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10 Highlights

11

12  The cry-for-help model states that stressed plants assemble protective rhizobiomes.

13  Plant attacked by pathogens or herbivores change their root exudation chemistry. 

14  Specific rhizosphere signals alter the composition and activity of the rhizobiome.

15  The modified rhizobiome protects plants via direct and indirect mechanisms.

16  Legacy effects on the soil microbiome can benefit the next generation of plants.

17

18 Abstract

19

20 Plants employ immunological and ecological strategies to resist biotic stress. Recent evidence 

21 suggests that plants adapt to biotic stress by changing their root exudation chemistry to 

22 assemble health-promoting microbiomes. This so-called �cry-for-help� hypothesis provides a 

23 mechanistic explanation for previously characterized soil feedback responses to plant disease, 

24 such as the development of disease-suppressing soils upon successive cultivations of take all-

25 infected wheat. Here, we divide the hypothesis into individual stages and evaluate the 

26 evidence for each component. We review how plant immune responses modify root 

27 exudation chemistry, the impact this has on microbial activities, and the subsequent plant 

28 responses to these activities. Finally, we review the ecological relevance of the interaction, 

29 along with its translational potential for future crop protection strategies. 

30

31 Short title: A systems review of the cry-for-help hypothesis. 

32 Key words: plant immune responses; root exudates; rhizosphere signals; rhizobiome; root-

33 microbe interactions; induced systemic resistance; soil feedback responses.
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1 Introduction

2

3 Soil is a critical resource for agricultural crop production. While agri-technological progress 

4 has made spectacular progress over recent decades, most innovations are based on 

5 agrochemicals and crop breeding technologies. By comparison, soil as a target for crop 

6 improvement has largely been overlooked, despite ample evidence for its plant protective 

7 activities [1]. The ability of soil to suppress plant diseases is a common characteristic of soil 

8 health and is determined by the soil- and root-associated microbiome [2*,3]. While crop 

9 rotation, conservation tillage and soil organic amendments improve soil health [1], these 

10 practices are not always financially feasible for farmers. However, disease-suppressive soil 

11 activity can also develop in high-intensity production systems that rely on successive crop 

12 monocultures. The classic example is take-all decline, during which continued wheat 

13 cultivation in soil infested with the pathogenic take-all fungus Gaeumannomyces graminis 

14 pv. tritici initially leads to increased disease, followed by a progressive decline in disease [4]. 

15 There are ample other examples whereby prolonged disease exposure leads to disease-

16 suppressing soil activity [2*]. These observations have led to the hypothesis that disease- and 

17 herbivore-exposed plants employ a strategy that involves active selection and/or recruitment 

18 of disease-suppressing soil microbiomes. This adaptive strategy not only benefits the plant 

19 that is under attack, but also subsequent plant generations, which is why these feedback 

20 responses are sometimes referred to as �legacy� or �soil memory� effects [5-8]. Analogous to 

21 aboveground multitrophic interactions between plants and arthropods [9], the mechanisms 

22 initiating this long-term adaptation are encompassed by the �cry-for-help� hypothesis (Figure 

23 1). This concept gained significant traction in the rhizosphere research community after a 

24 pioneering study that identified shifts in the microbial community structure of a disease-

25 suppressive soil following prolonged cultivation of Rhizoctonia solani-infected sugar beet 

26 [10**]. In subsequent years, various other studies have confirmed enrichment of disease-

27 suppressing microbes in disease-suppressive soils [2*]. In addition, there is an impressive 

28 body of evidence to support that root exudation chemistry is critical for the assembly of plant 

29 health-promoting microbiomes [11]. However, there remain knowledge gaps in the 

30 successive stages predicted by belowground cry-for-help model. In this review, we evaluate 

31 the evidence for each stage of the process, after which we will discuss the ecological relevance 

32 and translational opportunities of this long-term plant adaptation strategy.
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1 Figure 1: Model of the successive stages of the �cry-for-help� hypothesis. Local and systemic signals elicited by 

2 pathogens or herbivores activate root immune responses (stage 1), which alter root exudation profiles of 

3 primary and secondary metabolites with biocidal and/or semiochemical activities (stage 2). Altered root 

4 exudation profiles influence the microbiome by recruiting and selecting specific microbiota and inducing 

5 microbial activities (stage 3). Some of these activities involve direct and indirect mechanisms that antagonize 

6 plant attackers, such as antibiosis, nutrient competition and induced systemic resistance (ISR; stage 4). 

7

8 Stage I: root immune responses to below- and aboveground attackers

9  

10 Of all plant tissues, roots are exposed to the highest microbial density and diversity [12]. In 

11 that regard, it is unsurprising that immune responses by roots differ from those by above-

12 ground tissues [13]. Detailed studies of root responses to microbe-associated molecular 

13 pattern MAMPs have revealed that defence-related gene expression is spatially restricted to 

14 specific cell types, which vary according the applied MAMP [14**,15*]. The immunological 

15 differences between roots and shoots may result from the lack photosynthesising 

16 chloroplasts in the roots, which generate high concentrations of defence-enhancing reactive 

17 oxygen and nitrogen species [16]. Furthermore, although pathogen-infected roots are 

18 capable of accumulating salicylic acid (SA) [17], the initial biosynthetic steps occur in 

19 chloroplasts, indicating phloem-mediated transport of SA and/or derivatives from shoot to 

20 root tissues thereof [18,19]. Indirect evidence that jasmonic acid (JA-) and SA-dependent 

21 immune reactions in roots generate rhizosphere-active signals is based on rRNA amplicon 

22 sequencing experiments, showing that exogenous hormone treatments or mutations in these 

23 pathways influence the root-associated microbiome [20*,21*]. In addition, systemic immune 

24 responses to aboveground pests and defence elicitors have been reported to alter root 

25 interactions with belowground microbes in a SA-dependent manner [22,23]. In the following 

26 section, we will review how root immune responses lead to exudation and accumulation of 

27 rhizosphere-active metabolites and derivatives thereof.

28
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1 Stage II: stress-induced changes in root exudation of antimicrobials and 

2 semiochemicals

3

4 Roots release primary metabolites, such as carbohydrates, amino acids, organic acids and 

5 membrane lipids, which provide energy and nutrients to the soil microbiome [24]. The 

6 concentration and composition of these compounds in root exudates changes upon exposure 

7 to biotic stress and can have specific signalling effects in the rhizosphere. For instance, foliar 

8 infection of Arabidopsis by Pseudomonas syringae increases L-malic acid exudation, leading 

9 to increased root colonisation by resistance-inducing Bacillus subtilis [25*]. In cucumber, local 

10 root infection by pathogenic Fusarium oxysporum alters concentrations of 89 mostly primary 

11 metabolites in exudates from distal roots, of which increased tryptophan and reduced 

12 raffinose correlated with root colonisation by beneficial Bacillus amyloliquefaciens [26**]. 

13 However, it seems unlikely that primary metabolites alone are responsible for the assembly 

14 of disease-suppressive root/soil microbiomes. Secondary root metabolites seem equally, if 

15 not more important, since they are often inducible by biotic stress, are less quickly 

16 metabolized by microbes, and typically have antimicrobial and/or signalling activities. Based 

17 on previous studies reviewed by [27-29], Figure 2 provides an overview of the main 

18 biochemical pathways controlling pathogen- and herbivore-inducible secondary metabolites 

19 with antimicrobial and/or signalling activity. It is important to note that rhizosphere 

20 chemistry, rather than root (exudation) chemistry, is responsible for shaping root- and soil-

21 associated microbiomes. Rhizosphere chemistry is the sum of root exudation chemicals, their 

22 breakdown products and microbial products of soil-derived chemicals. A recent study 

23 developed a new method for chemically profiling non-sterile rhizosphere soil, providing a 

24 powerful technique to identify semiochemicals in non-sterile rhizosphere soil and link them 

25 to rhizobiome activities [30**].

26 MAMP-treated Arabidopsis roots increase the expression of CYP71A12 and MYB51 [14**], 

27 which control biosynthesis of tryptophan-derived defence compounds, such as camalexin and 

28 indolic glucosinolates. These stress-responsive metabolites often have both antimicrobial and 

29 signalling activities [31,32], and are commonly detected in root exudates [14**,33,34**]. 

30 Their increased exudation from defence-expressing and/or damaged roots can influence the 

31 root-associated microbes, which was recently demonstrated for camalexin [34**]. Similarly, 

32 parasitic nematodes increase strigolactone (SL) biosynthesis in tomato roots [35]. Irrespective 

33 the exact role of SLs in plant immune signalling [36], exudation of SLs can influence the root-

34 associated microbiome by stimulating hyphal branching and infection by arbuscular 

35 mycorrhizal fungi (AMF) [37]. Stress-induced rhizodeposition of defence hormones may also 

36 play an important role in shaping the soil- and root-associated microbiome [38*]. In 

37 particular, SA is commonly detected in plant root exudates [39*] and can attain 

38 concentrations in soil sufficient to induce resistance in neighbouring plants [40*]. Because SA 

39 can be incorporated in iron-chelating siderophores by rhizosphere bacteria [39*], it is likely 

40 that rhizosphere accumulation of SA selects for siderophore-producing rhizobacteria, which 

41 contribute to disease suppression [41]. 
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1 Like pathogens, herbivores can induce exudation of rhizosphere-active root metabolites. 

2 Infestation of maize roots by larvae of Diabrotica vergifera induces emission of the 

3 sesquiterpene (E)-β-caryophyllene (Eβc), which recruits soil-borne entamopathogenic 

4 nematodes [42]. Over-expression of an Eβc synthase gene in the genetic background of a Eβc-
5 deficient variety [43] revealed that Eβc increases growth and susceptibility to the soil-borne 

6 fungal pathogen Colletotrichum graminicola [43,44*], suggesting that Eβc may have wider-

7 ranging impacts on soil microbes. In cereals, herbivory and wounding induce increase the 

8 accumulation of aglycone benzoxazinoids, such as methoxy-2H-1,4-benzoxazin-3(4H)-one 

9 (DIMBOA) [45]. Three recent studies have used maize mutants in BX production to determine 

10 the extent by which these metabolites influence root- and soil-associated microbiomes 

11 [46**,47**,48*], all reporting significant effects on plant- and soil-associated microbiomes. 

12 Hu et al. [46**] demonstrated that soil conditioned by BX-producing maize induces JA-

13 dependent resistance against herbivores, which was linked to the presence and activity of 6-

14 methoxy-benzoxazolin-2-one (MBOA). Since DIMBOA acts as a within-plant defence signal 

15 [49], Cotton et al. [47**] investigated whether BX biosynthesis genes influence the 

16 composition of the wider root metabolome. They reported that the bx1 and bx2 mutations 

17 have major impacts on the secondary metabolite profiles in roots, suggesting that the 

18 effects of BXs on root-associated microbes could partially be caused by BX-controlled root 

19 exudates, rather than BXs themselves. Indeed, correlation analysis between differentially 

20 abundant metabolites and bacterial taxa pointed to a dominant role of BX-controlled root 

21 metabolites, including compounds with known signalling activities in the rhizosphere, such 

22 as flavonoids [47**]. More research is needed to determine the (in)direct signalling 

23 activities of BXs in the soil. Does biotic stress increase DIMBOA exudation and MBOA 

24 accumulation in the soil? If so, does MBOA act as a stress-induced soil-mobile signal that 

25 alters root exudation patterns in systemic roots and roots of neighbouring plants? And 

26 finally, does the belowground signalling activity of BXs extend to other plant species, such 

27 as wheat, raising the possibility that BXs could act as the regulatory signals driving take-all 

28 decline? 

29

30

31
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1 Figure 2: Scheme of the shikimate (A) and terpenoid (B) pathways, generating stress-inducible secondary 

2 metabolites in plant roots with previously reported anti-microbial and/or semiochemical activity in the soil. 

3 Coloured boxes show examples of compounds within each class. 
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1 Stage III Impacts of root exudates on the root- and soil-associated microbiome

2

3 The �cry-for-help� hypothesis postulates that specific components of root exudates from 

4 stressed plants favour recruitment of beneficial microbes and constrain the development of 

5 pathogens. This reshaping of the rhizosphere involves multiple mechanisms. Exudates may 

6 include substrates for microbial growth, elicit chemotactic responses and facilitate root 

7 colonisation, while antimicrobial compounds limit development of susceptible microbial 

8 communities. Exudates may also interact with microbial quorum sensing systems (QSS) or be 

9 processed by community members, eliciting the release of microbially-derived metabolites. 

10 As mentioned above, Liu et al. showed that local infection of cucumber roots by Fusarium 

11 oxysporum increases tryptophan exudation and reduces raffinose exudation [26**], resulting 

12 in increased colonization by beneficial Bacillus amyloliquefaciens SQR9 (BaSQR9) and reduced 

13 pathogen colonisation, thus pushing the rhizobiome towards plant-beneficial associations. 

14 They furthermore showed that the growth-promoting activity of BaSQR9 results from 

15 tryptophan-dependent auxin production, indicating further feedback loops between plant 

16 and bacteria. Other studies have implicated organic acids as important signals, acting as 

17 recruitment signals for plant growth-promoting rhizobacteria (PGPR) in cucumber, tomato, 

18 banana, watermelon and Arabidopsis. [25*,50-53]. As reviewed above, BXs are important 

19 antimicrobial metabolites [45,49]. Neal et al. [54*] found that DIMBOA is chemo-attractive to 

20 plant-beneficial P. putida KT2440 bacteria, activating genes associated with bacterial motility, 

21 QSS and breakdown of N-heteroaromatic compounds. Such selection for BX tolerance can 

22 also influence potentially hostile organisms. Sanders et al. [55] reported that BOA, a toxic 

23 degradation product of DIBOA, selects for BX-resistant Fusarium sp. in maize with the 

24 potential for grain contamination by mycotoxins. 

25 For many microbial responses to root exudation metabolites, bacterial stress seems a 

26 recurrent theme. Exposure of PGPR to root exudates activates genes associated with nutrient 

27 responses and motility, but also the production of antibacterial and antifungal substances, 

28 degradation of aromatic compounds and microbial stress responses [56*,57,58*]. Thus, while 

29 many root exudates act as nutrients and recruitment factors, other root exudates induce 

30 microbial stress that lead to plant-beneficial activities. For instance, quorum sensing signals 

31 (QSS) activate transcriptional stress responses in bacteria, once a certain population density 

32 has been reached. Given the ubiquity of QSS, it is unsurprising that plants have evolved to 

33 respond to QSS molecules and manipulate QSS responses [59]. Sweet basil releases 

34 rosmarinic acid (RA) when infected by pathogenic P. aeruginosa PA01 and PA14 [60]. RA is 

35 toxic to bacteria at high concentrations, but also binds to the response regulator RhlR 

36 triggering premature QSS responses [61**]. This QSS system is commonly found in 

37 Pseudomonads including PGPR, and may therefore also regulate PGPR responses, such as 

38 biofilm formation and antibiosis. Indeed, the protective effect of Pseudomonas aureofaciens 

39 strain 30-84 against take-all disease has been attributed to phenazine antibiotic production 

40 that is regulated by QSS [62,63]. Bacterial stress responses in the rhizosphere can also be an 

41 indirect consequence of microbial competition. For instance, saprotrophic fungi consume 
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1 root exudates rapidly, which reduces nutrient availability to rhizobacteria that in turn triggers 

2 rhizobacterial production of antifungal compounds [64].

3 The effects of rhizosphere chemistry on the beneficial microbiome activities in the soil can be 

4 long-lived. Yuan et al. found that five generations of Arabidopsis plants inoculated with 

5 Pseudomonas syringae DC3000 (Pst) leads to disease suppression in the sixth generation, 

6 which was associated with changes in soil microbial community [65**]. This study 

7 furthermore showed that >50 root exudation compounds changed upon infection. Soil 

8 complementation experiments with mixtures of components identified long chain organic 

9 acids as the underpinning soil signals, stimulating microbiome-mediated induced systemic 

10 resistance (ISR). Similarly, Hu et al. reported soil feedback responses that were linked to soil 

11 accumulation of MBOA, which induced JA-dependent resistance in maize plants of the next 

12 generation [46**]. Finally, Berendsen et al  [66**] isolated three community members that 

13 accumulated in soils of downy mildew-infected Arabidopsis plants, and found that this 

14 assemblage interacted to induce biofilm formation and ISR in subsequent plant generations. 

15 Notably, in all three examples, the response of the soil microbiome was critical for the 

16 beneficial ISR response of the host plant.

17 Just as plants have evolved to respond to microbial signals, microbes have evolved to respond 

18 to plant signals, including plant growth regulators involved in biotic stress responses. 

19 Treatment of both plants and soil with SA, JA and ethylene (ET) induces changes in root 

20 exudates and rhizosphere communities, whereas mutations in plant JA signalling reduces root 

21 exudates associated with PGPR chemotaxis or that act as growth substrates for PGPR and N-

22 fixing diazotrophs  [20*,38*,67]. The emerging pattern suggests a complex network of 

23 interactions between plants and soil/plant-associated microbiomes, which are mediated by a 

24 multitude of chemicals signals that are derived from both plants and microbes. Bruto et al. 

25 [68] attempted to identify plant-beneficial function contributing (PBFC) genes in 

26 Proteobacterial PGPR. Interestingly, none of these genes were found in all PGPR, and many 

27 were found in non-PGPR. However, combinations of PBFC genes were only found in particular 

28 taxonomic subgroups of PGPR, indicating that specific assortments were associated with the 

29 beneficial trait. It is therefore plausible that similar, if not greater, complexity exists in PGPR 

30 responses to root exudates with combinations of signals and signalling mechanisms 

31 contributing to microbial recruitment and development.

32

33 Stage IV: mechanisms by which the root- and soil-associated microbiome suppress 

34 pests and diseases

35

36 The mechanisms underpinning disease-suppressing soil activity are complex [2*]. Apart from 

37 direct mechanisms, such as parasitism and the production of biocidal compounds, beneficial 

38 rhizosphere microbes suppress soil-borne attackers indirectly through competition for 

39 (micro)nutrients and elicitation of ISR. Of these, ISR provides protection against both below- 

40 and above-ground attackers [69]. Much knowledge about the mechanisms underpinning ISR 

41 come from the interaction between Arabidopsis and Pseudomonas simiae WCS417. Early 
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1 studies have shown that ISR is controlled by a SA-independent signalling pathway that primes 

2 distal tissues for JA- and ET-dependent defence genes and cell wall-based defences [70,71]. 

3 While there are exceptions, ISR in other plant-microbe interactions often follows a similar 

4 signalling signature [69]. This commonality could be explained by the fact that ISR-eliciting 

5 microbes trigger a general nutrient deficiency response that results in systemic up-regulation 

6 of ISR-related immune pathways. Castrillo et al. recently demonstrated that inoculation of 

7 Arabidopsis with a synthetic rhizobacterial community induces a phosphate starvation 

8 response (PSR), which modulates systemic plant immunity and that is under control by the 

9 regulatory gene PHR1 [72**].  Interestingly, PHR1 has previously been reported to control 

10 ISR-related immune pathways, including JA signalling [73] and production of callose-

11 stimulating glucosinolates [74]. If these mechanisms apply to other plant species, the PSR by 

12 ISR-eliciting microbiota could lead to increased exudation of SLs and recruitment of 

13 endophytic fungi, such as AMF, which in turn alter root-associated microbial populations 

14 [75,76]. Furthermore, a recent study of the Arabidopsis-WCS417 model system found that 

15 bacterial induction of the ISR-regulatory transcription factor MYB72 and downstream beta-

16 glucosidase BGLU42 induce an iron-deficiency response that is associated with increased root 

17 exudation of scopoletin [77**]. This iron-mobilizing metabolite has selective impacts on the 

18 root-associated microbiome, including biocidal activity on soil-borne pathogenic fungi. A 

19 recent study by Vogel et al. confirmed the importance of selected scopoletin derivatives in 

20 shaping synthetic rhizobiome communities of Arabidopsis via redox-mediated mechanisms 

21 [78**] Together, these recent studies illustrate that interactions between roots and disease-

22 suppressing bacteria trigger a succession of signalling events, resulting in a range of disease-

23 suppressive mechanisms, including ISR, recruitment of biocontrol fungi, (micro)nutrient 

24 competition, and antibiosis (Figure 3). 

25 Figure 3: emerging roles for 

26 phosphate (Pi; purple) and 

27 iron (Fe; orange) starvation 

28 responses in the 

29 orchestration of disease-

30 suppressive mechanisms in 

31 the microbial biosphere of 

32 the plant. The model is 

33 based on recent evidence for 

34 reciprocal signalling events 

35 between nutrient starvation 

36 signalling in the host, 

37 systemic immune responses 

38 (ISR), and disease-

39 suppressing activities by the 

40 root- and soil-associated 

41 microbiome [72**, 77**). 

42

43
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1 Conclusions: ecological relevance and translational opportunities

2

3 There is ample evidence to support the individual components of the cry-for-help hypothesis. 

4 However, the outcome of the response is not always adaptive and can come with ecological 

5 trade-offs. The signals used by plants to recruit plant-beneficial organisms in the soil can be 

6 hijacked by parasitic organisms. For instance, emission of Eβc increases infection by the soil-

7 borne fungal pathogen Colletotrichum graminicola [44*], exudation of BXs enhances damage 

8 by pathogenic fungi and the western corn rootworm [55,79], and exudation of AMF-recruiting 

9 SLs can be exploited by pathogenic nematodes and parasitic weeds to locate their host [80]. 

10 We speculate that these ecological trade-offs are determined by soil quality. Healthy soils 

11 with high microbial biodiversity more likely contain robust networks of beneficial 

12 rhizobacteria than poorer soils with low biodiversity [81]. Once an interaction with beneficial 

13 microbiota has been initiated, the subsequent signalling cascade leads to the establishment 

14 of a chemical and biological environment that is mutually beneficial to both partners. In 

15 situations where the soil fails to provide fast-responding beneficials, due to loss of biodiversity 

16 by overfertilization, soil compaction, or soil inversion, the cry-for-help is more likely to be 

17 hijacked by parasitic microbes and arthropods. Recent evidence that plant and microbial 

18 nutrient starvation responses control the establishment of plant health-promoting 

19 microbiomes [72**,77**] is directly antagonistic to the often excessive amounts of fertilizer 

20 applied in modern agriculture [82**]. Furthermore, human selection for aboveground yield 

21 under high fertilizer input have resulted in plant varieties with rudimentary root systems that 

22 communicate less effectively with the soil microbiome [82**]. While the importance of soil 

23 microbiomes is increasingly being recognised by farmers and the wider agri-tech sector, a 

24 better mechanistic understanding of the individual components of the cry-for-help hypothesis 

25 is necessary to reliably exploit the benefits of soil-preserving land management, biocontrol 

26 inoculations, and crop breeding programmes selecting for soil-health promoting root traits. 

27
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Figure 2: Simplified schemes of the plant shikimate (A) and terpenoid (B) biosynthesis pathways, which 

generate stress-inducible secondary metabolites in roots with anti-microbial and/or semio-chemical 

activities [22-24]. Coloured boxes show representative examples of compounds within each class. 
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