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ABSTRACT

Music moves us. Yet, querying music is still a disembodied process in most music rec-
ommender scenarios. New mediation technologies like querying music by movement
would take account of the empirically well founded knowledge of embodied mu-
sic cognition. Thus, the goal of the presented study was to explore how movement
captured by smartphone accelerometer data can be related to musical properties.
Participants (N = 23, mean age = 34.6 yrs, SD = 13.7 yrs, 13 females, 10 males)
moved a smartphone to 15 musical stimuli of 20s length presented in random order.
Motion features related to tempo, smoothness, size, and regularity were extracted
from accelerometer data to predict the musical qualities “rhythmicity”, “pitch level
+ range” and “complexity” assessed by three music experts. Motion features se-
lected by a stepwise AIC model predicted the musical properties to the following
degrees “rhythmicity” (R2 = .45), “pitch level and range” (R2 = .06) and “com-
plexity” (R2 = .15). We conclude that (rhythmic) music properties can be predicted
from the movement it evoked, and that an embodied approach to Music Information
Retrieval is feasible.

KEYWORDS

Movement, Computing, Music Information Retrieval, Accelerometer, Embodied
Music Cognition

1. Introduction

Music moves us. Music-induced movement ranges from spontaneous movement of head
or feet to the beat, to complex dancing choreographies. Thus, music and movement
share a very close relationship. There even are neuroscientific observations that lis-
teners internally mimick body movements when perceiving music (Grahn & Rowe,
2009; Zatorre, Chen, & Penhune, 2007). That is why Maes, Leman, Palmer, and Wan-
derley (2014) claim that the listener’s musical mind could be represented by body
movement, and that the body and its movements are active contributors in musical
meaning formation.

Movement is evoked by rhythmic (e.g., meter and tempo) as well as tonal or expres-
sive qualities of music (e.g., melody, timbre, sound intensity) (Godøy, Song, Nymoen,
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Haugen, & Jensenius, 2016; Honing, 2012; Leman & Maes, 2015; Van Dyck, Burger,
& Orlandatou, 2017). Rhythmic complexity, in particular, drives listeners’ desire to
move and the experience of pleasure (Sioros, Miron, Davies, Gouyon, & Madison, 2014;
Witek, Clarke, Wallentin, Kringelbach, & Vuust, 2014). Witek et al. (2014) confirmed
an inverted U-shaped relation between complexity and urge to move. Thus, modest
use of syncopation makes us move most while very simple and very complex syncopa-
tion minimizes our urge to move. Furthermore, humans prefer tempi around 120 beats
per minute (bpm) to synchronize their movements to the music (Moelants, 2002). It
is assumed that the musical tempo does not only affect the movement’s speed but its
form as well, for example a decrease in walking step size with increasing tempo (Styns,
Van Noorden, Moelants, & Leman, 2007). As the speed of human movement is limited
for high tempi, movement needs to be smaller or fall back to a slower metrical level
(half-time). This can be observed in samba or flamenco dance.

Toiviainen, Luck, and Thompson (2010) observed that different body parts embody
different levels of metric hierarchy. A follow-up study of Burger, Thompson, Luck,
Saarikallio, and Toiviainen (2013) confirmed that faster metric levels induce move-
ment on body parts featuring more degrees of freedom (arms), and slower metric
levels and pulse clarity are modeled by the center of the body (torso). Movement of
extremities (hand, head) further was found to be adjusted to the dynamics of the
music (spectral flux of sound or loudness) (Burger et al., 2013; Camurri, Mazzarino,
Ricchetti, Timmers, & Volpe, 2004; Küssner, Tidhar, Prior, & Leech-Wilkinson, 2014;
Van Dyck, Moelants, Demey, Deweppe, & Leman, 2013; Wöllner & Hohagen, 2017).
Starting from the above observations, Burger, London, Thompson, and Toiviainen
(2018) examined the effect of spectral flux on music-induced movement under varying
conditions of musical tempo. In their study, tempi were selected close to the preferred
tempo of 120 bpm and ranged from 105 to 130 bpm (Burger et al., 2018). For mu-
sic samples with slower tempo but strong low-frequency spectral flux in particular,
they observed vertical movement of the bodily center (hips and feet) synchronizing
to the beats. Extremities (hand and head) were rather synchronized to weak flux on
the higher metrical bar level. Thus, these studies suggest that the center of the body
is responsible to keep track of the tempo while hands or head are free to perform
gestalt-like movements. Finally, dancers also respond to accents in rhythmic patterns
featuring salient changes in spectral flux (Naveda, Gouyon, Guedes, & Leman, 2011).
Considering the direction of movement, Burger, Thompson, Luck, Saarikallio, and
Toiviainen (2014) tested to which degree music with dominant beat structure would
facilitate periodic movement (Burger et al., 2014), and to which degree participants
would share a common relationship between swaying movement and musical meter.
Results for both hypotheses confirmed the dynamic attending theory (Drake, Jones,
& Baruch, 2000; Jones, 1976) stating that vertical movement was stronger linked to
beat whereas horizontal movement was stronger connected to meter.

On top of rhythm or energy-related aspects, experiments also observed interaction
between pitch contour (melody) and motion in two prevalent ways. First, rising-falling
pitch was shown to be embodied by movement on the vertical axis (Küssner et al.,
2014; Sievers, Polansky, Casey, & Wheatley, 2013; Truslit, 1938). This observation
is more consistent among musically trained persons (Küssner et al., 2014). Second,
there is a strong link between pitch and size. As Eitan, Schupak, Gotler, and Marks
(2014) have shown, rising pitch is associated with increasing object size whereas falling
pitch is linked to shrinking object size. In experiments with free movement, it becomes
even more complex: Kelkar and Jensenius (2018) instructed participants in a sound-
tracing experiment to move as if they were producing the sound. Their results showed
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that participants apply very different movement strategies that are related to size,
the vertical axis, as well as percussive elements. They furthermore observed that the
direction of movement also depends on the size of the person: Smaller participants
made more use of the horizontal dimension whereas taller persons remained in the
vertical direction. Such effects can be the product of ergonomic aspects, social norms,
or personality (Luck, Saarikallio, Burger, Thompson, & Toiviainen, 2010).

Despite these findings and ongoing research in the field of embodied music cogni-
tion, technologies in the field of Music Information Retrieval (MIR) and Music Rec-
ommender Systems (MRS) are still mainly disembodied. Leman (2007) suggests to
use corporeal articulations as a bridge between linguistic self-report measures and
measurements of physical energy like pitch, loudness or tempo. Leman conceptualizes
human movement as a transformation of physical energy into cultural abstraction,
and vice versa, i.e. a sonification of human movement would lead to physical energy
again (Leman, 2007). He assumes that corporeal descriptions of music are more sim-
ilar among humans than verbal ones, and that they are hence more appropriate and
direct: Corporeal descriptions of music would close the semantic gap between physical
measurements of music (audio content analysis) and subjective, verbal descriptions of
music perception.

Currently, music recommendations are mostly based on previous listening habits,
and the co-occurrences of songs across listeners’ playlists. However, musical choices de-
pend on situational factors, such as mood, activity-at-hand, and the presence of other
people (Greb, Steffens, & Schlotz, 2018). We previously showed that the perceived
emotional qualities of music (in terms of the Geneva Emotion Music Scale as well as
Valence and Arousal) could be predicted based on the free and spontaneous movement
it evoked during listening (Irrgang & Egermann, 2016). Since this study and others
Giordano, Egermann, and Bresin (2014) showed that movement can reflect emotion,
querying music by movement would open up a new, intuitive and context-sensitive way
to interact with music databases without the hassle of scrolling, clicking and filling
forms. In future applications, users would perform movements with a suitable input
device and subsequently receive a recommendation, such that this recommendation
could as well be the sonification of the very movement. In a mobile recommender
scenario, suitable input devices to assess movement are smartphones, smart watches,
and their inherent motion sensors. In a stationary scenario, video- (and depth sensor)
based approaches like the kinect sensor are another option. The most available sensors
are currently those in Android smartphone devices (market share of 85%, 2.7 billion
Android devices worldwide)1.

2. Aims

Given the close relationship between music and movement on the one side, and a lack
of suitable mediation technologies on the other, the goal of the presented exploratory
study was to examine whether and how gestures captured by smartphone-assessed mo-
tion data can predict musical qualities presented to listeners. In particular, we wanted
to determine how smartphone-assessed accelerometer data needs to be processed and
described in terms of suitable motion features to predict salient musical properties. As
a step towards this goal, we asked participants to freely move a smartphone during
music listening. Future applications could then recommend music featuring the pre-

1https://de.statista.com/themen/581/smartphones/
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dicted qualities of music from movement. Thus, the findings will contribute to develop
corporeal querying of music databases in MIR as envisioned by Leman (2007).

3. Method

3.1. Participants

Twenty-three persons with a mean age of 34.6 years (SD = 13.7 yrs, 13 females, 10
males) participated in this study. Six participants were professional musicians, nine
were amateur musicians and eight were musical novices. Half of the participants were
trained in dancing for one year or longer. Five of them were trained in dancing for
three or more years (semi-professional dancers).

3.2. Stimulus selection

In order to support the musical stimulus selection, we identified several relevant musical
attributes. In a study on psychophysiological responses to music, Gomez and Danuser
(2007) tested the effect of ten characteristics that cover rhythmic, expressive, and
tonal qualities of music. To this well-founded list, we added another four attributes
(backbeat, downbeat, syncopation, beat position) related to rhythm in particular,
because we expected rhythmic attributes relevant factors influencing music-evoked
movement:

• rhythm (1 = vague, 10 = outstanding)
• tempo (1 = slow, 10 = fast)
• accentuation (1 = light, 10 = marcato)
• articulation (1 = staccato, 10 = legato)
• melodic direction (1 = descending, 10 = ascending)
• pitch level (1 = low, 10 = high)
• pitch range (1 = narrow, 10 = wide)
• mode (1 = minor, 10 = major)
• complexity (1 = simple, 10 = complex)
• consonance (1 = dissonant, 10 = consonant)
• backbeat (1 = vague, 10 = outstanding)
• downbeat (1 = vague, 10 = outstanding)
• syncopation (1 = accent on beat, 10 = accent on off-beat)
• beat position of bass/snare (1 = laid back, 10 = up front)

According to these musical attributes, we selected a total of 31 musical excerpts (20
seconds long), such that firstly their musical characteristics would not change (much)
over time, and that secondly we created sufficient variance for each musical attribute.
In a pre-study, this set of 31 musical excerpts was then rated according to the list of
musical attributes by three experts from different fields of musical expertise: a music
researcher, a professional musician (bass guitar), and a professional DJ. This larger set
of 31 stimuli had to be reduced to a set that was large enough to represent different
degrees of the above characteristics, but small enough to avoid that this physically
intense study was not too long and exhausting. We estimated that participants will
listen to each music excerpt at least twice before recording it in order to get to know the
song, and to develop a movement strategy. For the short interview after each stimuli, we
calculated another 5 minutes. Thus, 15 stimuli were identified as the optimal number
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Table 1. List of music stimuli used in the study.

Artist Title Time Excerpt BPM

Alicia Keys feat. Nicki Minaj Girl on Fire (Inferno Version) 00:00-00:20 93
Marcus Miller Detroit 00:00-00:21 92
Sia Chandelier 00:30-00:55 117
Alicia Keys You don’t know my name 00:33-00:57 84
Fever Ray Dry and Dusty 01:20-01:42 91
David Bowie Aladdin Sane 02:00-02:30 121
Stevie Wonder Another Star 02:21-03:00 122
Andy Allo People Pleaser 00:18-00:40 85
Michael Jackson Bad 00:00-00:20 114
Röyksopp feat. Robyn Monument 00:40-01:02 93

(The Inevitable End Version)
Igor Stravinsky Le Sacre du Printemps/Part1 00:20-00:40 82-88
Chris Garneau The Leaving Song 00:00-00:22 54
Jherek Bischoff & Amanda Palmer Space Oddity 01:36-02:00 130
feat. Neil Gaiman
David Bowie feat. Tina Turner Tonight 00:18-00:48 98
Florence + the machine Cosmic Love 00:20-00:43 134

of stimuli to remain in the scope of two hours for the experiment. In order to select
15 stimuli representing all musical characteristics in the larger set of 31 pieces, we
computed k-means clustering for 15 clusters from the expert ratings and selected
one stimulus from each cluster. Table 1 depicts the final list of samples which were
presented in random order in the main study.

3.3. Procedure

In the beginning, participants were asked for their written consent to participate. Their
motions were tracked by an Optitrack2 motion capture system in order to have a refer-
ence measure for the accelerometer data (not shown here). Participants wore a motion
capture suit equipped with 37 markers and holding the smartphone equipped with
another three marker points as rigid body. Markers were tracked by eight cameras. A
video camera recorded the participants’ movements in order to disambiguate occluded
marker points and to record short interviews about the music after each excerpt. Mu-
sic was presented to participants via loudspeakers. An Android App was developed to
capture motion and present music stimuli in a random order. The App was controlled
by the investigator via remote access with AirDroid3. The whole study was conducted
using a Samsung Galaxy S6. A sling around the wrist served as a safety measure for
the phone not to be slipped. Except for one person, participants held the phone in
the right hand because they were right-handed. Note that the phone’s front surface
was facing to the torso’s side. Figure 1 shows the smartphone’s position relative to the
body.

2www.optitrack.com
3www.airdroid.com
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Figure 1. Photo of smartphone’s position in participant’s hand indicating accelerometer dimensions X,Y,Z

In the beginning, participants chose one of their own songs to warm up and to get
familiar with the study’s procedure. This song could be any song that they brought and
that they liked for dancing. It was neither part of the 15 stimuli nor the evaluation,
and should simply ensure that they had a comfortable start. They were instructed
as follows: “Move the smartphone to the music. You can move the rest of the body
intuitively along with it, but keep in mind that the characteristic motion must be
captured by the phone. Please stay in the delineated area of 2x2 metres”. Subsequently,
for every other music excerpt, the procedure was as follows:

(1) multiple test listening to the music excerpt in order to develop a movement
strategy

(2) accelerometer recording of the movement during stimulus presentation
(3) short interview about the music excerpt

(a) How much did you like moving/dancing to the song?
(b) How much did you like the song?

Participants were allowed to listen to each stimulus as often as it took them to decide
how they wanted to move to it (multiple test listening). During test listening, we
did not record any data. Once they were ready, we started the main recording of
movement data for the given stimulus. After the recording, we had a short interview
about how suitable they considered the musical excerpt for moving/dancing to it
(suitability to move), and about how much they liked the presented music in general
(liking of song). They rated each song as either “not suitable”/“dislike”, “moderately
suitable/moderate liking”, or “very suitable/strong liking”. Subsequent to the study’s
main part, participants were asked to fill out a socio-biographic questionnaire on their
experience in music and movement/dance etc.

4. Results

The following sections summarize the results for the extracted music and motion fea-
tures as well as for the statistical models fitted for predicting musical features based
on motion features.
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original musical property rhythmicity pitch level + range complexity

rhythm .912 -.096 .226
backbeat .718 .133 -.605
tempo .457 .168 .631
accentuation .918 .110 .175
articulation -.888 .219 -.127
pitch level -.138 .914 .088
pitch range .044 .895 .252
complexity .169 .380 .829

Table 2. Loadings between components and musical attributes. Components were computed via PCA and
rotated (Varimax with Kaiser normalization)

4.1. Music Features

For some music features, inter-rater reliability was not sufficient, namely for synco-
pation, downbeat, beat position, consonance, mode, and melodic direction. Therefore,
in the first step, we only kept those properties for which the inter-rater reliability
was acceptable (inter-rater correlation r > .50). Since ratings of the remaining music
properties were highly correlated as visualized in Figure 2 (e.g., rhythm with accentu-

ation or pitch level with pitch range), we calculated a Principal Component Analysis
(PCA) in a second step. Both Kaiser-Meyer-Olkin Measure of Sampling Adequacy
(KMO = .589) and Bartlett’s Test of Sphericity indicated a (mediocre) adequacy of
the sample for computing a PCA (chi-squared = 178.4, df = 28, p < .001). A scree plot
indicated a 3-component solution that was rotated using orthogonal Varimax rotation
with Kaiser normalization. The resulting components were labeled rhythmicity, pitch
level + range and complexity (see Table 2). We then extracted component scores and
computed the mean score per excerpt (across the three expert ratings). Figure 3 shows
principle component means and standard deviations (rhythmicity, pitch, complexity)
for all 15 music excerpts (left plot). The right plot of Figure 3 shows participant rating
means and standard deviations for all 15 music excerpts on how suitable they con-
sidered the song for moving/dancing (solid line), and how much they liked the song
(dashed line). Comparing the two plots, the music property most related to movement
suitability is rhythmicity, e.g. highest ratings of rhythmicity and suitability to move
for Girl on Fire, Detroit, People Pleaser or Bad, while lowest ratings for rhythmicity
and suitability to move are present for Leaving Song or Cosmic Love. Accordingly, the
correlation between suitability to move and rhythmicity is significantly positive (r =
.37, p < .001); between suitability to move and pitch level + range, it is significantly
negative (r = -.24, p < .001); but between suitability to move and complexity it is not
significant (r = .01, p = .87). The right plot of Figure 3 further suggests that liking is
independent from suitability to move. In fact, liking and suitability to move are only
slightly positively correlated (r = .58, p < .0001).
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to be independent from suitability to move.

4.2. Motion Features

During the experiment, some participants skipped certain songs because they did not
feel comfortable with them. Those samples (N = 23) were excluded from the original
set of N = 345 samples leading to a final size of N = 322 observations within 23 per-
sons. In a pre-processing step, we standardized sample rates of smartphone-generated
accelerometer data4 to the lowest one that was captured of approximately seven sam-
ples per second. We also cut off the first five seconds of each trial because participants
used this time to perform a hand signal to indicate the start for the post-processing of
the data5. Subsequently, the pre-processed data was transformed into the eigenspace
(described by eigenvectors and eigenvalues of the data) of each participant: For all
samples of one participant, we computed a Principal Component Analysis (PCA) and
transformed the participant’s data to decorrelate it. This step increases the compara-
bility of movements across participants. Figure 4 visualizes the steps described above
for one participant and their movement to one music excerpt (AladdinSane). The first
principal component (PC1) corresponds to the direction of maximum movement vari-
ance in space. The second principal component (PC2) corresponds to the direction of
second most movement variance in space and so on. These directions do not correspond
to the global directions of x, y, and z, because they are individual for each participant
depending on how this person held the device, and based on their individual movement
pattern.

From the accelerometer data in eigenspace, we extracted spectral and temporal mo-
tion features related to tempo, size, regularity and smoothness as listed in Table 3.

4corrected linear acceleration as described for Sensor.TYPE LINEAR ACCELERATION in:

https://developer.android.com/guide/topics/sensors/sensors motion
5They stretched out their arms to the side (shoulder’s height), and then clapped them together above their

head.
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Spectral features (e.g. maximum frequency in Hz ) were computed by applying a fast
fourier transform (FFT). Temporal features (e.g. distance between midcrosses, rise and
fall times) were aggregated over time by computing median and standard deviation
for each feature and principal component. In order to further reduce the space of mo-
tion features, we computed the median over all three components for each feature. For
example, the features peak median PC1, peak median PC2, peak median PC3 were
reduced to median peak median, and peak std PC1, peak std PC2, peak std PC3 be-
came median peak std. For spectral features, we kept the most dominant frequency
(max freq hz), its magnitude (max freq mag), and its magnitude relative to the me-
dian magnitude of all frequency peaks (max freq rel).

Figure 5 illustrates the steps described above. This feature space, Feature Space

A, comprises 12 features. Figure 6 visualizes some of the temporal and spectral features
for one participant and the music excerpt AladdinSane. Subsequently, we calculated
different measures of multicollinearity (individual multicollinearity diagnostic mea-
sures (imcdiag) from R-package mctest6 including Variance Inflation Factor (VIF),
TOL(erance) and Farrar F-test) for each regressor in order to check if the influence of
a predictor variable in the presence of another dependent or correlated variable might
be obscured. Collinearity was detected by this test for the variables: max freq hz,
max freq mag, median dist midcrosses, median rise median, median fall median, me-
dian fall std, median peak std. Figure 7 visualizes the measured correlation between
features of Feature Space A. Thus, in a second step, we evaluated if results remained
comparable for an even smaller, decorrelated feature space. We applied a PCA on
Feature Space A and only kept the first three components (criterion: scree plot). Sub-
sequently, components were rotated according to the varimax method. This feature
space, Feature Space B, comprises the dimensions irregular slowness, irregular size and
irregular smoothness. Unfortunately, it was not possible to find a solution with regu-
larity as a separate component to learn how regularity affects the prediction of musical
properties independently of the other motion features slowness, size, and smoothness.
Table 4 shows the component loadings for the three components. The following section
will describe the selection of features for both feature spaces and the results of the
fitted models.

6https://cran.r-project.org/web/packages/mctest/
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feature description category Matlab function

spectral (Signal Processing Toolbox)

max freq hz most dominant frequency in Hz across all three PCs tempo fft and max
max freq mag magnitude of most dominant frequency regularity fft and max
max freq rel magnitude of most dominant frequency relative fft, findpeaks, and median

to median magnitude of all frequency peaks regularity

temporal

volume volume of acceleration point cloud computed size delaunayTriangulation
by applying delaunay triangulation to the acceleration data and convexHull
points in 3D-eigenspace and hence computing the convex hull
of the triangulated space as in Amelynck et al. (2012)

dist midcrosses median PC1/2/3 median of distances between midcrosses for each PC tempo midcross and median
dist midcrosses std PC1/2/3 standard deviation of distances between midcrosses for each PC regularity midcross and std
rise median PC1/2/3 median duration of attacks for each PC smoothness risetime and median
rise std PC1/2/3 standard deviation of duration of attacks for each PC regularity risetime and std
fall median PC1/2/3 median duration of releases for each PC smoothness falltime and median
fall std PC1/2/3 standard deviation of duration of releases for each PC regularity falltime and std
peak median PC1/2/3 median size of the movement for each PC size peak2peak and median
peak std PC1/2/3 standard deviation of the size of the movement for each PC regularity peak2peak and std

Table 3. Feature Space A - Motion Features extracted with Matlab’s Signal Processing Toolbox. The Matlab code can be retrieved from this public repository:

https://github.com/mirrgang/motion2music
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irregular slowness irregular size irregular smoothness
max freq hz -.429 .188 -.234
max freq mag rel .823 -.082 -.094
median dist midcrosses .669 .014 -.300
median std dist midcrosses .726 -.085 .070
median rise median .766 .055 .331
median fall median .876 .051 .162
max freq mag .168 .824 .013
volume -.096 .871 .001
median peak median -.272 .925 .033
median peak std -.187 .936 .006
median rise std -.010 .001 .734
median fall std .140 .005 .750

Table 4. Loadings of varimax rotated principal components. Low and irregular movement frequencies, long
rise and fall times constitute the first principal component: irregular slowness. The second component, irregular
size, is composed of size-related motion feature e.g. volume or peak amplitude. The third principal component

features irregular smoothness.

4.3. Statistical Prediction Models

For all three music components rhythmicity, pitch level + range and complexity, and
both feature spaces, we computed a stepwise model based an the Akaike Informa-
tion Criterion (AIC) choosing the model with minimum information loss. We further
restricted selected variables to achieve the significance level of (p < .05), and there-
fore increased the penalty term from k = 2 (default) to the chi-squared quantile of
k = qchisq(0.05, 1, lower.tail = FALSE) = 3.84 for the stepAIC function (R-package
MASS). Stepwise search was performed in both directions7.

Table 5 shows the results of the selected fixed effects from Feature Space A for
the three factors rhythmicity (R2 = .45), pitch level + range (R2 = .06) and com-

plexity (R2 = .15). For rhythmicity, about half of the variance in the data could be
explained by the fitted model. It was predicted by motion features related to irregu-
lar (max freq mag rel and std dist midcrosses), large (median peak), and irregularly
sharp (std rise) movement with dense use of space (volume). Pitch level + range was
the most difficult factor to predict from the extracted motion features. Significant fea-
tures were connected to irregularly slow (max freq mag rel, max freq hz) movements
with short rise times (median rise). About one eighth of the variance in complexity

was explained by features associated with irregular tempo (max freq mag rel), size
(std peak) and fall times (std fall) but regular rise times (std rise).

Table 4.3 shows the results of the selected fixed effects from Feature Space B for the
three factors rhythmicity (R2 = .36), pitch level + range (R2 = .03) and complexity

(R2 = .09). Like for Feature Space A rhythmicity was predicted by large movement
(irregular size comprising volume and median peak). Regularity and fast tempo (nega-
tive irregular slowness comprising max freq mag rel and std dist midcrosses) was also
a significant predictor. The simplified Feature Space B explained about 10% less of
the variance in the data than Feature Space A. However, it could be shown that (fast)
tempo and size explain most of the variance in the data. Pitch level + range was pre-
dicted by the opposite of the irregular slowness component which comprised significant
features of Feature Space A. As above, complexity was associated with irregular size

(cf. std peak), as well as the opposite of irregular slowness (cf. max freq mag rel).

7The complete R code is provided in the following repository: https://github.com/mirrgang/motion2music
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original accelerometer data (a)

pre-processed data (b)

accelerometer data in eigenspace (c)

temporal features (d)

distance midcrosses PC1/PC2/PC3
rise time PC1/PC2/PC3
fall time PC1/PC2/PC3

peak2peak PC1/PC2/PC3

volume (e)
N = 1 feature

spectral features (f)
max freq hz/ mag/ mag rel => N = 3 features

median and std of
each PC and feature
N = 24 features

median of PC1, PC2 and PC3
for each feature
N = 8 features

FEATURE SPACE A:
12 features

FEATURE SPACE B:
3 features

reduced motion feature space (g)

PC1: irregular slowness PC2: irregular size PC3: irregular smoothness

adjust sampling rate

PCA on participant level

PCA

Figure 5. Motion Feature Extraction: Workflow. The original accelerometer data (a) is pre-processed (b),
and a PCA is applied on participant level to account for inter-individual differences (c). Temporal features are
extracted for each dimension in eigenspace (d). Median and standard deviation are computed for each feature
and each component to get a time-averaged representation (N=24 temporal features). Finally, the median is

computed over all components of a feature (N=8 temporal features). Volume is a measure of use of space over
the whole time (e). Spectral features (max freq hz, max freq mag, max freq mag rel) are assessed once for the

complete time segment (f). A second PCA on Feature Space A yielded three components: irregular slowness,
irregular size, irregular smoothness (g).
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the mid spectrum around 2Hz. Acceleration is relatively regular with almost equidistant midcrossings, large

peak amplitudes in the first principal component and short rise and fall times.
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Different from the model for Feature Space A, irregular smoothness (std rise and
std fall) was not significant. The third principal component of the feature space, ir-
regular smoothness, was not selected as a significant predictor in any of the three
models.

Finally, we also tested the discriminative power of the extracted motion features
by computing three linear mixed models that predict the motion feature components
irregular slowness, irregular size, and irregular smoothness with sample id as fixed ef-
fects and participant id as random intercept. The mixed models were fit using the
R-package nlme8. Figure 8 shows the corresponding estimated marginal means and
the confidence intervals for the three mixed models. The joint significance (average
significance over all music excerpts) of the fixed effect sample id was smaller then
.01% for each model. Thus, the results indicate firstly that the different music ex-
cerpts evoke different movement features, and secondly that the variance of the music
samples is suitably represented by the quantified movement.

8https://cran.r-project.org/web/packages/nlme
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Table 5. Results from stepAIC (fixed effect estimates, t-value and p-value), and R for the fitted linear models and Feature Space A.

name category estimate t value (p1)

rhythmicity (R2 = 0.45)***

magnitude of most dominant frequency relative to max freq mag rel regularity -2.7 -6.9 (***)
median magnitude of all frequency peaks
volume of acceleration point cloud volume use of space -2.0 -3.5 (.0005)
median standard deviation of distance between midcrosses median std dist midcrosses regularity -1.3 -3.3 (.0009)
median standard deviation of rise time over all components median rise std irregularity -1.1 -3.4 (.0007)
median peak amplitude over all components median peak median size 4.1 6.9 (***)

pitch level and range (R2 = 0.06, p = .0002)

maximum frequency in hz max freq hz tempo -0.5 -2.2 (.0256)
magnitude of most dominant frequency relative to max freq mag rel regularity -0.6 -2.3 (.0228)
median magnitude of all frequency peaks
median rise time over all components median rise median smoothness -0.6 -2.1 (.0330)

complexity (R2 = 0.15)***

magnitude of most dominant frequency relative to max freq mag rel regularity -1.0 -4.1 (***)
median magnitude of all frequency peaks
median std of rise time over all components median rise std irregularity -0.9 -3.8 (.0002)
median std of fall time over all components median fall std irregularity 0.5 2.0 (.0389)
std of peak amplitude over all components median peak std irregularity 0.9 3.8 (.0002)

1) ∗ ∗ ∗p < .0001
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Table 6. Results from stepAIC (fixed effect estimates, t-value and p-value), and R for the fitted linear models

and Feature Space B.

category estimate t value (p1)

rhythmicity (R2 = 0.36)***

irregular slowness irregularity & tempo -1.1 -9.7***
irregular size irregularity & size 0.6 4.8***

pitch level and range (R2 = 0.03, p = .0041

irregular slowness irregularity & tempo -0.2 -2.9 (.0041)

complexity (R2 = 0.09)***

irregular slowness irregularity & tempo -0.2 -3.0 (.0037)
irregular size irregularity & size 0.3 3.2 (.0014)

1) ∗ ∗ ∗p < .0001

5. Discussion

The presented study aimed at predicting properties of music based on smartphone-
assessed movement. In a music recommender scenario, music featuring the predicted
properties could be suggested to the user, and accordingly querying music by move-
ment, as envisioned by Leman (2007), would provide an alternative to disembodied
options of music recommendation. In order to approach this goal, we evaluated which
properties of music can be predicted by motion features extracted from smartphone
accelerometer data. In general, it was possible to predict musical properties by the
quantified movement. However, the results varied highly between the properties rhyth-
micity (which was predicted better), pitch level + range, and complexity (which where
predicted worse). Another open question is the necessary amount of motion features.
Though, there were high correlations between variables in Feature Space A and hence
redundancy, we could not explain the variance in the data to the same degree with
the reduced Feature Space B (e.g. for rhythmicity R2

A
= .45 vs. R2

B
= .36). The

stepAIC method that we chose for the regression models of Feature Space A selects
the features with the highest predictive power. Considering rhythmicity, stepAIC still
selected correlated motion features like max freq mag rel and median rise std. Though
correlated, those motion features seem to explain different variances in the data. The
worse performance of Feature Space B hence suggests that a PCA might be unsuitable
to reduce the amount of correlated features because the predictive potential decreased
noticeably. There also is potential for motion features explaining the variance in the
data that we could not explain by this approach. For future work, it might therefore
be advantageous to compile a larger set of motion features, and instead of computing
a PCA, stepwiseAIC or VIF selection should be applied to reduce correlated motion
features.

For Feature Space B, it was also not possible to isolate a component related only to
regularity. This made it difficult to interpret whether one of the predicted music prop-
erties was related to tempo or regularity. This correlation of motion variables related
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Figure 8. Estimated marginal means and confidence intervals of linear mixed models with sample id as fixed
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to regularity and tempo might also be due to the possibility that participants were
only moved by music that featured enough rhythmic regularity and tempo. The ma-
jority of participants consisted of persons that were not trained in dancing, and thus
just stood still to music that either was too slow (e.g. “Leaving Song”) or rhythmically
too complex (e.g.“Le Sacre du Printemps”). Given the potentially different movement
preferences of dancers and non-dancers, it might be recommendable to have two dif-
ferent models for those two groups. However, we did not have enough trained dancers
to estimate a separate model for them but we will consider this for future work.

In general, the negative relationship between rhythmicity and irregular slowness is
in line with previous research showing that participants adjust their movements (or
an object’s movement) to the tempo of the music (Küssner et al., 2014; Moelants,
2002; Sievers et al., 2013). The significance of movement size for rhythmicity is also
congruent with the results from (Witek et al., 2014) who confirmed that rhythmicity
drives listeners’ desire to move. Rhythm-related properties of music probably evoked
more similar and repetitive movement among participants. Thus, the movement was
suitably quantified to predict rhythmicity by motion features that were averaged over
time.

Regarding pitch level + range, two metaphors are prevalent in the literature: The
vertical and the size metaphor. The vertical metaphor (rising pitch = rising move-
ment, falling pitch = falling movement) cannot be assessed by accelerometer data
since it does not provide absolute position in space. The size metaphor (rising pitch
= increasing object size, falling pitch = shrinking object size) could have generated
a relation between the pitch property and motion features from the category size.
However, for none of our two pitch models, motion features related to size like volume

or median peak amplitude, or irregular size respectively, were estimated as significant
predictors. High pitch + range was associated with slow tempo and sharpness in this
study. Given the low predictive power for pitch, another possible explanation might
be that participants preferred rhythmic over melodic qualities of music to move to
(see Figure 3), and that we therefore could not find a strong association between
pitch and any motion feature. For example, the music excerpt AladdinSane featured
a simple bass line with notes on the first and third beat, as well as a complex and
dissonant piano solo. Participants reported in the short interviews that they stuck to
the rhythm of the bass and tried not to become distracted by the piano. Regarding
the vertical metaphor, contemporary dance movement does not resemble conducting
an orchestra as performed by Truslit(Truslit, 1938). Ascending movement rather co-
incides with elevations of energy than elevations of pitch per se (cf. Van Dyck et al.,
2013). These results are also in line with those of Wöllner and Hohagen (2017) and
Burger et al. (2013) who both confirmed hand movement to be related to spectral flux
of music or sound, rather than melodic direction. When participants cannot choose
between rhythmic and melodic sound tracks, Kelkar and Jensenius (2018) showed that
the “vertical metaphor”, ascending melody corresponding to ascending movement in
space, is just one out of six patterns to model melodic contour by movement. For less
rhythmic music and musically trained persons (cf. Küssner et al. (2014)), it can be
suitable to provide time series features that model less repetitive gestalts of music like
melody. This was not accomplished by the motion features employed in this study.

For complexity that was predicted by irregular movement, sudden changes in the
music were accompanied by abrupt movement (irregular rise and fall times) of partic-
ipants. While moderate rhythmic complexity was shown to evoke a stronger urge to
move according to Witek et al. (2014), high rhythmic complexity made participants
uncomfortable to move to. The song rated most complex, Le Sacre du Printemps by
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Stravinsky, made participants either stand still or give a performance ready for the
stage depending on their dancing experience. For non-professional dancers (represented
through the majority of participants), the moderate musical complexity seems to be
especially stimulating.

Rhythmic entrainment works as a rather spontaneous and subconscious “synchro-
nization” to the beat of the music. Therefore, rhythm-related properties of music might
evoke more similar and repetitive movement among participants. However, the musical
properties complexity and pitch level + range are stronger related to tonal and expres-
sive qualities of music, and hence could describe more complex, conscious processes
of music perception related to the participant’s musical past experiences or whether
or not a person identifies or “empathizes” with the artist (Egermann & McAdams,
2013). Thus, these properties of music might evoke less universal but more individual
movement patterns among participants, and hence are more difficult to predict. Some
participants reported that they did not want to move to certain excerpts because the
music made them feel uncomfortable. Therefore, an expressive musical quality could
also evoke motionlessness. We did not include those data samples into our evaluation9,
but it would be interesting to think about what we can learn from these observations
for future work.

Besides, the missing link between melodic qualities of music and movement re-
sponses might also be explained by the findings of Gomez and Danuser (2007) who
found that melody or pitch related properties of music did not appear to have any
clear emotional or physiological association in general. Instead the musical properties
mode, rhythmic articulation, and harmonic complexity were significant predictors for
the experience of negative or positive valence. We cannot draw any conclusion for
musical mode in our study because inter-rater reliability was not high enough for this
property. The other two properties (rhythmic articulation and harmonic complexity)
are inside of the rhythmicity and the complexity components. Thus, the poor perfor-
mance of our model to predict pitch related musical properties are in line with those
of Gomez and Danuser (2007). Another common observation between this and our
study is that high arousal and physiological response were predicted by high rhythmic
articulation (staccato), tempo (fast), and accentuation (marcato). These properties
are represented in our rhythmic component, and partly as (tempo) in our complexity

component. Furthermore, we assume that rhythmicity is stronger related to arousal

whereas expressive properties are more related to valence which has been shown to
be more difficult to predict by movement (cf. Amelynck, Grachten, van Noorden, and
Leman, 2012, Camurri et al., 2004, or Irrgang and Egermann, 2016).

In this exploratory approach to embodied querying of music, we wanted to start
with a broad range of music properties to test which properties are relevant for the
danceability of music, and how they can be predicted by accelerometer-quantified
movement. For future research, we are planning to focus on evaluating influences on
music evoked movement of various rhythmic key properties like syncopation (cf. Sioros
et al., 2014, Witek et al., 2014), microtiming or accentuation (cf. Naveda et al., 2011)
in a modest but not simple complexity range.

9Music excerpts that made participants stand still as described in Section 4.2 were excluded from our evalu-

ation
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6. Conclusion

The presented study showed how smartphone-assessed accelerometer data can be used
to quantify music-evoked movement. The findings provide a low-budget and mobile
alternative to assess embodied music cognition, and hence offer to also carry out
studies in the field for ecological validity. Furthermore, the suggested motion features
are suitable to predict rhythm-related properties of music in a music recommenda-
tion scenario. Instead of sending text queries for music featuring a particular rhythm
(“Samba”, “Tango”, “Hip Hop”) or browsing playlists, one could use the most intu-
itive way to retrieve the desired music: perform the movement that the retrieved music
should match. On the technical side, an extraction of motion features as time series
might unravel additional links between movement and gestalt-like music features, and
allow to further differentiate the experience on the one side and the querying of mu-
sic on the other side. The observed movement preference of participants for rhythmic
elements of music motivates further and more differentiated research in that domain.
The relation between syncopation in music and movement deserves more research in
particular. Concluding, the results confirm the feasibility of an embodied approach to
Music Information Retrieval (even featuring very basic motion sensors) with focus on
rhythmic properties of music.
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