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Abstract—Knowing aircraft taxi-time precisely a-priori is in-
creasingly important for any airport management system. This
work presents a new approach for estimating and characterising
the taxi-time of an aircraft based on historical information.
The approach makes use of the interval type-2 fuzzy logic
system, which provides more robustness and accuracy than the
conventional type-1 fuzzy system. To compensate for erroneous
modelling assumptions, the error distribution of the model is fur-
ther analysed and an error compensation strategy is developed.
Results, when tested on a real data set for Manchester Airport
(U.K.), show improved taxi-time accuracy and generalisation
capability over a wide range of modelling assumptions when
compared with existing fuzzy systems and linear regression-based
methods.

Index Terms—taxi, fuzzy, uncertainty, aircraft, airport opera-
tions, ground movement.

I. INTRODUCTION

The advent of automated air traffic management systems

at airports over the last decade has prompted and increased

the need for accurate taxi-time predictions. Airport ground

movements contributes significantly to the annual average

delays experienced at major airports [1], [2]. This is because

the ground movement serves as an important link between

other aspects of ground operations such as departure sequenc-

ing and gate allocation1 [3], [4]. Sophisticated routing and

scheduling algorithms are being developed and deployed in

order to address inefficiencies of airport ground movements

and these algorithms need a-priori specification of accurate

taxi-times [4], [5]. In [6]–[9], taxi-times were used to schedule

aircraft departures as well as stand holds allocation which

underscores the importance of accurate prediction of taxi-

times. Furthermore, knowing taxi-time in advance can provide

valuable information to scheduling algorithms to mitigate the

effects of predicted delays.

Until very recently, the common method for taxi-time

estimation focused on the use of the mean times for source-

destination pairs. In order to account for the variables/factors

that influence taxi-times such as the size of an aircraft, ma-

chine learning approaches are increasingly gaining popularity.

A literature survey of implemented methods reveals that there

is a concentration of linear regression-based methods which

1reducing ground delay at the gate thereby saving fuel and reducing adverse
environmental effects.

is to be expected as these methods tend to be simple to

implement and interpret [3]. This easy interpretation is in

contrast to the so-called black–box modelling approaches

(such as neural networks) which, apart from being opaque in

interpretability, can be computationally expensive. Fuzzy logic

systems provide equivalent (or better) non-linear mapping

capability when compared to these black-box methods [18].

They also have the advantage of being able to represent com-

plex statements via linguistic statements which makes them

easily accessible thereby facilitating the knowledge fusion

with expert information. To take advantage of these attractive

properties of fuzzy reasoning, the authors in [10] have used

the Mamdani-type fuzzy logic system to predict the taxi-

time, which shows an average increase in prediction accuracy

of approximately 10% over the linear regression approaches

with which results were compared. However, in this model,

the effect of uncertainty in predictions were not accurately

captured since the membership functions (explained in Section

III) are represented by crisp values which limit the handling

of the so-called linguistic uncertainties2. Hence, type-2 fuzzy

systems enable these uncertainties to be adequately handled.

It is widely acknowledged that the taxi-time prediction

problem is characterised by uncertainties [12]. These uncer-

tainties come in different forms, including the continuously

changing airport environment and the different types of un-

dercarriage assembly [13]. The adverse effects of uncertain-

ties in prediction problems is well documented in [14]. In

the taxiing problem, uncertainty reduces predictability and

inadequate handling of these uncertainties can lead to the

sophisticated algorithms (which rely on accurate taxi-time

prediction) becoming ineffective. In this work, a hierarchical

framework, where the taxi-time model is developed using a

type-2 fuzzy logic system (T2FLS) to allow for handling

linguistic uncertainties, is proposed. The second stage is an

error compensation scheme similar to that developed in our

earlier work in [15], which allows for uncertainty handling.

To the best of our knowledge, this is the first time that such

an approach has been used to address the above challenges

implicit in the taxi-time prediction problem. The remainder of

2linguistic uncertainty represents a scenario where the meaning of a word
is not fixed.



Fig. 1: Layout of Manchester Airport. Figure generated from

publicly available data (openstreetmap.org) [11].

the paper is organised as follows: Section II presents the data

used in this work. Section III briefly describes the proposed

modelling framework, which includes the type-2 fuzzy logic

system and the proposed error compensation strategy. Section

IV analyses and discusses the experimental results from the

study as well as a comparative study of the proposed approach

with other popular algorithms. Finally, Section V concludes

with a summary of the main contributions of this research

and recommendations for future research.

II. THE DATA

Historical data from Manchester Airport (Fig. 1) have been

used to develop the aircraft taxi-time model based on the

proposed framework (discussed in Section III)3. A total of

1413 data points were observed which contains information

relating to the factors that affect the output variable (the taxi-

time). A more rigorous statistical analysis has been performed

in [5] and this has identified the 15 variables most significant

for predicting the taxi-times of aircraft. A smaller sample of

these variables is listed in Table I.

III. MODELLING FRAMEWORK

The modelling framework involves two stages; the first stage

consists of developing a type-2 fuzzy model. The second

stage involves analysing the errors in the model in order to

produce an error compensation strategy. Analysis of these

errors involves fitting mixtures of a multi–dimensional Gaus-

sian distribution over the inputs and the error as described in

Section IIIB.

3Details of the data gathering process are discussed in [12]

TABLE I: The input variables included for study in this

research.

Variable Meaning

Distance (metres) The total taxiing distance

Arr/Dep A binary variable which indicates
if an aircraft is arriving or depart-
ing

Size Another binary variable. 0 repre-
sents a large aircraft and 1 repre-
sents a small aircraft

Q Q values represent the number of
aircraft that stop taxiing during the
time when the aircraft is taxiing

N The total number of taxiing aircraft

Operational Mode Indicates the mode of operation of
the airport at the time a the aircraft
starts taxiing

Fuzzifier

Inference

Rules

Defuzzifier
Crisp Inputs, x

Fuzzy Sets

(Type-1)

Fuzzy Sets

(Type-1)

Crisp

Output, y

Fig. 2: Type-1 Fuzzy Logic System.

A. A Type-2 Fuzzy Model

This section provides the ‘rationale for using T2FLSs as a

better alternative for the type-1 fuzzy logic system (T1FLS).

As already mentioned in Section I, fuzzy logic has the advan-

tage of representing complex systems using human intuition.

The block diagram of a conventional fuzzy logic system is

shown in Fig. 2.

It can be seen that a T1FLS represents a mapping from an

input space (X) to an output space (Y). As discussed in [3],

the simple block represented by Fig. 2 can represent any non-

linear function [16], [17]. The ability to incorporate human-

like information/reasoning is mainly due to the fuzzy sets

embedded in the rules section of the block diagram. Given

a FLS with n inputs (x1 ∈ X1, x2 ∈ X2, · · · , xn ∈ Xn) and

one output (y ∈ Y ) and a rule-base composing of c-rules, the

ith rule Ri can be expressed as follows:

Ri : IF x1 is Ai
1

and x2 is Ai
2
· · · and xn is Ai

n THEN

yi is hi(x) x ∈ Rn (1)

Ai
j and hi represent the jth membership function (MF) and

the consequent of the ith rule respectively for j = 1, 2, · · · , n
and i = 1, 2, · · · , c. Ai

j is a fuzzy set (Fig. 3) which

is a mathematical representation of the subjective linguistic

knowledge. Further details about the meaning of fuzzy sets

are given in [3].



(a) Type-1 Fuzzy Set.

(b) Type-2 Fuzzy Set. UMF - upper membership function, LMF - lower
membership function, FOU - footprint of uncertainty.

Fig. 3: Fuzzy Sets.
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Fig. 4: Type-2 Fuzzy Logic System.

In order to be able to handle the so-called linguistic uncer-

tainties (see [3] and [18] for details), type-2 fuzzy sets were

introduced (Fig. 3b). Type-2 fuzzy sets allow for representation

of the MFs with another fuzzy set (called a secondary MF)

which means that the MF is no longer a crisp value as in

the case of the type-1 fuzzy set. Any fuzzy logic system that

utilises at least one type-2 fuzzy set in its rules is called a type-

2 fuzzy logic system. Compared with a T1FLS, the T2FLS has

an additional block in its block diagram as shown in Fig. 4

owing to the need to reduce the type-2 fuzzy sets after the

inference procedure to a type-1 fuzzy set. It is worth noting

that the interval type-2 fuzzy logic system was used in this

study [3].

As is the case with the T1FLS, the T2FLS is also a mapping

from the input domain, X to the output domain, Y and can

be represented by the following:

ŷ =

(

c
∑

i=1

hif i +

c
∑

i=1

hif i

)

/

(

c
∑

i=1

f i +

c
∑

i=1

f
i

)

(2)

where ŷ is the output of the FLS and f i and f
i

represent

the upper and lower membership functions respectively, which

depend on the input, X .

T2FLSs have been shown to be more robust to noise

and uncertainties due to the extra degree of freedom in

their membership functions [18]. Introducing robustness and

improved accuracy in the taxi–time prediction through using

these T2FLSs can only be beneficial. When there is limited

expert information, fuzzy logic systems can be identified using

automatic rule generation methods such as those proposed in

[3], [15], [18]. Usually, the parameters of the fuzzy logic

system are tuned to minimise the root mean square error

(RMSE) where the RMSE is defined as follows:

RMSE =

√

∑N

i=1
(yi − ŷi)2

N
(3)

where N is the number of data points, yi and ŷi are the ith

actual output and the corresponding predicted output of the

model respectively. The RMSE works well for homoscedastic

data [19], however, it can sometimes be difficult to validate

the homoscedastic assumption which has motivated the error

compensation strategy which will be discussed in the next

section.

B. Uncertainty Modelling and the Error Compensation Strat-

egy

The second stage of the modelling framework involves

including a Gaussian Mixture Modelling (GMM)-based error

compensation strategy, which has been discussed in our earlier

work in [15]. After the fuzzy modelling stage, for each sets of

input variables, the residual errors can be obtained. The GMM

model is then fitted into the combination of the input variables

and the residuals. The error compensation strategy serves two

purposes: 1. To provide distribution of the error for a given

input which can be used to represent the confidence band in

predictions. 2. To compensate for biases due to unverifiable

modelling assumptions at the beginning of the modelling

process. The steps for constructing the error compensation

scheme are described as follows:

1) Arrange the input variables and the error using the

following equation:

XE = [XE] (4)

where E is the corresponding error which is the differ-

ence between predicted output and the measured output

for the corresponding input X .

2) Initialise the GMM parameters using randomly chosen

values for a predefined number of Gaussian components,

K. The parameters to be initialised include the mixing

coefficients πk, the mean µk and the covariance matrix

σk. The GMM is defined by the following equation:

P (xe
n|π, µ, σ) =

K
∑

k

πkg(x
e
n|µk, σk) (5)

where P (xe
n|π, µ, σ) is the unconditional probability of a

particular data point xe
n, πk is the mixing coefficient for

the kth Gaussian with mean µk and covariance matrix

σk. g(xe
n|µk, σk) is the probability of that particular



data point xe
n given that it belongs to the kth Gaussian

component. It should be noted that
∑K

k πk = 1.

3) Calculate the membership weight for the nth data point

xn
e for a particular cluster k using the following equa-

tion:

zk(x
e
n) =

g(xe
n|µk, σk)

∑K

k πkg(xe
n|µk, σk)

(6)

This is called the E-Step of the expectation maximisation

algorithm.

4) Calculate new parameter values given by the sets of

equations below:

πk =
1

N

N
∑

n=1

zk(x
e
n) (7)

µk =

∑N

n=1
zk(x

e
n)x

e
n

∑N

n=1
zk(xe

n)
(8)

σk =

∑N

n=1
zk(x

e
n − µk)(x

e
n − µk)

T

∑N

n=1
zk(xe

n)
(9)

This is called the M-Step of the expectation maximisa-

tion algorithm.

5) Steps 1-4 above are repeated until convergence. It is

worth noting that convergence of this algorithm can

be aided significantly by pre-processing the data using

clustering algorithms such as the K-means algorithm.

Convergence can be detected when there are no further

changes to the values of the parameters or by computing

the log-likelihood (under independence and identically

distributed assumption). The number of components

is selected using the Bayesian Information Criterion

discussed in [15].

6) For a given input xi, the distribution of the error is

calculated using Bayes rule as given by the following

equation:

P (e|xi) =
P (xi, e)

P (xi)
(10)

=
P (xi, e)

∫

P (xi, e)de
(11)

7) The expectation of the error is given by the following

equation:

Me(xi) =

∫

eP (x|ei)de (12)

In addition to the above, the standard deviation, which

is used to construct the confidence interval in the pre-

dictions, is given by the following equation:

Se(xi) =

√

∫

(e−Me)2P (e|xi)de (13)

8) The error in the predictions is then compensated by

using the following equation:

yci = yi −Me(xi) (14)

TABLE II: Comparison of proposed approach with popular

techniques from the literature. LR means Linear Regression,

M FRBS means the Mamdani Fuzzy Rule-Based System.

Proposed* is the compensated model.

Method ±2 mins ±3 mins

LR 70.11% 84.6%

M FRBS [10] 88.4% 93.7%

Proposed 90.01% 95.21%

Proposed* 91.32% 97.54%

The error compensation scheme, as defined in step 8 above,

is based on the assertion that when Me(xi) is negative, the

predictions are negatively biased. The error compensation

strategy then compensates for this bias.

IV. RESULTS

The proposed approach was tested on the experimental data

set described in Section II. This data set from Manchester Air-

port (U.K.) includes 1413 data points with 15 input variables

(see Table I) and 1 output variable (taxi-time). The data set

was divided into two parts: 69% for training the model as well

as fitting the GMM model and 31% for testing the generalising

capability of such a prediction model. The steps discussed in

Section III were implemented to train an interval type-2 fuzzy

model with an error compensation strategy. The performance

criterion of choice for this study is the RMSE error defined

in (3).

A. Fuzzy model result without error compensation

The results of the fuzzy model without error compensation

are shown in Figs. 5a and 5b for the training and testing data

respectively. Compared with linear regression results shown

in Fig. 5c and Fig. 5d (for training and testing data respec-

tively), the fuzzy model shows an increase in performance of

approximately 15%.

B. Fuzzy model result with error compensation

Figs. 5e-5h show that the error compensation strategy is

able to improve the performance of both the fuzzy and the

linear regression models. However, the linear regression model

performance (after error compensation) has a significantly

worse performance than both the compensated and the uncom-

pensated fuzzy model. Fig. 6 shows the error distribution of 10

data points. As can be seen from the figure, the uncertainty in

predictions tend to increase with increasing taxi-times which

is reasonable as the longer it takes an airplane to taxi, the

more the tendency for the time it takes to taxi to-and-from

gates to be uncertain. Table II shows that, the proposed

approach provides a competitive advantage over some existing

techniques (linear regression and Mamdani FRBS) for taxi-

time prediction. Fig. 7 shows the three-dimensional plot of

size of aircraft and taxi distance in metres against the predicted

taxi-time in minutes. A large aircraft on average takes longer

to taxi.
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Fig. 5: Results.
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V. CONCLUSION

This study has presented a new approach to estimating the

taxi-times of aircraft. The approach is based on the interval

type-2 fuzzy logic systems which provides more robustness

than the conventional type-1 fuzzy logic system. The advan-

tage of the fuzzy systems modelling over other types of non-

linear mapping functions is the ease of interpretability and the

ability to incorporate linguistic information/expert knowledge

in a seamless manner. The second stage of the modelling

process includes fitting a GMM model over the input variables

and the error from the predictions. This model can both serve

as an error compensation scheme as well provide a confidence

band in the predictions. Results, when compared with existing

algorithms show the efficacy of the proposed approach. Hence,
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Fig. 7: Three-dimensional plot of two inputs (taxiing distance

in metres and size of aircraft [0 for large, 1 for small]) against

the predicted taxi-time (minutes).

the general type-2 fuzzy system will be considered in future

modelling work which will include a hybrid modelling struc-

ture that proposes to combine various sources of information,

e.g. quantitative data, expert knowledge and multiple physics.
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