduce the following NLP subproblem: 

 

 * *

( , )
( , ) arg max ( , ),

q q
q

q q q q
q

u W R

u F u
  

    (9) 

 {( , ) : ( , , ) , ( , ) ,
q q
i jE E q q qq q

q i j ijW u R u u i j
         (10) 

*

( ) 0, ,, },, ,
q
i q

q
E q q q q q i

ti i i i i q
i

a
u a b b b a a d d i I

b
          

P
 

where 

1
1

( , ) , ( ,..., ),
t

q q q q qq q
q ti i

i

F u a b u u u


   12 1,( ,..., ), ( , , , , ),q q q q q q q q q

i i i i i it t
u x y a b        

( 1)
5 , {( , ): },

2
t

t t
t i j i j I


       

 



 12 

( , , )
q q
i jE E q q q

i j iju u   is defined in (4); 
*

( )
q
i qE q

iu
P

 is defined in (2). 

We denote the local optimal point found for the problem (9)-(10) by * *( , )q q
u  . 

 

5. Solution algorithm 

 

5.1 Algorithm for ELD 

Our algorithm solves problem (5)-(6) and can be described by the following steps:  

Step 1. Set q =1. 

Step 2. Set t =1, 0qf  . 

Step 3. Solve the problem (9)-(10) (ELP).  

Step 4. If a solution is found then go to Step 5, otherwise set 1q
n t   and go to Step 6.  

Step 5. If * *( , )q q
q qF u f   then set * * *( , ), , 1q q q q

q qf F u u u t t      and go to Step 3, other-

wise set 1q
n t   go to Step 6. 

Step 6. If q N  then set 1q q   and go to Step 2, otherwise go to Step 7. 

Step 7. Set 
1

N

q

q

n n


  and form the vector * 1( ,..., )n

u u u  that corresponds to the local maximum 

point of the problem (5)-(6). Find * *

1

( , )
N

q

q

F u f



  . 

5.2 Solution strategy for ELP 

Our solution strategy for ELP consists of three major stages: 

Stage 1. Generate a number of feasible starting points of the problem (9)-(10), using the algorithm 

described in Subsection 5.2.1. 

Stage 2. Search for the local maximum of the problem (9)-(10) starting from each point obtained at 

Stage 1, using the algorithm described in Subsection 5.2.2. 

Stage 3. Choose the best local maximum from those found at Stage 2. 

For the sake of simplicity we further omit the index q  for a convex polygon in the problem (9)-

(10). 

5.2.1 Starting feasible parameters algorithm (SFP) 

Now we describe the algorithm for generating feasible starting points of the problem (9)-(10). Let a 

convex polygon P  be given by its vertices ( , ), .p p
s s s mp x y s I    

Step 1. Within P , generate a set of n  randomly chosen centers 0 0 0( , )i i iv x y  of ellipses , ,i nE i I  

using the formula 
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0

1 1

, 1,0 1, .
m m

i is s is is m

s s

v p s I

 
         

To find ,is ms I   we randomly generate m  positive numbers , ,is mn s I  and derive 

1

, .is
is mm

iss

n
s I

n

  


 

Step 2. Form a set of circles , ,i nC i I  of a variable radius b  and centers 0 , ,i nv i I  where   is a 

variable homothetic coefficient (scaling parameter).  

Step 3. Solve the following optimization subproblem, starting from the point 

0 0 0 0
1( ( ,..., ), 0)nv v v   : 

2 1

*

( , )
max

n
v V R

  
   , 

2 1{( , ) : ( , , ) 0,( , ) , ( , ) 0, ,0 1},i j i
C C Cn

i j i nV v R v v i j v i I
           P  

where 

1 2( , ,..., )nv v v v , ( , )i i iv x y ,  

2 2 2 2( , , ) ( ) ( ) (2 )i jC C

i j i j i jv v x x y y b         , 

is the normalized phi-function for the two circles iC  and jC  of a variable radius b , 

 

1,...,
( , ) min ( cos sin )iC

i i s i s s
s m

v x y b



          P , 

 

is the normalized phi-function for the circle iC  of a variable radius b  and object *
P . 

If * 1   then feasible starting point has not been found and we stop our procedure, otherwise we go 

to the next step. 

Step 4. Generate, randomly, rotation parameters 1 [0, )i    of the ellipses , .i nE i I  

Step 5. Return the vector 1 1 1
1( ,... )nu u u , where 1 1 1 1 1( , , , )i i i i iu v a b b b      as a starting parameters 

for local optimization algorithm (see subsection below). 

For a large number of ellipses, the problem (9)-(10) cannot be solved by direct use of most of NLP-

solvers even starting from the feasible point. Therefore we propose an iterative optimization algorithm to 

search for the local maxima of the problem as a new modification of the LOFRT procedure introduced in 

(Stoyan, Pankratov, and Romanova 2016) for the packing problem of ellipses in a minimum area rectan-

gle.  
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5.2.2 Local optimization algorithm 

Our algorithm reduces the large scale problem (9)-(10) to a sequence of nonlinear programming 

subproblems of smaller dimension (  O n  variables and nonlinear constraints). The key idea of the algo-

rithm is as follows. For each vector of the feasible placement parameters of the ellipses, we construct 

fixed rectangular  -containers ( 0   is a decomposition step of our algorithm). Then we allow each el-

lipse to move within the appropriate  -container. We describe the motion of each ellipse by a system of 

four  -inequalities. Then we form a subset of the feasible set qW  in the following way: we add the  O n  

 -inequalities (for all the ellipses) to the constraints (10) and then delete the 2( )O n  phi-inequalities cor-

responding to the pairs of ellipses with non- overlapping individual containers. Some redundant contain-

ment constraints are also deleted. 

While deleting quasi-phi-functions for some pairs of ellipses we also delete the corresponding aux-

iliary variables. This results in reducing the number of variables in the subproblem. Then we search for 

the local maximum for the subproblem with  O n  variables and nonlinear constraints. This local maxi-

mum is then used as a starting point for the next iteration. On the last iteration of the algorithm we find 

the local maximum of the problem (9)-(10). 

Let us consider the algorithm in details. Let 1
u  be one of the points found by the SFP algorithm. 

Now we describe our local optimization algorithm, which is an iterative decomposition procedure. We 

denote the value of the algorithm decomposition step by   and assume that 2
S n b    , where S  is the 

area of the container .P  

Step 1. Let 1.k   

Step 2. Construct a fixed rectangular  -container ( )k k
i i iE u   of sizes 2 ia    and 

2 ib    with the center point k
iv  for each ni I . 

Step 3. Create a system of auxiliary inequality constraints of each ellipse iE , that allow the ellipse 

to grow and move inside the  -container k
i , using the phi-function of the ellipse ( )i iE u  and 

* 2 \ intk k
i iR    of the form 

1 2 3 4( ) min{ ( ), ( ), ( ), ( )}
k

i iE k k k k
i i i i i i i i iu f u f u f u f u

  , 

where 

 

1 1( ) ( ) cos ( ) sink k k k k k
i i i i i i i i if u x x y y         ; 2 1( ) ( ) cos ( ) sink k k k k k

i i i i i i i i if u x x y y          , 

3 3( ) ( ) sin ( ) cosk k k k k k
i i i i i i i i if u x x y y         ; 4 3( ) ( ) sin ( ) cosk k k k k k

i i i i i i i i if u x x y y          , 

2 2 2 2
1 0.5( ) cos ( ) sin ( )k k k
i i i i i i i ia a b          , 
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2 2 2 2
3 0.5( ) sin ( ) cos ( )k k k

i i i i i i i ib a b          . 

 

We note that ( , )k k k
v x y , k  are constants. Thus, the inequality ( ) 0

k
i iE

iu
   is equivalent to 

the system of the four inequalities ( ) 0, 1,...,4, .k
il i nf u l i I    

Step 4. Construct an index set that involves such pairs ( , )i j  of the ellipses ( )i iE u  and ( )j jE u  for 

which the  -containers k
i  and k

j  overlap each other, i.e. 

{( , ): ( , ) 0, },
k k
i jk k k

i j ni j u u i j I
 

       

where ( , )
k k
i j k k

i ju u
 

  is the phi-function for ( )k k
i iu  and ( )k k

j ju  (Chernov, Stoyan, and Romanova 

2010). 

If two  -containers k
i  and k

j  do not have common interior points (i.e. ( , ) 0
k k
i j k k

i ju u
 

  ), 

then we do not check the non-overlapping constraint for the corresponding pair of the ellipses iE  and jE . 

Step 5. Construct an index set that involves such pairs ( , )i s  of the ellipse ( )i iE u  and half plane *
sP  

for which  -container k
i  and *

sP  overlap each other, i.e. 
** {( , ): ( ) 0, , }

k
i sPk k

i m ni s u s I i I
      , 

where 
*

( )
k
i sP k

iu
  is the phi-function for the polygon ( )k k

i iu  and half plane *
sP  (Chernov, Stoyan, and 

Romanova 2010). 

In other words, if the  -container k
i  and half plane *

sP  have common interior points (i.e. 

*

( ) 0
k
i sP k

iu
  ), then we take into account the containment constraint for the corresponding pair of ob-

jects. 

Step 6. Construct a vector of starting values for the auxiliary variables ( ,( , ) ).
k

k k
ij kw

i j     

For each pair ( , ) ( \ )ki j     we search for the maximum value of the auxiliary variable ij , using 

the following non-constrained nonlinear optimization problem: 

 

1[0,2 ]
arg max ( , , )i j

ij

E Ek k k
ij i j ij

R

u u
   

    , 

where k
iu , k

ju  are fixed parameters. 

Step 7. Solve the k -th subproblem, starting from the feasible point 

( , ) ( , , , , , )
k k

k k k k k k k k

w w
u x y a b    :  
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( , )
max ( , )

k k
w kk

u W

F u
 

 , 

{( , ) : ( , , ) 0,( , ) ,i jk

k

E Ek k
k i j ij kw

W u R u u i j
         

* *( ) 0,( , ) , ( ) , ,0, , , }
k

i iE i
is i k i i i i i n

i

a
u i s u a b b b a a d d i I

b

               . 

Here 
1

( , ) ,
n

i i

i

F u a b


   the quasi-phi-function ( , , )i jE E

i j iju u   is defined in (4), the phi-function 

* ( )is iu  is defined by (3), ( )
k

i iE
iu

  is defined in Step 3, k  is defined in Step 4, *
k  is defined in 

Step 5, ( \ )k
k card    . 

Step 8. If 
1

* * 1* *( , ) ( , ) 0.0001
k k

k k
w wF u F u



     we stop our procedure, otherwise we set 

1 *k k
u u

  , take 1k k   and go to Step 2.  

Our algorithm is able to control only  O n  pairs of ellipses, because for each ellipse only its “  -

neighbours” have to be monitored. This algorithm becomes an efficient for 10n .  

 

 

6. Computational results 

 

6.1 The algorithm application for additive manufacturing 

 

The presented algorithm was applied to design a geometry of a part for the so-called support free 

3D printing (Gibson, Rosen, and Stucker 2015). This geometry is the result of solution to topological op-

timization problem (Gibson, Rosen, and Stucker 2015) for a 100 mm40 mm2 mm plane part, which is 

rigidly fixed at its end and loaded in the lower part of the opposite side with the load P  (Fig. 3,a). One of 

the benchmark solutions of the problem is the part investigated in (Gibson, Rosen, and Stucker 2015) 

with its frontal projection shown in Fig. 3,b. Note that this design scheme is quite common when testing 

new topological optimization algorithms (see, e.g., (Jain and Saxena 2010)). 

Direct 3D printing of the given part (Fig. 3,b), using, in particular, the DMLS technology (Manfredi 

et al. 2013), leads to unexpected printing results (Gibson, Rosen, and Stucker 2015). To exclude such cas-

es (including the case when part fragments not adjoining the work platform lower layers are printed) the 

dedicated programs used for preparing models for 3D printing provide for generating so-called supports. 

These supports, thin-wall stays, considered as auxiliary elements to be removed after printing has been 

completed. As an example, Fig. 3,c shows the topology of an optimized 3D part prepared for printing us-

ing specialized software. Besides, supports printed using the DMLS technology are often fused to the part 

walls. Hence, these supports can be removed completely and with quality exclusively by using machining 
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units with dedicated tooling.  

The aforesaid determines the topicality of the publications on developing a method for designing 

support-free models (the lightweight and support free (L&S) design method) for their subsequent print-

ing, including the use of the DMLS technology. Thereat, the auxiliary (supporting) elements generated 

using this method, in contrast to supports in the classical sense, are not removed after the part printing has 

been completed. This cuts production costs and runtime. For the part being investigated, at the initial 

 =45º (angle of inclination of supporting elements) and d =1 mm (their thickness), the authors of 

(Gibson, Rosen, and Stucker 2015) have obtained the model whose topology is shown in Fig. 3,d. 

 

P
 

A

B C  

A B 

  

C D 

Fig. 3 – The part under investigation 

 

Moreover, the part generated using the L&S method (Fig. 3,d) has sharp changes in the shape of its 

outer surface in the form of inner corners. They represent the so-called stress concentrators that cause lo-

cal increases in mechanical stress. This is demonstrated by the results of computing the stress state influ-

enced by a static load P =100 N (Fig. 4). The load scheme is similar to that in Fig. 3,а. If one does not 

account for the pattern of the stress-strain state in the part fastening zones and load application points (A, 

B and C, Fig 3,b), which are equalized owing to different design solutions, the maximum stress in the part 

itself is 40 MPa (Fig. 4,a). A comparable stress value was also obtained for the geometry in Fig. 3,c (29.8 

MPa, Fig. 4,b). It also occurs in one of the surface sharp inner corner. For comparison, the maximum de-

sign stress in the initial geometry (Fig. 3,b) for an identical computation scheme is virtually twice less – 

20.5 MPa (Fig. 4,c). The zones of occurrence of the maximum stress in the areas of the parts under inves-

tigation are designated by dark circles in Fig. 4. 
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a                                                                                 b 

 

 

c 

Fig. 4 – Stress state of the part 

 

It should be noted that the computations were performed using a dedicated software complex realiz-

ing the FEM. The solution accuracy and convergence were controlled both by using the second-order fi-

nite elements and decreasing the grid size near the concentrators. Supposed that the parts were made of 

the AlSi10Mg powder material using the DMLS technology (the print direction coincides with the arrow 

in Fig. 3,b). Based on analyzing data (Leary et al. 2016, Manfredi et al. 2013; Brandl et al. 2012; Kempen 

et al. 2012) on the AlSi10Mg properties the following values are taken: density  =2670 kg/m3; elasticity 

modulus xE = yE =70 GPa, zE =60 GPa; Poisson coefficient  =0.33; proportional elastic limit 

Y =240 MPa; yield value U =345 MPa. 

An alternative geometry both without stress concentrators in the form of inner sharp corners and 

adapted for direct printing using the DMLS technology can be built with the help of the algorithm de-

scribed in the Section 5. In this case we have area   which involves five disjoint convex polygons qP  

(see Fig. 3,b), i.e. 5N  , 
1

N

q

q

  P . Each polygon (denoted with Roman numerals I–V) is given by the 

coordinates of its vertices in the fixed coordinate system Oxy (Fig. 5).  
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Fig. 5 – The polygonal disconnected domain   that involves five convex components 

 

The solution of the ellipses layout problem is shown in Fig. 6,a. The following design parameters 

are taken: 7a a  , 1b b  ,1 3i

i

a

b
  . The minimum distance between the ellipses (the minimum wall 

thickness) is assumed to be 0.4 . The solution is a collection of 18n
   ellipses. Dimensions and 

placement parameters of the ellipses are provided in Appendix A. 

 

It is obvious that the described algorithm is also applicable for solving the circular layout problem – 

it is sufficient to set the parameters a  and b , a  and b  to be equal to each other. The result of imple-

menting the developed algorithm with 7a b r
     is presented in Fig. 6.b (the minimum allowable dis-

tance, as before, is equal to 0.4 ). The number of circles is * 22n  . Radii and placement parameters 

of the circles are provided in Appendix A. 

 The total area occupied by the elliptical holes in the disconnected area   is 

* *
1

( ) ( )
N q

qq
F u F u


 =882.1334 ( *{ ( ); 1,...,5}q

qF u q   {123.4180, 237.6701, 117.1534, 348.6663, 

55.2254}) as presented in Fig. 6a. Computational time is 811.798 sec. To solve the problem with circles 

we spent more computational time (1325.74 sec), while the total area ( )F u
  is slightly less, 829.1148 

( *{ ( ); 1,...,5}q
qF u q   {112.0467, 231.3580, 101.8417, 339.9569, 43.9114}) as presented in Fig. 6b. 

Since the total area of elliptic holes (882.1334) is larger than the area of circular holes (829.1148), the 

part presented in Fig. 6b determines a bigger mass comparing with the part presented in Fig. 6a, namely: 

13.05 grams vs 12.8 grams.  

   

a                                                             b 
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Fig. 6 – Frontal surface of the part using computational results:  

a) with elliptical holes; b) with round holes 

 

The result of the subsequent finite-element analysis of the stressed state of the obtained parts is pre-

sented in Fig. 7 (the computational scheme is similar to that described above).  

 

 

a                                                                         b 

Fig. 7 – Mechanical stress of the parts:  

a) with elliptical holes; b) with round holes 

 

 

In these cases the average level of mechanical stress is much smaller than that in the previous mod-

els and the maximum mechanical stresses in the investigated zone do not exceed 13.4 MPa for the part 

with elliptical holes and 16.5 MPa in the case of circular holes. This is due to both the absence of geo-

metric stress concentrators and a slightly larger mass of the part. In particular, the mass of the part in Fig. 

3,b is 10.7 grams; in Fig. 3,c and 3,d – 11.9 grams, whereas the mass of the initial part (Fig. 3,a) is 21.2 

grams. Obviously, increasing the part mass means increasing its production cost and is the cause of 

growing inertial loads in case of non-stationary vibrations and so forth. However, at the same time, the 

suggested algorithm for preparing parts’ geometry for direct 3D printing, in contrast to the one described 

in (Gibson, Rosen, and Stucker 2015), is not so sensitive to the printing direction. Fig. 8, in particular, 

shows the results of 3D printing of the part with elliptical cavities (Fig. 6,a) for its two different orienta-

tions on a printer working platform.  
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a 

 

 

 

 

Fig. 8 – Result of 3D printing  

with different orientation of the part b    

 

As can be seen from the figure, the finished part, which was obtained using the EOS m270 printer 

(http://www.eos.info), has no visible defects in both directions of its manufacturing and the geometry of 

the part practically does not differ from that of the 3D model. Here it should be noted that changing the 

print direction can be used in case of enhanced requirements to part strength because its material obtained 

with the DMLS technology, in particular, AlSi10Mg, belongs to the class of transversely isotropic 

( xE = yE ≠ zE ) ones – by choosing the print direction, the stress state pattern can be slightly "adjusted" 

for the given static external load. 

Thus, the presented ellipses layout algorithm allows obtaining an alternative topology of parts, 

which is suitable for direct printing using DMLS technology, do not contain stress concentrators and do 

not sensitive to the printing direction. The presence of surfaces of the simplest form allows reducing sur-

face roughness at the final stage of manufacturing thus affecting the fatigue strength of a part.  

 

6.2 The algorithm application for packing ellipses into a convex polygonal container 

We also test presented algorithm for the problem (9)-(10) assuming q =1.  

Let P  be a convex m -polygon ( m =9), given by its vertices (see Appendix A). 

We assume that each ellipse has variable semi-axes ia a , 1ib b  , 1 3i

i

a

b
  . The minimum al-

lowable distance between each pair of ellipses is 0.2 . 

In case 2a   the result of searching for the local maximum is as follows: the number of ellipses is 

33n
  , their total area is *( )F u   310.5722. Dimensions and placement parameters of the ellipses are 

http://www.eos.info/
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provided in Appendix A. Computational time is 9044.688 sec. The local optimal packing is shown in 

Fig.9,a. 

For 3a   the solution is: the number of ellipses is * 17n   , their total area is *( )F u  319.7317 . 

Dimensions and placement parameters of the ellipses are provided in Appendix A. Computational time is 

2622.377sec. The result is shown in Fig. 9,b. 

 

      
 

a                                                                    b 

Fig. 9 – The local optimal packing: a) 2a  ; b) 3a   

 

For both cases we used 100 runs of our program (computer – AMD FX-6100, CPU 3.30 GHz; 

Programming Language C++; OS Windows 7). For the local optimization we use the IPOPT code 

(https://projects.coin-or.org/Ipopt).  

 The results of the computational experiments demonstrate that the main algorithm combined with 

the reduction technique presented in Section 5.5.2 can manage a large number of ellipses in various con-

vex polygons. Moreover, for the first time the ellipse packing problem was considered for the case when, 

in addition to continuous translations and rotations, the number of ellipses and their sizes are not fixed 

and have to be obtained.  Also, the minimal allowable distance between ellipses is taking into account. 

The proposed approach can be naturally generalized for the 3D case. 
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7. Conclusions 

 

A new optimization layout problem for ellipses is considered in the study. Our container is an arbi-

trary disconnected polygonal area. In the problem the number of ellipses, sizes and placement parameters 

https://projects.coin-or.org/Ipopt
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of ellipses are variable and have to be defined. Our ellipses can be continuously translated and rotated. 

Restrictions on the dimensions of ellipses are taken into account. Our objective is to maximize the pack-

ing factor. This problem has applications in additive manufacturing, in particular, in part topology prepa-

ration for direct support-free production. To state the distance and containment constraints new normal-

ized phi-functions and quasi-phi-functions are constructed. Our approach results in formulating the layout 

problem in the form of a nonlinear mathematical programming problem. We develop a new algorithm for 

constructing feasible starting points and also an optimization procedure to reduce the computational cost 

of the ellipse packing problem. The case study (optimized topology of the part) solved by the proposed 

technique indicates that the resulting geometry of the part is not sensitive to the direction of additive 

manufacturing and does not require so-called supports. Moreover, the maximum mechanical stresses cal-

culated by FEM are slightly lower than those for the original and alternative geometries. In addition, the 

part surface system itself is simple from the point of view of possible subsequent technological pro-

cessing, which is especially important for parts under dynamic loads. 

The main objective of introducing elliptic cavity system in 3D printing is reducing the weight of the 

part without losing its mechanical properties. Comparing with circular holes elliptic cavity system is more 

flexible, i.e. it can be adjusted to the shape of the polygonal domain thus providing more weight savings. 

From mathematical point of view an ellipse can be considered as a circle defined in a certain non-

symmetrical 2-norm (Euclidian norm). Using p -norms ( 3p ) instead of Euclidian norm the so-called 

ovals or circular-like objects (Litvinchev, Infante, and Ozuna 2015a, Litvinchev,  Infante, and 

Ozuna 2015b) can be used in the cavity system providing tighter approximations of polygons. An inter-

esting direction for the future research is considering different and non-uniform shapes for the cavity sys-

tem. Moreover, the shapes of the holes can be also be optimized considering. It is also interesting to gen-

eralize the proposed models and solution techniques for a 3D cavity system in a 3D part. Some results in 

this directions are on the way. 
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Appendix A. Data to Section 6 

Output data to Subsection 6.1.  

The following dimensions of 18n
   ellipses were obtained by our algorithm: 

* * *{( , ), 1,2,..., }i ia b i n  {(1.451003 1.056384), (4.802429 1.610994), (7.0 4.287956), (7.0 7.0), (1.090857 

1.0), (2.595877 2.155090), (1.885885 1.0), (5.641415 3.205164), (7.03.617268), (6.056729 1.976352), 

(5.562663 2.428522), (6.745289 5.740417), (4.128611 2.363029), (1.115792 1.097139), (1.057427 1.0), 

(7.0 6.673785), (6.170471 2.357579), (2.435725 1.244570)}. 

The following radii of * 22n   circles were obtained by our algorithm: 

* *{ , 1,2,..., }ir i n  {1.664237 1.322005 4.758209 2.916789 2.350569 1.905463 7.0  

3.935426 1.519199 4.017607 3.013604 2.210498 2.388148 2.292906 1.520114 6.519394  

6.534865 2.935743 1.055787 1.399771 2.813647 2.025208}. 

 

Input and output data to Subsection 6.2.  

The vertices of the convex m -polygon P  are given as follows:  

{( , ), 1,...,9}s sx y s 
 = {(-7.2662, 1.5934), (-5.9413, -6.8803), (-3.2915, -8.7339), (2.3109, -10.6632), 

(6.7020, -10.6632), (16.0520, -4.0809), (20.6702, 2.3878), (7.1184, 9.9159), (-1.8530, 7.9487)}. 

The following dimensions of 33n
   ellipses for 2a   were obtained by our algorithm: 

* * *{( , ), 1,2,..., }i ia b i n   {(1.7492 1.4524), (2.0 1.0), (2.0 1.7418), (2.0 2.0), (2.0 1.7786), (1.9474 

1.6626), (1.1023 1.0), (2.0 1.2051), (2.0 1.0744), (2.0 2.0), (2.0 1.9313), (2.0 2.0), (1.8739 1.2569), 

(1.6781 1.0738), (2.0 1.4385), (2.0 1.8120), (2.0 1.5823), (2.0 1.6281), (2.0 1.2863), (2.0 1.8644), (2.0 

2.0), (1.5703 1.1711), (2.0 2.0), (1.8292 1.0), (1.9948 1.7930), (2.0 1.5395), (2.0 1.3957), (2.0 1.1812), 

(2.0 1.9569), (2.0 1.4263), (1.4049 1.1291), (2.0 1.7457), (2.0 1.9053) }. 

The following dimensions of * 17n   ellipses for 3a   were obtained by our algorithm: 

* * *{( , ), 1,2,..., }i ia b i n  {(3.0 2.3386), (3.0 3.0), (2.9681 2.8343), (3.0 2.1999), (1.4309 1.0), (3.0 2.6943), 

(3.0 2.4986), (3.0 3.0), (2.9251 1.1559), (3.0 1.3474), (2.2677 1.7577), (3.0 2.8846), (1.6366 1.2712), 

(1.3556 1.0), (3.0 1.6418), (3.0 2.4366) (3.0 3.0)}.  

 


