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The role of longitudinal fluctuations in L10 FePt

Matthew O. A. Ellis,1 Mario Galante,1 and Stefano Sanvito1

1School of Physics and CRANN, Trinity College Dublin, Dublin 2, Ireland

L10 FePt is a technologically important material for a range of novel data storage applications. In the ordered

FePt structure the normally non-magnetic Pt ion acquires a magnetic moment, which depends on the local field

originating from the neighboring Fe atoms. In this work a model of FePt is constructed, where the induced Pt

moment is simulated by using combined longitudinal and rotational spin dynamics. The model is parameterized

to include a linear variation of the moment with the exchange field, so that at the Pt site the magnetic moment

depends on the Fe ordering. The Curie temperature of FePt is calculated and agrees well with similar models that

incorporate the Pt dynamics through an effective Fe-only Hamiltonian. By computing the dynamic correlation

function the anisotropy field and the Gilbert damping are extracted over a range of temperatures. The anisotropy

exhibits a power-law dependence with temperature with exponent n ≈ 2.1. This agrees well with what observed

experimentally and it is obtained without including a two-ion anisotropy term as in other approaches. Our work

shows that incorporating longitudinal fluctuations into spin dynamics calculations is crucial for understanding

the properties of materials with induced moments.

I. INTRODUCTION

The increasing demand for high density data storage has
driven the adoption of novel storage technologies. Heat as-
sisted magnetic recording (HAMR) is one such technology.
HAMR aims to overcome the super-paramagnetic limit in
hard disk drives media with ultra-small grain structure by
using highly anisotropic magnetic materials. The particular
phase at the forefront of HAMR is L10-ordered FePt, which
exhibits an anisotropy large enough to stabilize data storage
on grains only a few nanometers wide.1 Crucial to HAMR
is the temperature dependence of the magnetic anisotropy,
since writing data on such materials is possible only at high
temperatures, where the anisotropy is reduced. Measure-
ments showed that in L10 FePt the first-order anisotropy has
an unusual temperature dependence of K(T ) ∝ M(T )n where
n = 2.1 as opposed to n = 3 predicted for typical uniaxial
anisotropy.2–4 Such anomalous dependence can be explained
with a two-lattice model, in which both the magnetic moment
and the anisotropy are carried by two different sub-lattices.5

FePt in the L10 structure forms alternating planes of Fe and
Pt ions along the c-axis, and the large magnetic anisotropy
energy arises due to the strong spin-orbit coupling of the Pt
atoms and the d-orbital hybridization2,6. As shown by previ-
ous calculations alloying induces a magnetic moment on the
normally non-magnetic Pt. In addition, the size of this mo-
ment was seen to vary linearly with the collinearity of the
neighboring Fe moments such that in a ferromagnetic config-
uration Pt is locally magnetic, while in an anti-ferromagnetic
one it is diamagnetic.7 This complexity is problematic for
simulations using the Heisenberg model, as this assumes the
moments are unit vectors constant in magnitude. In order
to circumvent this issue Mryasov et al.7 defined an effective
Heisenberg energy, where the relation between the Pt moment
and the local field due to the Fe atoms is used to reconstruct a
Hamiltonian containing only the Fe degrees of freedom. This
model has been used extensively to simulate properties of L10

FePt systems with great success8–11. Within this framework
the temperature dependence of the anisotropy arises from the
combination of the first-order anisotropy (giving a n= 3 expo-

nent) and an effective two-ion anisotropy (n = 2). However,
Mryasov’s model has the limitation that it does not directly
simulate the Pt moments. Thus in non-equilibrium situations,
such as those produced by the alternating spin-transfer torques
observed in FePt tunnel junctions12 or excitations by a laser13,
the full details of the dynamics cannot be modeled.

Here we construct an alternative model of induced Pt mo-
ments in FePt, incorporating longitudinal spin fluctuations
into a generalized spin dynamics scheme. In this, the atomic
magnetic moments are not considered to have a constant
length but rather change dynamically. Building upon the work
of Ma et al.14 the Heisenberg Hamiltonian is extended to in-
clude a Landau-like longitudinal energy term, which for Pt is
set so that the Pt moment depends on the local order of the Fe
atoms. Thus our Hamiltonian is effectively a two-spin model
with additional longitudinal fluctuation. We find that this
model can correctly reproduce the n = 2.1 exponent observed
for the temperature dependence of the anisotropy, without the
need to introduce explicitly any mediated two-ion anisotropy
term. The rest of the paper is arranged as follows. Firstly the
methodology describing the longitudinal model of FePt is de-
tailed including a description of Mryasov’s model. Then, we
present our results on the temperature dependence of various
magnetic properties. These include the magneto-crystalline
anisotropy calculated from a ferromagnetic-resonance-type
experiment. Finally we present our conclusions.

II. METHODOLOGY

The pioneering work of Landau and Lifshitz15, and later
Gilbert16, presented an equation of motion for a magnetic mo-
ment, which has been the corner-stone for the numerical mod-
eling of magnetic materials for many years17,18. The Landau-
Lifshitz-Gilbert (LLG) equation, as it is commonly referred,
describes the transverse rotational motion of the magnetiza-
tion. The dynamics is driven by precessional and damping
terms so that the longitudinal length of the moment is con-
served. The LLG equation in terms of atomic spin moments,
Si, takes the form
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∂Si

∂ t
=−γSi ×Hi +λSi ×

∂Si

∂ t
, (1)

where γ = 1.76×1011 s−1T−1 is the gyromagnetic ratio and
λ is the atomistic damping parameter, which is the limit of
the Gilbert damping at zero temperature. If µi is the equilib-
rium magnetic moment of each atom taken as the normaliza-
tion constant, the spin vector entering the dynamics will be
defined as Si = mi/µi. In Eq. (1) Hi = (1/µi)∂H /∂Si + ξξξ i

is the effective magnetic field acting on the i-th spin, which
comprises a term arising from the spin Hamiltonian, H , and
a fluctuating thermal noise, ξξξ . Conventionally the extended
Heisenberg Hamiltonian is used, which reads

H =− ∑
i, j 6=i

Ji jSi ·S j −∑
i

ki(Si · êi)
2 −∑

i

µiSi ·Happ, (2)

where Ji j is the exchange coupling between the spins i and
j, ki is the onsite uniaxial anisotropy along the axis êi and
Happ is the external applied field. In general, the uniaxial
anisotropy constant can contain various contributions, but in
many cases it is the magneto-crystalline anisotropy (MCA),
arising from the quantum mechanical spin-orbit interaction,
that dominates. Here we are concerned with the L10 struc-
ture of FePt, which is tetragonal, and so a uniaxial MCA ef-
fectively models the preference for the magnetization to align
along the c-axis of the crystal.

Finite temperature properties are computed by employing
a Langevin approach introduced by Brown19, effectively con-
verting equation (1) into the stochastic LLG equation. In this
formalism, the thermal noise term, ξξξ , behaves as a random
Gaussian variable with mean and variance given by

〈ξiα(t)〉= 0, (3)

〈ξiα(t)ξ jβ (t
′)〉=

2γλkBT

µi

δi jδαβ δ (t − t ′). (4)

Here i, j label different atoms, α,β = x,y,z are the Cartesian
components, kB is the Boltzmann constant and T is the ther-
modynamic temperature.

In the work of Mryasov et al., ab initio calculations of L10

FePt showed that the Pt moment depends on the local ex-
change field generated by the Fe atoms. From this Mryasov
constructed an ‘extended spin model’ (ESM), where the Pt
degrees of freedom are incorporated into the Fe ones through
mediated exchange and anisotropy parameters. This leads to
a Hamiltonian of the form

HFePt =−∑
i, j

J̃i jSi ·S j −∑
i, j

d
(2)
i j SizS jz −∑

i

d(0)S2
iz , (5)

where J̃i j, d(2) and d(0) are the effective exchange, the two-ion
anisotropy and the onsite anisotropy, respectively. Since this
model intrinsically takes into account the longitudinal behav-
ior of the Pt moments, Mryasov crucially predicted the rela-
tion K(T ) ∝ M(T )2.1, which within the model originates from
the two-ion anisotropy.

The ESM constitutes a valid approach to describe the prop-
erties of FePt. Nevertheless, it is characteristic of such mate-
rial and cannot be easily extended to other cases. We propose
here a model alternative to the ESM, where the Pt atoms are
explicitly included in the spin Hamiltonian. This will allow us
to reproduce the same thermodynamical properties predicted
by Mryasov et al. and, at the same time, to analyze the in-
terplay between the spins at non-equivalent sites. The depen-
dence of the Pt moments on the spins at the Fe sites, however,
requires us to relax the constrain of fixed spin length, typical
of LLG dynamics.

A generalization of the LLG equation that includes longi-
tudinal spin fluctuations was already presented by Ma et al.14.
By considering the spin length to be no longer conserved and
by following the analogy of the Langevin equations of motion
in molecular dynamics, Ma et al. constructs an equation of
motion that contains both transverse and longitudinal compo-
nents, which will employ to simulate FePt. It reads

∂Si

∂ t
=−γSi ×Hi + γλHi +ξξξ i , (6)

which we term here the generalized spin equation of mo-
tion (GSE). It is worth noting that by using the vector triple
product identity the damping term can be written as λHi =
λ (S(Si ·Hi)−Si ×Si ×Hi)/S2. This equation of motion can
then be seen to contain the conventional Landau-Lifshitz form
of damping but also a further longitudinal damping.

Ma et al. connects this equation of motion to an additional
energy term. The Heisenberg Hamiltonian in Eq. (2) is aug-
mented with a longitudinal energy term, Hl , which takes the
shape of a Landau-like Hamiltonian. This contains even pow-
ers of the spin length, namely

Hl = ∑
α

∑
i

Aα |Si|
2 +Bα |Si|

4 +Cα |Si|
6 , (7)

where α denotes the atomic species (Fe or Pt) and i labels
the spins of that species. Aα , Bα and Cα are the parameters
that determine the shape and energy scale of the longitudinal
energy. Such simple polynomial form can easily be imple-
mented into conventional atomistic codes and was calculated
by Pan et al.20 for permalloy.

For L10 FePt two sets of parameters are then required, one
for each species. For Fe we adopt here the same parameters
calculated by Ma et al using first principles simulations for
bcc Fe. In that work the authors assume that the ferromagnetic
ground state is correctly described by the Stoner model. DFT
calculations are then performed in order to estimate the total
energy, E(M), for different values of the total magnetization,
M. The latter is the electronic analogous of the longitudinal
energy, hence the expression in Eq. (7) can be fitted to E(M).
The resulting parameters are AFe = −440.987meV, BFe =
150.546meV and CFe = 50.6794meV. These are strictly com-
puted for the bcc Fe structure and, whilst it is expected that
this energy may vary significantly depending on the local
atomic environment, we choose to use the same parameters
in lieu of the more detailed first principles calculations. While
this is only an approximation of the true parameter set of FePt,
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FIG. 1. (Color online) Energy as a function of the reduced spin length

in FePt. Fe possesses a spontaneous moment, which is modeled by

having an energy minimum at |S| = 1, while for Pt the moment is

induced by the Fe exchange interaction. As such the longitudinal

energy is modeled by a quadratic function. The arrows indicate the

relevant energy scale. The left-hand side scale (right-hand side) is

for Fe (Pt).

the key detail described here is that there is a parabolic energy
minimum located at |S|= 1.

For the Pt atoms the energy minimum is expected to depend
linearly on the local exchange field, as predicted by Mryasov
et al. Therefore the longitudinal energy must be approxi-
mately quadratic with the energy minimum at |S| = 0. By
considering equation (6), the equilibrium spin length is then
given by

∂SPt

∂ t
= 0 =2APtSPt +4BPtS

3
Pt +6CPtS

5
Pt

−∑
j

JPt, jS j −2kPtSPt , (8)

where we have assumed that all spins are aligned and that
those neighboring the Pt sites are at equilibrium, S j = 1. In
order to obtain a linear relation between the spin length and
the local field we set Bi =Ci = 0 and require that the equilib-
rium spin length is SPt = 1. Equation (8) then gives

APt = kPt +
1

2
∑

j

JPt, j. (9)

The longitudinal energy for both the Fe and Pt atoms is
shown in figure 1. The open points show the energy given by
equation (7) only while the solid ones show the total Hamil-
tonian energy with all the neighbors aligned. For Pt the longi-
tudinal energy has an energy minimum at zero magnetic mo-
ment but for the total energy, which includes the local Fe ex-
change field, the minimum is at S = 1, as desired.

From ab-initio calculations we find that the magnetic mo-
ment for Fe is µFe = 2.86µB and for Pt (in a ferromagnetic
configuration) is µPt = 0.36µB. Mryasov’s calculations gives
the Pt anisotropy as kPt = 1.427meV, while for the Fe atoms

TABLE I. The Heisenberg exchange coupling parameters for the cor-

responding inter-atomic vector (given in terms of the conventional

unit cell vectors) used for the LLG and GSE models.

~a ~b ~c Ji j (meV)

Fe-Fe 1/2 1/2 0 16.356

0 0 1 1.762

1 0 0 13.653

1/2 1/2 1 5.886

Fe-Pt 1/2 0 1/2 6.666

Pt-Pt 1/2 1/2 0 0.177

kFe = −0.097meV as from reference [21]. These values give
a macroscopic magnetization of Ms = 1.072×106 JT−1m−3

and a first-order anisotropy of K1 = 7.502×106 Jm−3. Exper-
imental measurements of the damping parameter vary but it is
generally considered to be large due to the high spin-orbit in-
teraction. Here we use the values found by Becker et al.22 of
λ = 0.1. The exchange coupling constants for the Heisenberg
Hamiltonian [Eq. (2)] used here were originally calculated by
Mryasov et al. in Ref. [7] using constrained density func-
tional theory and are summarized in table I. The Fe-Pt and Pt-
Pt exchange is negligible beyond the nearest neighbor, while
the Fe-Fe one is longer ranged. Here we restrict the range to
the 4th nearest neighbors and have rescaled the parameters so
that the total exchange energy is conserved after truncation.
It is worth noting that the in-plane Fe-Fe exchange is stronger
than the out-of-plane interactions and the Fe-Pt exchange. For
the ES model we employ the same mediated exchange pa-
rameters calculated by Mryasov et al. and later employed in
other works investigating properties of FePt9,10,23. By em-
ploying the original isotropic exchange interactions computed
by Mryasov and the mediated exchange parameters that are
derived from them, our calculations using the different Hamil-
tonians have an equivalent exchange energy.

The dynamic evolution of the magnetic moment length
(|m| = |S|µs) toward equilibrium at T =0 K is shown in fig-
ure 2. We consider two different configurations for the Fe
moments: (1) the ferromagnetic ground-state (FM) and (2) a
quasi-equilibrium anti-ferromagnetic state (AFM), where the
Fe moments alternate along the z-axis. In both cases the Fe
moments are initialized to |S| = 1, while the Pt moments are
|S|= 0 for the FM case and |S|= 1 for the AFM one. This is
done intentionally to highlight the dynamics towards the local
energy minima. No torque acts on the moments of these initial
conditions, since they are collinear, so that only longitudinal
dynamics takes place. As figure 2 shows, in the FM case the
Pt moments are polarized by the exchange field and converges
towards 0.36µB (|S|= 1) while in the AFM case the exchange
field cancels and so the Pt moments relax towards the energy
minima of the longitudinal Hamiltonian, which by construc-
tion is 0. The Fe moments relax slightly in the AFM configu-
ration due to the loss of the exchange from the Pt atoms, but
is only a change of approximately 8%. In the FM configu-
ration there is a short transient associated to the Pt moments
evolving from 0 to 1.

In order to compute the finite temperature properties of
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FIG. 2. (Color online) The relaxation of the atomic magnetic mo-

ments to equilibrium at T=0 K for two cases: (open points - FM) fer-

romagnetic and (closed points - AFM) anti-ferromagnetic ordering

of the Fe atoms. In both cases the Fe moments start fully saturated

(i.e |S|= 1 whilst the Pt atoms start with |S|= 0 for the FM case and

|S| = 1 for the AFM case to highlight the relaxation dynamics. The

left-hand side scale (right-hand side) is for Fe (Pt).

these models we numerically integrate the LLG and Longi-
tudinal LLG equations of motion [eqs. (1) and (6), respec-
tively] by using the stochastic Heun scheme18. Since this
method does not conserve the spin length implicitly when
integrating the LLG equation the spin is renormalized dur-
ing each step while for the GSE model no renormalization
step is performed. The time-step used during the simulation
is ∆t = 0.1fs, which is found to be stable for both the LLG
and GSE model. In order to confirm our implementation we
also compare our static calculations to that of a Monte-Carlo
model. As in Ref. [20] we chose the phase space measure
to be unitary and for each trial step we displace the spin by
an amount taken uniformly from a sphere with a size that is
controlled to attain a 50% acceptance ratio.

III. RESULTS AND DISCUSSION

We begin by examining the thermodynamic properties of
the FePt system. In the following we compare the three mod-
els described in the previous section which, to summarize,
are: (ESM) the Fe-only Hamiltonian [Eq. (5)] of Mryasov
et al. simulated with the LLG equation; (LLG) the Heisen-
berg Hamiltonian [Eq. (2)] including Pt moments simulated
with the LLG equation (no longitudinal relaxation); (GSE)
the Heisenberg-Landau Hamiltonian [Eqs. (2) and (7)] with
Pt moments simulated by using the generalized spin equation
of motion given in equation (6). Figure 3 shows the temper-
ature dependence of the magnetization calculated, for each
model, by using both Monte Carlo and spin dynamics sim-
ulations. In all cases Monte Carlo and spin dynamics return
essentially identical magnetization values over the entire tem-
perature range, showing that the equations of motion are in-
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FIG. 3. (Color online) The average magnetization as a function of

temperature in L10 FePt calculated by using (a) the GSE, (b) the

LLG and (c) the ES model. Lines show results obtained by using the

spin dynamics models, while the points are for Monte Carlo simu-

lations. Each model gives slightly different Curie temperatures but

they all are close to the experimental value of 600 K. In (a) and (b)

the average sub-lattice magnetization of Fe and Pt are plotted sepa-

rately. In (a) the average of the Pt magnetization unit vector, nPt, is

shown as a dotted line as a comparison with (b).

tegrated correctly. We find a surprisingly good agreement be-
tween the GSE model and ESM with the Curie temperatures,
TC, found to be 619 K and 617 K, respectively. In contrast the
LLG model returns a slightly lower TC (602 K). This is in
contrast to what has been observed for bcc Fe by Ma et al.14

and Pan et al.20, in which the TC was reduced when includ-
ing the longitudinal dynamics. As described by Pan et al., in
order to correct for this change in the Curie temperature one
must apply a re-scaling parameter to the exchange constants.
Such rescaling factor should be calculated for each material
and there is no general trend in the Curie temperature change
upon introducing longitudinal fluctuations.

It is worth noting that in the parameterization of the ex-
change coupling the Fe-Fe interaction is stronger than the Fe-
Pt one and much longer ranged, as shown in table I. This
results in a fairly rigid Fe sub-lattice to which the Pt one is
coupled to. The average sub-lattice magnetizations are shown
for the LLG and GSE models in panels (a) and (b). In the case
of the LLG approach there is significant spin non-collinearity
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due to the form of the longitudinal energy function, while for Pt is
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the neighboring Fe atoms.

in the Pt sub-lattice well below TC, while the total magneti-
zation is dominated by the Fe sites. In the GSE model the Pt
magnetization follows almost identically that of Fe but in this
case there are both longitudinal and transverse changes. The
dashed line in panel (a) shows the average of the Pt magne-
tization unit vector, nPt(t) = MPt(t)/|MPt(t)|, which measures
the transverse disorder of the sub-lattice. It shows a similar
behavior to the Pt sub-lattice in the LLG model, which indi-
cates that whilst there is still large transverse disorder due to
the weak exchange coupling at the Pt sub-lattice the magni-
tude of the local Pt moments increases.

Figure 4 shows the probability distribution of the magnitude
of the spin vector at different temperatures. The probability
distribution for Fe is peaked close to |S| = 1 for all tempera-
tures even above the Curie temperature, as expected from the
longitudinal energy function. For Pt the peak of the distribu-
tion moves to lower spin values with temperature, until about
200 K, where it becomes centered at |S|= 0. For temperatures
above such critical value the distribution widens continuously,
and the upper tail is, in principle, unbound. This effect arises
due to the choice of energy function, which does not constrain
the upper bound of the Pt local moment. A more realistic
description may include such constraint, which is ultimately
determined by the electron count in the system.

In order to gain a deeper insight into the properties of
the system we next investigate the spin-wave spectra of each
model. This is computed by using the dynamic structure fac-
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the acoustic branch is observed for the ESM.

tor (DSF)

C̃(k,ω) =
∫

e−iωtdt ∑
r,r′

e−ik·(r−r′)C(r− r′, t) , (10)

where C(r− r′, t) = 〈Sx(r,0)Sx(r
′, t)〉 is the spin-spin corre-

lation function. Figure 5 shows the computed DSF for each
model at T = 10K along the symmetry lines of the tetragonal
Brillouin zone. The height and width of the peaks depends on
the damping. Therefore, in order to obtain a better view of
the spin-wave modes we have reduced the damping parameter
to λ = 0.01 for this figure. Since the ES model incorporates
the Pt degrees of freedom into those of Fe there is only one
Fe atom in the primitive unit cell leading to only an acoustic
magnon branch. In contrast the GSE and LLG models include
the Pt moments and the second optical branch is observed.
Since the exchange constants in the ES and GSE/LLG models
are different the magnon bands do not agree well with each
other.

However, while the acoustic branches of the ES and
GSE/LLG models do not match at relatively high energy, they
show a rather similar exchange stiffness, D, at low k. It is
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TABLE II. The Curie temperature, TC, the critical exponent, β , and

the exchange stiffness, D, calculated from the GSE, LLG and ES

models.

TC (K) β D (meVÅ2)

GSE 619.1 ± 0.3 0.329 ± 0.001 304.74 ± 0.02

LLG 602.6 ± 0.1 0.370 ± 0.001 301.64 ± 0.03

ESM 617.4 ± 0.9 0.326 ± 0.001 275.85 ± 0.13

Exp. 750a 257 ± 86b.

a From Ref. 1.
b Derived from measurements of the exchange stiffness in Ref. 24

then not surprising that the Curie temperatures for the three
models are calculated to be very similar, since these are deter-
mined mostly by the low-energy part of the excitation spec-
trum. The exchange stiffness, the Curie temperatures and the
critical exponents calculated by each model are summarized
in Table II with experimental measurements for comparison.
In comparing to the experimental values the models all under-
estimate the Curie temperature, due to the DFT computed ex-
change constants used, and while the ESM is closest to the ex-
perimental exchange stiffness value, calculated from the mea-
surements of Antoniak et al.24, all three models are within the
error range Interestingly, the exchange stiffness for the ESM
is slightly lower than that of the LLG value, despite its Curie
temperature being slightly higher. Such small anomaly is then
explained with the contribution of the high-k spin-wave ex-
citations to the TC. Key differences between the ES and the
GSE/LLG models are found at the Z and X high-symmetry
points in the Brillouin zone, with GSE/LLG returning always
a significantly larger magnon energy. As a consequence the
energy dispersion along the Γ−Z is much more pronounced
for the GSE/LLG models, while it is rather flat for the ESM.
These differences arise from the exchange interactions, which
in the ESM are altered through the mediation of the Pt lat-
tice. In relation to the GSE model the bands are of similar
character to the LLG one with the exception of an increased
line-width close to the edge of the Brillouin zone, particularly
in the optical branch.

We now turn to examine the average internal energies as a
function of temperature, which are shown in figure 6. Let us
discuss first the average exchange energy, shown in panel (a).
For the LLG model (solid symbols) the Pt exchange energy
drops as a power law with an exponent > 1, while for the GSE
one (open symbols) the exponent is more similar to that of the
Fe exchange energy, which is < 1. The Fe exchange energy of
both models has an almost identical temperature dependence
with the exception of a small shift in the Curie temperature,
as noted already in figure 3. Since the exchange energy is a
measure of the non-collinearity of the system, we ascribe the
difference in the behavior of the Pt contribution to the fact that
the magnetization of Pt follows that of Fe in a much closer
way for the GSE model than for the LLG one.

The anisotropy energy [panel (b)] shows again that the two
models behave quite similarly at the Fe sub-lattice, but they
are markedly different at the Pt one. The Pt anisotropy en-
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FIG. 6. (Color online) The temperature dependence of the average

Hamiltonian energies in FePt separated into the three main contri-

butions: (a) exchange (EJ), (b) anisotropy (Ek) and (c) longitudinal

(El) for each element. Solid (open) symbols correspond to the LLG

(GSE) model. The Fe energies are given on the left-hand side axis

and the Pt ones are on the right-hand side. In (c) El is given relative

to the T = 0 K values. The exchange energy shows a consistent de-

crease (in magnitude) with temperature. For Fe the GSE and LLG

models are similar while for Pt there is a change in the power scaling

from < 1 for GSE to > 1 for LLG. Likewise the anisotropy energy for

Fe behaves similarly for the two models whilst that of Pt decreases

with T for GSE and increases for LLG. The longitudinal energy in

the GSE model increases with T for both Fe and Pt but on a different

scale.

ergy decreases rapidly with temperature in the LLG model,
while in the GSE model it slightly increases, a behavior that
we attribute to two factors. Firstly, as seen for the exchange
energy, the Pt moments are more aligned with that of the Fe
within the LLG model. Secondly, the spin length is increased
in the GSE model. This second factor can be observed above
the Curie temperature. In fact, in the paramagnetic state there
is a uniform angular distribution of the Pt spins but, as seen
from the probability distributions [figure 4(b)], there are also
spins with a significantly large length, a factor that affects the
anisotropy energy.

Finally, the longitudinal energy [panel (c)] shows an in-
crease with temperature for both the Fe and Pt moments but
on a much larger scale in Pt. Again, we attribute this behavior
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FIG. 7. (Color online) Fourier transform of the mx correlation func-

tion at 10 K, 300 K and 550 K. The solid lines show a fit using equa-

tion (12). With increasing temperature the resonance field drops and

so does the magnitude of the background white noise.

to the widening distribution of the Pt spin lengths leading to
an occupation of higher energy states. This additional energy
component provides another degree of freedom for the inter-
nal energy to be distributed amongst. This may explain the
changes in the other energy components.

When compared to the anisotropy calculated in figure 6 the
macroscopic one contains also entropic contributions. Such
macroscopic anisotropy can then be computed in a ferromag-
netic resonance (FMR) type simulation. In fact, both the
anisotropy field and the macroscopic damping coefficient can
be determined from the FMR line shape, thus allowing us to
understand the effect of the induced Pt moments on the dy-
namic response of the system. The resonant FMR peak can
be extracted from the dynamics via the magnetization corre-
lations function

C̃xx(ω) =
∫

e−iωtdt〈mx(0)mx(t)〉 , (11)

where mx(t) is the x component of the magnetization at time
t. This is related to the dynamic susceptibility through the
fluctuation-dissipation theorem25. By using linear response
theory26 a form for the line shape is found to be

C̃xx(ω) =
2kBT γα

1+α2

(

ω2
0 (1+α2)+ω2

Ω4 +(2αω0ω)2

)

, (12)

where Ω2 = ω2
0 (1+α2)−ω2, ω0 = γHz/(1+α2) is the res-

onance frequency and α is the Gilbert damping coefficient
describing the relaxation of the magnetization vector. Hz is
the field in the z-direction, which in this case is given by the
anisotropy field.

The dynamic correlation function computed using the GSE
model is shown in figure 7 at 10 K, 300 K and 550 K. This is
determined by computing a 2 ns-long time-series with a sam-
ple rate of 10 THz. The power spectral density is then calcu-
lated by using Welch’s method of separating the time-series
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FIG. 8. (Color online) Anisotropy field as a function of temperature

calculated from the FMR for each model. The ESM and GSE mod-

els drop slowly until reaching the Curie temperature, while the LLG

model shows a fast decay with temperature even well below TC. The

inset shows the scaling of the anisotropy with the total magnetiza-

tion, showing a power of n = 2.17 for the GSE and ES models, while

for the LLG model we find n = 8.90. For the LLG model we also

present the case where the anisotropy is scaled with the Pt sub-lattice

magnetization (solid orange circles). In this case the scaling follows

a n = 3.1 power law, closer to the n = 3 expected for pure uniaxial

anisotropy.

into blocks of 2048 samples. At all temperatures a clear reso-
nance peak is observed with a line-width related to the Gilbert
damping of the system. As the temperature increases the
resonance field drops due to a reduction in the macroscopic
anisotropy. At high frequency, away from the resonance peak,
the spectral profile is flat, in agreement with the white noise
approximation of stochastic micromagnetic models27. The
lines in figure 7 show a fit to the data obtained by using equa-
tion (12) with resonance frequency, Gilbert damping and the
pre-factor taken as fitting parameters. As shown in figure 7
the function fits the data well but due to the large damping
used (λ = 0.1) the signal-to-noise ratio is poor, giving a large
data scatter for the Gilbert damping. While equation (12) is
derived within a linear response approach we find that it fits
well close to TC. This appears to be due to the large anisotropy
keeping the magnetization aligned along the z-axis even close
to TC, with the x and y components of the magnetization being
small despite the thermal fluctuations.

From fitting the lineshape of the correlation function the
anisotropy field has been extracted. Figure 8 shows the tem-
perature dependence of the anisotropy field in FePt calcu-
lated with our three different models. The GSE model and
ESM exhibit very similar behavior, which is in sharp contrast
with that predicted by LLG. The inset of figure 8 shows the
power law scaling of the macroscopic anisotropy with the to-
tal magnetization. Both GSE and ESM return a power scal-
ing with an exponent of ≈ 2.17, which is close to the ex-
perimentally measured value2 of 2.1. As shown by Mryasov
et al.7, the ESM finds the n = 2.1 exponent because of the
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ing extracted from fitting the FMR line-shape. At low tempera-

ture the Gilbert damping is close to the atomistic damping value

(λ = 0.1), while it diverges as we approach the Curie temperature.

two-ion anisotropy mediated by the Pt moments. Remark-
ably, the GSE model finds a similar exponent despite the only
the uniaxial anisotropy contribution to the Hamiltonian. The
longitudinal fluctuations are therefore important in providing
this two-ion-like anisotropy naturally and without a compli-
cated re-parameterization of the Hamiltonian. Additional pa-
rameters are required for the Landau Hamiltonian, but since
the parameters for Pt are determined by the exchange interac-
tions this approach appears robust. The LLG model with fixed
spin length, in contrast, gives us the vastly different power
of n = 8.90, which is not only in disagreement with exper-
iments, but also disagrees with the theory for pure uniaxial
anisotropy4, which predicts n = 3. However, when we con-
sider the scaling with respect to the Pt sub-lattice magnetiza-
tion (solid circles) we find that this follows a n = 3.1 power-
law.

Finally, figure 9 shows the macroscopic Gilbert damping
extracted from the FMR simulations. At low temperatures
the Gilbert damping for all the three models remains close
to the value of the atomistic damping, λ = 0.1. However, as
the temperature approaches the Curie point the Gilbert damp-
ing diverges. The approach to such divergence is different for
the three models, with the LLG one showing a clearly more
rapid increase of α with temperature. In fact, in this case the
anisotropy field disappears above ≈ 450K so that the damp-
ing cannot be extracted closer to TC. When comparing GSE
to ESM the calculated Gilbert damping are quite similar, al-
though for GSE α seems to remain constantly above than that
of ESM at any temperature. This can be understood from the

fact that the GSE model presents additional relaxation chan-
nels due to the explicit presence of the Pt moments. Our anal-
ysis thus shows the advantage of the GSE model over the al-
ternatives as it describes the Pt dynamics out of the ground
state. This appears to be important. Recent ultrafast experi-
ments have, in fact, directly observed differing timescales for
the Pt and Fe magnetic moments13.

IV. CONCLUSION

In conclusion, the role of the induced Pt magnetic moments
in ordered L10 FePt has been studied by using a model of
longitudinal fluctuations. This has been constructed to allow
the Pt magnetic moment to vary linearly with the local ex-
change field as predicted by previous ab initio calculations.
The longitudinal fluctuation model has been compared to the
existing extended spin Hamiltonian approach of Mryasov et

al., showing similar results concerning the FePt static proper-
ties. An analysis of the spin magnitude histogram as a func-
tion of temperature shows that the Fe moment remains con-
stant, while for Pt above 200 K the moment distribution is
centered around zero, but it presents a long tail of large mo-
ments. The dynamic structure factor shows that the magnon
branches are significantly different and the inclusion of the
longitudinal fluctuations leads to a broadening of the magnon
modes at the edge of the Brillouin zone. This hints that the
dynamical properties must be different for the different mod-
els, as confirmed by our FMR analysis. In particular we find
that the anisotropy field exhibits the experimentally observed
K(T ) ∝ M(T )2.1 power scaling without any need to consider
a two-ion anisotropy used in the extended spin Hamiltonian
model as it is naturally included in the longitudinal dynamics
of the Pt moments driven by the local field of the neighbor-
ing Fe moments. This is a critical advantage of our Hamilto-
nian, namely the key thermodynamic and dynamical proper-
ties of the material are correctly observed without performing
the complex re-parameterization done by Mryasov et al. In
contrast, we describe all relevant degrees of freedom on the
same footing, a fact that may allow us to unlock and under-
stand out-of-equilibrium phenomena at fast timescales.
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