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Significance of the Compliance of the Joints on the

Dynamic Slip Resistance of a Bioinspired Hoof
Sara-Adela Abad , Nicolas Herzig , Seyedmohammadhadi M. Hadi Sadati , and Thrishantha Nanayakkara

Abstract—Robust mechanisms for slip resistance are an open
challenge in legged locomotion. Animals such as goats show im-
pressive ability to resist slippage on cliffs. It is not fully known
what attributes in their body determine this ability. Studying the
slip resistance dynamics of the goat may offer insight toward the
biologically inspired design of robotic hooves. This article tests how
the embodiment of the hoof contributes to solving the problem
of slip resistance. We ran numerical simulations and experiments
using a passive robotic goat hoof for different compliance levels of
its three joints. We established that compliant yaw and pitch and
stiff roll can increase the energy required to slide the hoof by≈ 20%
compared to the baseline (stiff hoof). Compliant roll and pitch allow
the robotic hoof to adapt to the irregularities of the terrain. This
produces an antilock braking system-like behavior of the robotic
hoof for slip resistance. Therefore, the pastern and coffin joints have
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a substantial effect on the slip resistance of the robotic hoof, while
the fetlock joint has the lowest contribution. These shed insights
into how robotic hooves can be used to autonomously improve slip
resistance.

Index Terms—Biologically inspired robots, compliant joint/
mechanism, legged robots, slip resistance.

I. INTRODUCTION

I
N RECENT years, there has been a growing interest to

understand how dynamics of a physical agent can be used

to simplify the computations required to survive in a real en-

vironment [1]. For instance, the robotic cheetah [2], RHex [3],

and SpinybotII [4] use relatively simple controllers to achieve

complex dynamic maneuvers like running at 4.5 m/s in the case

of the robotic cheetah [5], walking over unstructured terrain with

a simple control in Rhex [3], and climbing over vertical surfaces

in SpinybotII [4]. Though two robots cannot be compared easily,

the IMPASS robot [6], which has individually actuated spokes of

the rimless wheels called whegs, has higher control complexity

and power consumption than RHex, which has a better physical

solution at the foot level. However, the stability of robots in

inclined terrain conditions is still limited due to the computations

needed.

Recently, investigators are examining the Capra hircus [7]–

[10] due to their impressive climbing capabilities. Using in

vivo experiments, they studied the behavior of the muscles

and tendons of the hindlimb for inclined, declined, and level

running. They conclude that the ankle, knee, and hip generate

energy for inclined running. For declined running, the energy

is mainly absorbed in the ankle and knee. Moreover, the joint

between the hoof and the ankle (fetlock joint) is mainly ab-

sorbing energy during decline, level, and inclined running [8].

This energy-absorbing behavior may have an important role

in the remarkable climbing capabilities. However, even though

McGeer and Palmer showed that the feet morphology affects

the stability of legged robots [11], little research has been done

about the hoof of the goat illustrated in Fig. 1.

In the past few years, Zhang et al. [12], [13] have studied

the hoof of large ruminants using only numerical analysis of

a generic hoof. Since they are trying to replicate most of the

features of the hoof, their proposed models are complex.

On the other hand, using a static model and preliminary

experimental results for eight combinations of compliance levels

of the three joints of the hoof (fetlock, pastern, and coffin joints

illustrated in Fig. 2), Abad et al. [14] showed that the work

required to slide a robotic hoof over a wooden brick can be three

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3471-6942
https://orcid.org/0000-0002-5845-2697
https://orcid.org/0000-0002-5862-265X
https://orcid.org/0000-0002-1882-1232
mailto:s.abad-guaman17@imperial.ac.uk
mailto:n.herzig@imperial.ac.uk
mailto:s.m.hadi.sadati@bristol.ac.uk
mailto:t.nanayakkara@imperial.ac.uk


ABAD et al.: SIGNIFICANCE OF THE COMPLIANCE OF THE JOINTS ON THE DYNAMIC SLIP RESISTANCE OF A BIOINSPIRED HOOF 1451

Fig. 1. Biological goat hoof. (a) Bones, ligaments, and tissue distribution of
the biological hoof used for the design (adapted from [15, Plate 4.7] and [16,
Fig. 2.10]). (b) Profile of the goat claw, which was used to design the robotic
hoof in this article.

Fig. 2. DOF of the robotic hoof. For simplicity, they are defined as roll (R),
yaw (Y), and pitch (P). (a) R is measured using the angle of the fetlock joint θ.
(b) Y is defined by the angle of the pastern joint γ. (c) P is quantified by the
angle of the coffin joint β.

times higher than that of a rounded foot (common design), the

work depends not only on the shape of the foot, but also on the

compliance of its joints, and the role of the joints changes with

the roughness of the environment.

For simplicity, in this article, we define the movement of the

fetlock, coffin, and pastern joints (shown in Fig. 2) as the roll,

yaw, and pitch of the robotic hoof, respectively. The movement

of the joints is denoted using the angles θ, γ, and β, respectively.

Each joint imposes a mechanical impedance on the movements

of the robotic hoof.

The results presented in [14] provide an insight into the

dynamic behavior of the hoof. It shows that when the hoof slips

against a surface, the hoof presents a stick and slip behavior.

This behavior may rise vibrations that propagate along the me-

chanical circuit of the hoof (bone-ligament structure in the above

joints) potentially generating punctuated interaction forces like

in the antilock braking system (ABS) of automobile brakes.

In the ABS, there are punctuated braking forces in order

to apply and release the brake pressure in a tire to keep tire’s

adhesion coefficient near its maximum; this process limits the

slip between the tire and the road surface [17]–[19].

It is worth investigating the question as to whether passive

interaction dynamics of the hoof contributes to improving slip

resistance on a given roughness of the contact surface. The

contribution of these passive interactions can be analyzed in

terms of external energy needed to slide the hoof. Therefore,

when the punctuated forces cause the stick and slip behavior

observed in [14], the system also takes into account the fric-

tion force dissipated energy and the variation on the potential

energy stored in the spring-like mechanisms, where the higher

the external energy value, the higher the slip resistance. As a

consequence, the LuGre friction model is used to capture the

dynamic stick-slip behavior of the hoof.

A deeper understanding of these passive interaction dynamics

will provide new insights to design foot mechanisms for legged

robots. Consequently, using a dynamic model and experimental

results, the aims of this article are: 1) to determine the most

significant compliance combinations across all joints to improve

the slip resistance of the hoof and 2) to understand the individual

contribution of the joints on the slip resistance of the hoof.

This article corroborates and extends our previous study [14]

by using a model of the hoof’s dynamic behavior, testing 64

combinations of compliance levels of the three joints, and hav-

ing a closer look at the contribution of each joint on the slip

resistance of the hoof. We found that since the compliance

of each joint in the hoof is a critical vector of morphological

parameters determining the slip resistance of the hoof, having a

compliant pitch and yaw and stiff roll can increase the energy

required to slide the hoof by ≈ 20% compared to the energy

of the stiff combination (baseline), and that the coffin (pitch)

and pastern (yaw) joints have a significant contribution in the

slip resistance, while that of the fetlock joint (roll) is minimal.

This is because having complaint yaw and pitch allows the hoof

to adapt to the irregularities of the terrain. Because of this,

an oscillatory behavior at the pitch emerges that produces an

ABS-like behavior at the hoof for reducing the speed. This sheds

new insights on further simplification of the robotic hoof, while

improving their slip resistance capabilities.

The rest of this article is organized as follows. Section II

describes the biology of the goats’ hoof, gives the analytic model

used to describe the dynamic behavior of the hoof, and presents

the design of the robotic hoof. Section III explains the utilized

methodology for the numerical analysis and the experiments.

Section IV presents the analytic and experimental results. Then,

Section V discusses the results, and Section VI concludes this

article.

II. ANALYTICAL MODEL AND DESIGN OF THE BIOLOGICALLY

INSPIRED FOOT

This article aims to understand the effect of the compli-

ance level of the joints in the dynamics of the embodiment

and the contribution of each joint on improving the slip resis-

tance. A robotic hoof was chosen because hoofed animals show

outstanding capabilities for walking over muddy or rocky

terrains.

The main features of their feet structure are their hoofs, pads,

and bone structure that suit their ecological niches. In fact, pigs

live in muddy terrains. They have two declaws and two straight

claws [analogous to the claws III and IV, and II and V, presented

in Fig. 1(a)]. Since all four are fully developed, the declaws

improve the stability of the pigs when they are sunk in mud [20].

On the other hand, camels avoid sinking in the sand by increasing
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the contact area between the foot and the ground, which reduces

the pressure on the sand. This is possible due to their two-toed

feet, the lack of a proximal interdigital ligament, and the broad

pads under the toes that flatten due to the weight [21].

Among all the ungulates, goats have been chosen as biological

inspiration because they are well known for walking over moun-

tains, including climbing trees and dams. Moreover, earlier, we

have shown evidence that compliant hoof joints improve slip re-

sistance [14]. Therefore, before presenting the detailed analysis

and experiments to study the physical features of the hoof, it is

necessary to understand the anatomy of the biological hoof.

A. Biomechanical Description of the Goats’ Hoof

Goats as well as other cloven-hoofed animals such as bovines,

sheep, and deer present digits with their distal end covered with

hard keratin, and the structure of the hoof comprised of three

joints (fetlock, pastern, and coffin joint) is also similar [13].

The digits can differ in dimension, the shape of the claws,

and declaws. Since there is limited information regarding the

goat hoof, its biomechanical description has been complemented

using information from blue sheep [22] and bovines [23], [24].

The main features of the hoof presented in Fig. 1 are the

following:

1) The claws are closed together while they are in the air, but

they spread apart when touching the ground to transfer the

weight of the body to the hoof [22].

2) At the bottom of the toes, goats have a rough pliant textured

pad that is slightly projected over the nail; it increases the

contact area with smooth surfaces and absorbs shocks [see

Fig. 1(b)].

3) The frontal tip of the toes facilitates digging into the soil

for walking uphill.

4) The V-shaped disposition of the claws and the interdigital

cleft help to stick in the soil to generate braking forces.

5) Flexion/extension (denoted as pitch) is produced by

tendons actuated by muscles.

6) Flexion/extension is the main and common motion to all

the three hoof joints, but the coffin joint is the one with

the highest effect on the pitch.

7) The natural dynamics of the hoof interacting with the en-

vironment passively produce claw’s abduction/adduction

(denoted as roll) and rotation (denoted as yaw).

8) The roll of the claw is imposed by the fetlock or metacar-

pophalageal joint [23], [24], and the compliance of this

joint is set by the distal and proximal interdigital liga-

ments. This increases the likelihood of standing over a

firm terrain. Additionally, the lateral movement of the

toes produces slip dissipation orthogonal to the walking

direction that generates a natural stabilizing effect when

the goat walks downhill as observed in the Oreamnos

americanus [25]. In this article, it is assumed that the latter

observation is also valid for the Capra hircus.

9) Claw’s rotation is mainly imposed by the coffin or distal

interphalangeal joint. Therefore, the compound pitch and

yaw rotation of the coffin joint produces a screw-like

rotation of the claw [23].

Having defined the biomechanical properties of the hoof,

the following subsections present the models utilized for the

analysis of the hoof’s behavior.

B. System’s Dynamics

Based on the biomechanics of the goat hoof described in

the previous section and the existing research in passive dy-

namics [1], [3], [11], we believe that not only the active flex-

ion/extension plays an important role in the slip resistance, yaw

and roll together with the natural dynamics of the hoof may

contribute as well. Consequently, the features of the biological

hoof have been simplified by only assigning one degree of

freedom (DOF) per joint in the robotic hoof as follows.

1) The coffin joint defines the pitch movement (flex-

ion/extension) to improve the adaptability of the claw to

the irregularities of the terrain.

2) The fetlock joint defines the roll movement (abduction/

adduction of the claw).

3) The pastern joint defines the yaw (rotation).

Furthermore, for accomplishing a passive robotic hoof, pitch

compliance was set using antagonistic springs. The advantage

of this simplification is that the design of the robotic hoof can be

passive, simpler, and not redundant (this means that the common

flexion/extension motion in the joints of the biological hoof was

given to only one joint in the robotic hoof).

Similarly, for simplification, the numerical analysis of the

hoof is based on the following assumptions.

1) The effects of the other parts of the body dynamics are

modeled as an external force, fs, that slides the hoof;

this force resembles the component of the weight that

is parallel to the sliding plane that is pushing down the

goat.

2) fs induces the translation of O1 at constant speed

(v1 = 0.01 m/s in this case) along x′
0 (see Fig. 3).

3) The hoof is symmetric with respect to the medial plane

between the claws; therefore, the left claw was chosen

for the analytic study.

4) The joint at O2 [see Fig. 3(a)] can be modeled as a

revolute joint with damping cφ, stiffness kφ, and free

position angle of spring equal to 18◦.

5) Due to the sole, a claw is modeled as a segment of a

circle with radius R, which is always aligned with the

plane ( 06,x6,y6 ), as shown in Fig. 4.

6) For simplicity of analysis, we consider a single con-

tact point denoted I between the claw and the ground.

Following the previous assumption: I ∈ ( 06,x6,y6 ).
7) The claws are always in contact with the ground at I;

this point can move along the simplified circular contact

surface.

8) The prismatic joint between links 2 and 3 has stiffnessk23
and damping c23; the purpose of this joint is to passively

affect the normal force during the experiment.

9) The external mechanism that generates fs can be

modeled as an actuated prismatic ideal joint.

10) The vertical distance betweenO2 and I remains constant.

Thus, IO2.z0 = H .
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Fig. 3. 3-D dynamic model of the hoof. (a) Kinematic diagram. (b) 3-D model
of the system. The fetlock, pastern, and coffin joints are illustrated in terms of
their angles θ, γ, and β for simplicity.

Fig. 4. Lateral view of the model of the claw. {06} is the frame already defined
in Fig. 3. I is the contact point between the claw and the terrain. The medial line
is parallel to the y6-axis. This medial line also divides the claw in two halves.
‖BC‖ is the height of the claw. ‖O6B‖ is the distance between {06} and B
along x6. For modeling the claw, we are assuming that it is a segment of a circle
of radius R.

11) Due to the relatively low speed at the joints and low

variation of the height, the links are represented as a

one-point mass, and the gravitational potential energy

is considered negligible compared to the other forces in

the system.

12) All the springs have a virtual damper in parallel; con-

sequently, the system contains dampers at O2’s joint,

prismatic joint between O2 and O3,4, roll, yaw, and pitch

denoted cφ, c23, cθ, cγ , and cβ , respectively.

1) Model of the Robotic Hoof: The robotic hoof consists of

the fetlock, pastern, and coffin revolute joints presented in Fig. 2.

As stated earlier, in this article, it is considered that θ, γ, and β

denote the yaw, roll, and pitch of the hoof, respectively. Each

joint consists of a spring and a damper in parallel. Yaw and

pitch have the same origin O5,6, and each branch of the hoof

TABLE I
VARIABLES AND PARAMETERS OF THE SYSTEM

1⋆ For the simulation, v1 is constant, but for the experiments, it is the speed of the

XY stage.
2⋆ rI is defined with respect to the global inertial frame O0. Additionally, I is linked

to the claw.
3⋆ These parameters are illustrated in Fig. 4.
4⋆ When the pitch and yaw are locked (clamped), the dimension of this vector is

1× 1; otherwise, it is 2× 1 due to the components in x and y of the friction force.
5⋆ i = 2, 3, 4, which corresponds to Link 2, Link 3, and Link 4.

is comprised of the phalanges and the claw, which have been

represented with links.

These links and angles are illustrated in Fig. 3. The model

was obtained using the parameters summarized in Tables I and II

with the Khalil and Dombre variation of the Denavit–Hartenberg

convention.

The coordinates of the contact point I in the frame

(O6,x6,y6, z6) were defined using trigonometry as follows:

O6I.x6 = ‖O6B‖ −R sin(0.5π + φ− β) (1)

O6I.y6 = ‖BC‖+R cos(0.5π + φ− β)−R (2)
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TABLE II
DENAVIT–HARTENBERG PARAMETERS OF THE HOOF

where ‖O6B‖ is the distance between O6 and the medial point

of the claw, ‖BC‖ is the height of the claw, R is the radius of the

claw defined in assumption 5). These parameters are illustrated

in Fig. 4.

2) Equation of Motion: The variables and parameters uti-

lized are described in Table I. The dynamics of the system

were derived using the following extended version of the Euler–

Lagrange equation:

d

dt

(

∂L

∂q̇′

)

−
∂L

∂q′
= Q′T (3)

where L is the Lagrange, which is the difference between the

kinetic and potential energies of the system; q′, the state vector

of the system, is equal to q′ = [l23 φ θ γ β]; q̇′ is its time

derivative; and Q′ is the nonconservative generalized forces

vector that is calculated using the virtual work.

The nonconservative forces are friction force at the tip of the

claw and all the damping forces.

The kinetic energy of the system comprises that from the

masses m2, m3, m4, and m6. On the other hand, the potential

energy is the summation of the energy stored in the springs at

O2 (φ), prismatic joint between links 2 and 3, roll (θ), yaw (γ),

and pitch (β) denoted kφ, k23, kθ, kγ , and kβ , respectively.

3) Friction Model: In our previous work [14], we noticed a

variation on the slip resistance due to the dynamics of the robotic

hoof. Though the friction coefficients remained the same across

the experiments (the materials in contact were the same), the

robotic hoof exhibited a stick and slip behavior. Consequently,

to model this dynamic behavior of the friction force F r, the

LuGre friction model was chosen for the numerical simulation

in this article. For the dynamic change of F r, this friction model

employs several parameters. This model combines the Dahl

model with the Stribeck effect [26]. This approach models the

interaction between the irregularities of two contacting surfaces

as elastic bristles. The average deflection of these bristles is the

internal state zi of the model.

Due to the roll and yaw, the claw can move in the (06, x0, y0)
plane. Therefore, the jth component of the internal state,

Stribeck effect, and friction force are defined by

˙zi,j = ṙP,j − σ0

|ṙP,j |

g(v)j
zi,j (4)

g(v)j = N
[

µc,j + (µsj − µcj )e
−|ṙP,j/vs|

2
]

(5)

fr,j = σ0zi,j + σ1 ˙zi,j + σ2ṙP,j (6)

where σ0 is the stiffness, σ1 is the microdamping, σ2 is the

macrodamping (viscosity coefficient), vs is the Stribeck veloc-

ity [27], and N is the normal force [28]. Therefore, the friction

force in the jth direction, fr,j , is the summation of the resultant

forces produced by bending the spring-like bristles [presented

as the first and second terms in (6)] and the viscous friction

[represented by the last term in (6)] [29]. Additionally, because

the ground is our inertial frame, ṙI,j is the relative speed between

the two surfaces.

4) Geometrical Constraint: Since it is assumed that the

claws are always in contact with the ground, the vertical com-

ponent of rI is equal to zero. Then, the geometrical constraint

that keeps the vertical distance between O2 and I equal to H is

defined by

0 = [(Ix cosβ − Iy sinβ − d6) cos θ

− sin γ sin θ(Iy cosβ + Ix sinβ)− l23] cosφ

+ sinφ cos γ(Iy cosβ + Ix sinβ) +H. (7)

From this equation, l23 is cleared and substituted in the system

of equations (3). This reduces the state variable vector to

q =
[

φ θ γ β
]T

. (8)

In the end, the dynamic model was solved by numerical

integration using the following equation:

Rṡ = A (9)

where

R =

⎡

⎢

⎣

In On×n On×j

On×n Mn×n Bn×j

Oj×n Oj×n Ij

⎤

⎥

⎦

ṡ =
[

q̇ q̈ żi
]T

A =
[

q̇0,n×1 Qe,n×1 Hj×1

]T
.

I is the identity matrix, n is the number of state variables in q, O

is the zero matrix, j is the number of components on the friction

internal state vector zi, M comprises the effects of the mass, B

includes the microdamping coefficients of the friction model, q̈

is the second time derivative of the new state vector, żi is the

first derivative of the internal state vector of the friction force

model, q̇0 are the initial conditions, Qe is the vector of forces

that includes those from the dampers and springs at the joints,

and those from the spring-like bristles from the friction model

and the viscous friction, and H is the vector of żi defined by (4).

In this article, we used four compliance levels (0, 1, 2, and 3)

for the yaw, roll, and pitch, which are summarized in Table III.

For facilitating the analysis, the compliance-level notation at

the joint levels is Ci
j , where i = 0, 1, 2, 3 is the compliance

level and j = γ, θ, β indicates where the compliance is applied.

γ, θ, and β correspond to the yaw, roll, and pitch, respectively.

Level 0 denotes no compliance (locked joint), while level 3 is

the most compliant. The stiffness of the springs for these levels

was chosen based on the commercially available springs.
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TABLE III
COMPLIANCE LEVEL OF THE JOINTS

1∗ For simplicity, the compliance levels are defined in terms of the inverse of the stiffness

of the springs kγ , kθ , and kβ for the yaw, roll, and pitch, respectively.

III. METHODOLOGY

The effects of the embodiment of the hoof are analyzed in

terms of the external energy required to slide the hoof 6 cm over

a hard terrain. Consequently, the analysis also takes into account

the energy dissipated due to the friction force and the variation

on the potential energy stored in the spring-like mechanisms,

where the higher the value of the external energy, the higher the

slip resistance. This allows us to determine the most significant

compliance combinations across all joints that improve the slip

resistance of the robotic hoof and to understand the individual

contribution of its joints on the slip resistance. It has to be pointed

out that since the material of the pads and the terrain were the

same for all the experiments, there is no source of variation for

the coefficient of friction.

Additionally, a low slip speed of v1 = 10 mm/s was chosen in

simulations and experiments to study how the passive dynamics

of the hoof improve slip resistance with minimum need for active

control action to stop slippage.

A. Numerical Simulation

Utilizing the simulation parameters summarized in Table IV,

we have tested our mathematical model of the hoof for different

compliance levels, presented in Table III, using “ode23” in

MATLAB R2017b. Since the system reaches its steady state

after 2 s and the slip resistance depends on the compliance level

of the joints, this analysis comprises until the claw has moved

0.0188 m.

A high-performance computing facility (a general-purpose

mixed architecture cluster with about 25 000 cores) was em-

ployed due to the size and complexity of the numerical

simulation. There are some compliance combinations, whose

simulation was computationally expensive. Therefore, the num-

ber of trials for each compliance level is different, and they are

summarized in Table V.

Due to the lack of research regarding the compliance of the

goat’s hoof joints, it has to be pointed out that this article mainly

utilizes the simulation results to obtain the profile of the energy

required to slide the hoof for the compliance levels of each joint

summarized in Table III.

1) Energy Analysis: Before calculating the energy, the exter-

nal force needed to move the hoof at O1 at the constant speed

v1 was found as follows:

F ext = m2G̈2 +m3G̈3 + 2m4G̈4 + 2m6G̈6 − 2F r (10)

TABLE IV
SIMULATION PARAMETERS

1∗ The value of the compliance level of the joints is described in Table III
2∗ Interval used for defining the initial condition of the angles.

TABLE V
NUMBER OF TRIALS FOR THE NUMERICAL ANALYSIS

where m2, m3, m4, and m6 are the masses and G̈2, G̈3, G̈4,

and G̈6 are the accelerations of the center of mass of the

links of the system. The later were obtained by solving (9).

However, the external force, fs, is only moving O1 along x′
0
. As

a consequence, fs is the x component of F ext. Then, the energy
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Fig. 5. Abstraction of the goat hoof. It comprises (a) the variable compliance
joints fetlock joint (R), pastern joint (Y), coffin joint (P), phalanges (with their
respective rotation illustrated with the black arrows), claws, and springs changed
during the experiments, and (b) pad.

E due to fs was determined using

E =

∫ t1

t0

fs(t)v1dt. (11)

The analysis of these data comprises studying the individual

and pairwise impact of the change of the compliance level of

each joint on the energy.

B. Mechanical Design

We used a multibody compliant robotic hoof inspired by the

goat for experiments. Our aim was to test the hypothesis that

the passive dynamics of the hoof may be making a significant

contribution to improving slip resistance.

The hoof was constructed using a three-dimensional (3-D)

printer with ABSplus as model material. Its height is 11 cm, and

the length of the claw is 5.5 cm. As illustrated in Fig. 5(a) and

(b), the hoof is comprised of three joints.

The fetlock joint (roll) consists of four identical stainless steel

flanged Metal Radial Ball Bearings for the lateral movement of

the claws. To emulate the interdigital ligament of the hoof that

defines the compliance of this joint, there is an interdigital spring

kθ from Lee Spring Limited. Depending on the compliance level,

kθ can have the values presented in Table III.

The pastern joint (yaw) was built using three stainless steel

NMB Metal Radial Ball Bearings. To define the compliance of

the joint and the default position of the tip of the claw, the joint

comprises a torsional spring with stiffness kγ and free position

ends of 90◦ from Lee Springs Limited. The values of kγ for the

four compliance levels are summarized in Table III.

The coffin joint (pitch) is made of two ball bearings identical

to those used in the fetlock joint. The compliance of this joint is

set by two similar antagonistic springs located at the front and

back of the claw. The stiffness kβ of these antagonistic springs

is presented in Table III.

In the end, the profile of the claw was taken from an adult

Ecuadorian common goat (Capra Hircus) [30], [31], while the

curved pad was made of ethylene-vinyl acetate (see Fig. 5).

C. Experimental Protocol

For the experimental analysis, the data for sliding the hoof

6 cm for 64 joint compliance-level combinations were collected.

Fig. 6. Experiment setup. (a) Hoof was attached through the prismatic joint
to the rigid leg. This leg was secured to the stage through the force sensor. Four
cameras together with reflective markers were used to track the position of the
components of the hoof and the prismatic joint. The position of the markers M6

and M7 are used for defining the midline from the leg to calculate θ. (b) Top
view of the probing path followed by the XY stage for each trial. The starting
position is marked with an “x.”

These combinations result from combining all the compliance

levels of the joints presented in Table III. It has to be clarified

that for achieving compliance level 0, the respective joint was

clamped.

The experiment for each combination was comprised of

26 trials with an individual duration of 8 s. This trial length is

justified by the fact that 8 s multiplied by v1 gives a maximum

claw displacement of 8 cm. This displacement avoids having

missing data (especially from the cameras illustrated in Fig. 6),

and 8 s is enough for having a minimum claw displacement of

6 cm for all the combinations.

On the other hand, the length of the simulation trial is different

from that of the experiment because the simulation for some

combinations is computationally expensive, and we have limited

access to the high-performance computing facility.

The overall experimental setup is depicted in Fig. 6. The

AEROTECH XY stage-type ANT130-160-XY-25DU-XY-CMS

moved the rigid leg at the constant speed of v1. In the design, φ

was set to 18◦, which was the value used in the simulations. A

prismatic joint links the rigid leg to the hoof. This prismatic joint

contains a compression spring k23 = 364 N/m from LeeSpring

Limited for passively changing the normal force. The tested

surface was P40 sandpaper covered with plain white paper for

obtaining a hard terrain with calibrated roughness (defined by
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the grit of the sandpaper) and for avoiding damaging the hoof.

Fig. 6(b) presents the 8-cm path followed by theXY stage during

each trial.

To quantify the energy, the measured variables were the

stage’s current and position, hoof position, and force at joint

O1. Stage’s parameters were obtained from its Ensemble con-

trollers. The force was measured at the end of the rigid leg

using the MINI40 SI-40-2 sensor with a sampling frequency

of 900 Hz. This information was gathered using LabView2016

from National Instruments. The VICON motion capture system

comprised of reflective markers (diameter = 6.4 mm) and four

VICON Bonita B10 cameras (200 frames/s, 1 megapixel) was

used to capture the movement of the hoof. These data were

collected at 200 samples/s. The cameras were placed in the front

of the hoof, and three markers were attached to each object for

tracking its position. The objects were the claws, the middle

phalanges, the rigid leg, and the stage. Then, the VICON data

acquisition process was carried out using MATLAB R2017b

from MathWorks.

1) Analysis of the Energy Required to Slip: It starts by eval-

uating how the change of compliance level of each joint affects

the energy required to slide the hoof. Then, pairwise comparison

between two angles and the energy reveals the effects of the

interaction between joints in the energy. Later, these results

are complemented utilizing statistical analysis. In general, these

data were analyzed using MATLAB R2018b, and the Statistics

together with the Machine Learning Toolbox were utilized for

the Statistical Analysis.

The energy required to slide the feet was obtained from the

integration of the power consumed by the motors. This power

was calculated as [32]

pout = 3BemfI (12)

where the back electromotive force constant, Bemf, is measured

in volts, and it is defined by Bemf = 9ṙD,x0
[33]. I is the rms

current in amperes. Then, the energy E was obtained by

E =

∫ t1

t0

pout(t)dt (13)

where dt = 5× 10−3.

For the statistical analysis, data were normalized. Then, the

one-sample Kolmogorov–Smirnov test revealed that the data

were not normally distributed. To evaluate if the average en-

ergy of the combinations belongs to different distributions, the

Kruskal–Wallis statistical significance test with the Bonferroni

correction was used. To conclude, the combinations with the

highest and lowest energy values were determined using the

Mann–Whitney U test at 1% significance level.

2) External Force and Kinematic Relationships Determining

Slip Resistance: The position of the hoof’s markers from M1

to M5 [see Fig. 2(a)–(c)] and the position of the markers M6

and M7 of the prismatic joint [see Fig. 6(a)] were utilized to

calculate the angles using the following equations:

θ = arccos
M1M3 ·M6M7

‖M1M3‖ ‖M6M7‖
(14)

Fig. 7. Simulation results. Energy required to slide the hoof 0.0188 m across
all the compliance levels at the (a) yaw Cγ , (b) roll Cθ , and (c) pitch Cβ .

γ = arctan
M2M5y0

M2M5x0

(15)

β = arccos
M3M1 ·M4M5

‖M3M1‖ ‖M4M5‖
. (16)

To facilitate the analysis, the energy values for the combi-

nations have been grouped into high, medium, and low energy

value scenarios. These groups comprise the combinations in the

top, medium, and bottom quintiles of the energy.

The analysis of the external force and the contribution of each

joint on the slip resistance of the hoof comprises the study of the

following:

1) the pairwise behavior of the angles;

2) the statistics of the external force;

3) the typical time profile of the raw data of the forces and

angles;

4) the average and standard error of the raw experimental

data of the angles;

5) the probability distribution of the angles of the joints for

all the combinations in the high, medium, and low energy

scenarios.

IV. RESULTS

The aims of this article are to determine the most significant

compliance combinations across joints in the hoof (shown in

Table III) to improve slip resistance, and to investigate the

contribution of each joint to improve slip resistance.

A. Analysis of the Energy Required to Slip

The simulation results in Fig. 7 show the variation of stage

energy across different compliance levels in the yaw (Cγ), pitch

(Cβ), and roll (Cθ). In general, it can be noticed that the stage

energy increases when Cγ increases and Cθ decreases. This

indicates that there is a causality between slip resistance and

compliance level of the hoof joints.

The simulation results also illustrate that low compliance

for Cβ gives higher slip resistance. It should be noticed that

the simulation was done using a single-point contact model.

However, the real hoof involves a complex contact geometry.

Therefore, detailed experiments are needed to verify details of

the causality between the slip resistance and the compliance of

the joints.
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Fig. 8. Experiment results. Energy required to slide the hoof 0.06 m across all
the compliance levels at the (a) yaw Cγ , (b) roll Cθ , and (c) pitch Cβ .

Fig. 9. Experiment results. Pairwise comparison of the energy required to slide
the hoof: (a) Cγ against Cθ , (b) Cβ against Cθ , and (c) Cβ against Cγ . (d)
3-D plot of the stage energy across the compliance levels of the three joints.
To highlight the compliance-level combinations with a higher or lower expected
energy value than the baseline (stiff combination, E(C0

γ , C
0

θ
, C0

β
)), the former

are represented using an scaled red color, while the latter uses an scaled blue
color. Additionally, the center of the bar color (white color) denotes the energy
of the baseline.

Fig. 8 presents the experimental results for the variation of the

stage energy for different levels of Cγ , Cθ, and Cβ . They show

a similar pattern seen in the simulation results. We can notice

that the stage energy is high when Cγ is high and Cθ is low. The

main difference between simulations and experiments is that in

experiments, higher Cβ gives higher slip resistance.

On the other hand, the three joints of the hoof interact not only

with the environment, but also with one another. Therefore, we

need to study the interaction effect among joints on the hoof

slip resistance. We performed a pairwise analysis, as shown in

Fig. 9. This figure shows the stage average energy across all the

compliance levels Cγ , Cβ , and Cθ by pairs and across all the

joints.

The pairwise comparison of Cθ and Cγ and the interactions

between compliance across the three joints and the stage energy

reveal that the stage energy is higher for high compliance levels

of Cγ and low compliance levels of Cθ. This means the interdig-

ital ligaments should be stiff, while the pastern joint (Cγ) should

be compliant to increase slip resistance.

Results of stage energy for Cβ against Cθ, Cβ against Cγ ,

and the 3-D plot of the stage energy across the compliance of

the three joints demonstrate that, in general, higher compliance

at the pitch (Cβ) leads to higher slip resistance.

These results are corroborated by the single-sided compar-

isons (p < 0.05, Mann–Whitney U-test at 1% significance level

with Kruskal–Wallis with Bonferroni correction). These results

show that the combinations with the highest slip resistance that

present up to≈ 20% increase of energy by compared to the base-

line (stiff combination) have a compliantCγ and a stiff roll (C0

θ ).

Fig. 10. Experiment results. Pairwise comparisons of the evolution of the
angles of the hoof: column 1: γ against θ; column 2: β against θ; and column

3: β against γ. The high, medium and low energy scenarios contain those
combinations with an energy value in the top, medium, and bottom quintiles
of the range of the experimental data.

Conversely, the statistical analysis (p < 0.05, Mann–Whitney

U-test at 1% significance level with Kruskal–Wallis with Bonfer-

roni correction) also shows that the combinations that required

the lowest energy to slide the hoof are comprised of a low Cγ

and high Cθ.

In summary, most of the high-energy combinations comprise

Cγ , Cβ > 0, while Cθ is stiff. These findings confirm the im-

portance of having the right compliance levels at the joints for

increasing the slip resistance of the hoof.

B. Force and Kinematic Relationships Determining Slip

Resistance

To understand the kinematic implications of passive contact

force management to increase slip resistance, we analyzed the

statistics of the contact forces and the variation of γ, β, and θ.

So far, the energy results show that having Cγ compliant and

Cθ stiff improves the slip resistance of the hoof. Therefore, we

need to understand how every angle and the magnitude of the

external force needed to slide the hoof vary for the different

compliance levels at the joints. For simplicity, the results are

divided in the high, medium, and low energy scenarios that

correspond to the set of combinations with energy in the top,

medium, and bottom quintiles of the energy range from the

experimental results, respectively.

It can be observed in Fig. 10 that the variation of the angles of

the hoof for the high energy scenario is significantly lower than

that in the other two scenarios. This may imply that the angle of

the joints tends to reach some cyclic limit release that leads to

punctuated contact forces like those in the ABS on automobiles.

Additionally, the results of Fig. 10 (column 1) show a lin-

ear relation between γ and θ. These results also establish a
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Fig. 11. Experimental results. Probability distribution of the (column 1) height
of the peaks, (column 2) width of the peaks, and (column 3) number of peaks
per trial of the magnitude of the external force, ‖Fext‖, for the combinations in
the (row 1) high, (row 2) medium, and (row 3) low energy scenarios.

tendency of γ and θ to move toward lower values (toward the

bottom left corner of the plots) for the high energy scenario

[see Fig. 10(a)]. The results of β against θ and β against γ

(see columns 2 and 3 in Fig. 10, respectively) present a similar

relationship. These results reveal that the high energy scenario

is comprised of compliant pitch combinations that exhibit an

oscillating behavior and locked pitch combinations with β ≈
90◦. The oscillating behavior is also noticed in the medium

energy scenario, while this behavior is practically unnoticeable

in the low energy scenario.

The consequence of this oscillating behavior observed in

Fig. 10 is reflected in the statistics of external force ‖Fext‖ shown

in Fig. 11.

Fig. 11 reveals that the high stage energy required to slide the

hoof corresponds to an increase in the probability of having slip

resistance force peaks of higher magnitude and duration. This is

also evident in the typical time profiles of the forces and angles

shown in Fig. 12. The high energy scenario presents higher and

low-frequency force peaks accompanied by more pronounced

oscillatory behavior in the pitch together with asymptotically

widening yaw and roll. Conversely, medium and low energy

combinations present smaller and high-frequency force peaks.

Fig. 13 shows the average and standard error across all the

trials for joint angle profiles. Particularly, column 1 in Fig. 13

reveals an asymptotically growing profile of γ with lower stan-

dard error in the high energy scenario [see Fig. 13(a)] compared

to that in medium and low energy scenarios. Another difference

is that the expected value of γ converges to ≈ 9◦ in the high

energy scenario, while that of the others go beyond this value.

Accordingly, Fig. 14 illustrates the probability distribution of the

joint angles. In particular, column 1 shows that the higher the

energy is, the lower the variability of γ becomes. What stands

Fig. 12. Experiment results. Raw data of the external force, ‖Fext‖, required
to slide the hoof and behavior of the angle at the (column 1) yaw (γ), (column 2)

roll (θ), and (column 3) pitch (β) for the (row 1) high energy scenario, (row 2)

medium energy scenario, and (row 3) low energy scenario. It has to be pointed
out that for illustration purposes, the signals are only plotted for the first 5 s.

Fig. 13. Experiment results. Average and standard error of the raw experimen-
tal data of the evolution of the angles: γ (column 1), θ (column 2), andβ (column
3) for all the combinations in the (row 1) high, (row 2) medium, and (row 3) low
energy scenarios. For illustration purposes, the signals are only plotted for the
first 5 s.

out is that for the high energy scenario, the probability becomes

shifted to the left, limited to γ < 13.5◦, and only comprises

combinations with Cγ compliant.

Column 2 in Fig. 13 exhibits a relatively flat profile for θ

in the high energy scenario. Nevertheless, θ’s profile for the

medium and low energy scenarios presents a quick small limit-

release behavior. This is corroborated by column 2 in Fig. 14.

What can be clearly seen is that for the high energy scenario,

the histogram is left-skewed, with an upper limit of θ < 7.5◦,

with an average value of θ ≈ 5◦, and only comprises the lowest

compliance level at the roll (Cθ stiff). This explains the flat

profile of θ in Fig. 13(b). On the other hand, the probability

distribution of θ for the medium energy scenario is unimodal
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Fig. 14. Experiment results. Histogram of the probabilities of γ (column 1), θ
(column 2), and β (column 3), for the combinations in the (row 1) high, (row 2)

medium, and (row 3) low energy scenarios. The blue bars illustrate all the data,
while the red bars highlight the probability distribution of the data from the stiff
joints.

with a high variability, whereas the probability distribution in

the low energy scenarios is unimodal, with low variability, and

only comprises compliant roll levels.

β’s time profile (see column 3 in Fig. 13) exhibits a uniform os-

cillatory behavior for the high energy scenario with an expected

value ≈ 92◦. On the other hand, the profile of β in the medium

energy scenario has a variable oscillatory behavior, while the

profile of the low energy scenario is relatively flat. It has to

be pointed out that for the medium and low energy scenarios,

the expected value of β is ≈ 94◦. These are further validated

by column 3 in Fig. 14. The bimodal probability distribution

of the high energy scenario when the pitch is compliant [blue

bars in Fig. 14(c)] agrees with the uniform oscillatory behavior

observed in Fig. 13(c). In this case, the upper and lower bounds

of the oscillation are defined by the two peaks in the histogram.

In general, the medium energy scenario exhibits a bimodal

probability distribution with high variability. This increase in

the variability can be associated with the variable oscillatory

behavior observed in Fig. 13(f).

In summary, for the high energy scenario, γ shows a smooth

asymptotic growth (opening digits) for a narrow flat variation of

θ (stiff interdigital ligament). The cyclic limit-release behavior

of β (vertical movement of digits) is also smooth, which also

contributes to improving the slip resistance of the hoof. In the

medium energy scenario, even though γ grows smoothly, there

is a quick limit-release behavior of θ accompanied by a variable

Fig. 15. Simulation and experimental results. (a) Stage force against β. (b)
Histogram of the probability distribution of θ for a combination with compliant
joints. Yellow bars illustrate the simulation data, while blue and orange bars
correspond to the experimental results from the left and right claw, respectively.

oscillating profile of β. On the other hand, the low energy

scenario exhibits a quick limit-release behavior of γ and θ and

flat oscillations of β making the hoof easier to slide.

V. DISCUSSION

As stated in the previous section, there is a difference between

the simulation and experiments regarding the contribution of

Cβ on the slip resistance. According to the latter, a higher Cβ

gives higher slip resistance. This can be explained by the results

presented in Fig. 15(a). It reveals that the variability ofβ is higher

for the experimental results than that for the simulation. This can

be caused by the simplification of both the complex geometry

of the pad and the contact between the hoof and the terrain.

Furthermore, the vibrations on the structures of the components

can also affect the variability of β.

Similarly, Fig. 15(b) states that another cause for the dif-

ference between the simulation and experiment results is that

the behavior of the claws is not symmetric. The histogram of

the probability distribution of θ is different for the left and

right claws in the experiments. However, the simulation results

demonstrate that the behavior of θ from the simulation is an av-

erage of that exhibited for the claws in the experiments. At some

extent, it shows that the claws’ symmetric behavior assumption

in the mathematical model is not entirely unsuitable. The lack

of symmetry in the experimental results can be a consequence

of the pad’s manual elaboration and adhesion to the claw.

Additionally, it has to be pointed out that though φ was set

in the simulations and design of the robotic hoof to 18
◦
, the

experimental results show that given a trial with a variation of

0.69%, the expected value of φ is 14.36◦, and its range across

trials is φ̄ ∈ [12◦ 16◦]. This can be explained by the hardware

variability such as tolerances of the design or the elasticity of

the 3-D printing material of the robotic hoof. Consequently,

according to the experimental results, the variation of φ has

a minimum effect on the slip resistance, while the simulation

results establish a linear relationship that can be defined by

E = 0.3782φ− 0.059, where φ is in radians for a compliant

combination.

On the other hand, the oscillatory dynamic behavior of the

external force suggests that the robotic hoof presents an ABS-

like behavior to increase its slip resistance. The ABS principle of

vehicles based on the relation between the slip ratio of the wheel
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and its tire’s adhesion coefficient with the road surface for dif-

ferent asphalt conditions has been presented in [18]. The authors

show that the tire-wet asphalt maximum adhesion coefficient is

lower than that for tire-dry asphalt. Consequently, the braking

force that can be applied to the wheel for wet asphalt conditions

is smaller in magnitude and duration than the braking force that

can be applied to the wheel for dry asphalt conditions [18]. This

increments the time needed to brake when the asphalt is wet.

Therefore, the high energy scenario resembles the dry asphalt

conditions, while the low energy scenario resembles the wet

asphalt conditions. This is highlighted in the growth of height

and duration of the peaks of the external force with the increase

in energy needed to slide the hoof observed in Fig. 12.

Results also reveal that having relatively higher compliance

at the yaw (Cγ) and pitch (Cβ) and lower compliance at the

roll (Cθ) increases the slip resistance of the hoof. This superior

performance comes from the fact that due to these compliance

levels, the interaction between the hoof and the terrain produces

a smooth growth of γ, limited to values < 13.5◦, and a locked

value of θ ≈ 5◦. This conducts to a cyclic smooth limit-release

behavior at the pitch. This is a manifestation of hoof’s ABS-

like behavior that decreases the speed while avoiding skidding

and losing balance. This is explained by the adaptability of the

hoof to the small irregularities. This leads to the appearance

of an additional braking behavior similar to the wedge braking

used by skiers to brake in the snow. In the end, this leads to the

manifestation of the ABS of vehicles at the hoof.

Similarly, in the medium energy combinations, γ also asymp-

totically grows relatively smoothly. However, the quick limit-

release behavior of θ is accompanied by vibrations observed in

β’s profile, where the vibrations are not cyclic. This does not

allow the hoof to effectively improve its slip resistance.

Conversely, the combinations with a low compliance level

at the yaw (γ) and high compliance at the roll (θ) present the

lowest energy value. This is caused by the fact that the quick

limit-release behavior at the yaw and the roll is accompanied

by minimal oscillations at the pitch (β). Therefore, the dynamic

behaviors of the hoof that reduce the speed mentioned in the

previous paragraph cannot manifest in this case. This result also

implies that the contribution of the lateral slip dissipation is low

for improving the slip resistance.

Moreover, though the dynamics of the joints of the biolog-

ical hoof differ from their corresponding robotic counterpart,

which makes it difficult to conclude on the dynamics of the

biological hoof, the results of this study agree with the overall

energy-absorbing behavior of the hoof found in real goats [8].

According to our results, the best compliance combinations

across the joints increase the energy required to slide the hoof

by ≈ 20% compared to that of the baseline (stiff combination).

Therefore, the robotic hoof can give an insight into the dynamics

of the biological hoof. This implies that the physical param-

eters of the robotic hoof can be isolated and studied. These

studies are difficult to implement with real goats due to the

complexity of their natural habitat and the invasive methods

used to monitor parameters in animals that can alter their normal

behavior.

VI. CONCLUSION

This article, for the first time using a dynamic model and ex-

perimental results, investigated the role of the passive dynamics

of a biologically inspired goat robotic hoof on the slip resistance.

This article showed that having compliant yaw and pitch and a

stiff roll could increase the energy required to slide the robotic

hoof by ≈ 20% compared to the stiff combination. Compliant

yaw and pitch allow the system to interact with the irregularities

of the terrain to generate oscillations in the pitch. This leads

to the manifestation of ABS-like behavior in the robotic hoof

that improves the slip resistance. Therefore, it can be stated

that the coffin (pitch) and pastern joints (yaw) of the hoof play

an important role on the slip resistance, while the effect of the

fetlock joint (roll) is minimal. The latter allows robotic hoof

designers to freeze the roll, which decreases one DOF of their

design.

Previous research found that sliding between the foot and

ground has to be controlled to avoid falling and slipping [34].

However, sliding is caused by the transverse force applied to the

foot when it is in contact with the ground. The findings of this

article show that the energy needed to slide the hoof changes with

the compliance levels. This implies that the transverse force is

dynamically changed due to the coupled dynamics of the joints

of the hoof and their interaction with the environment. There-

fore, new field robots such as ScarlETH [35] and Anymal [36]

from ETH Zurich, Big Dog [37] from Boston Dynamics, and

RSTAR [38] could utilize this artificial hoof for improving their

slip resistance.

The two main implications from this article were: 1) it con-

tributed toward the simplification of robotic hooves and 2) it

highlighted possible anatomical features such as compliance of

the joints of the biological hoof that affect its slip resistance.

These can be the basis for the development of other biological

studies of the hoof, where the effects of the compliance of the

joints can be further explored.

For instance, from a biological point of view, neural-level

reflexes play a major role when a noticeable slip occurs within

a short time. This article does not address such combined ac-

tive control and passive mechanical reactions. A slip speed of

0.01 m/s minimizes the possibility of involving such reflex ac-

tivities. A future study could address how the passive dynamics

of the hoof vary for a range of speeds. The robotic hoof can

also be further simplified by locking the fetlock joint angle to

θ = 5◦. The effects of flexion/extension at this joint on the slip

resistance can also be studied.

Furthermore, developing a fabrication mechanism to incor-

porate compliant joints in the manufacturing process of robotic

hooves would be one interesting possibility. The analysis and

development of a method for real-time control of the compliance

of hoof joints using methods presented in [39]–[41] could also

allow a robot to adapt to different terrain conditions (such as

deformable or inclined terrains). In addition, the findings of this

article pose a viable hypothesis that the dynamics of the hoof

plays an important role in slip resistance in biological goats.

This should be verified in behavioral experiments with goats.
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