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Abstract.

Objective. Common spatial patterns (CSP) is a prominent feature extraction algorithm

in motor imagery (MI)-based brain-computer interfaces (BCIs). However, CSP is

computed using sample-based covariance-matrix estimation. Hence, its performance

deteriorates if the number of training trials is small. To address this problem,

this paper proposes a novel regularized covariance matrix estimation framework

for CSP (i.e. DTW-RCSP) based on dynamic time warping (DTW) and transfer

learning.Approach. The proposed framework combines the subject-specific covariance

matrix (Σss) estimated using the few available trials from the new subject, with a novel

DTW-based transferred covariance matrix (ΣDTW) estimated using previous subjects’

trials. In the proposed ΣDTW, the available labelled trials from the previous subjects

are temporally aligned to the average of the few available trials of the new subject

from the same class using DTW. This alignment aims to reduce temporal variations

and non-stationarities between previous subjects trials and the available few trials from

the new subjects. Moreover, to tackle the problem of regularization parameter selection

when only few trials are available for training, an online method is proposed, where the

best regularization parameter is selected based on the confidence scores of the trained

classifier on upcoming first few labelled testing trials. Main results. The proposed

framework is evaluated on two datasets against two baseline algorithms. The obtained

results reveal that DTW-RCSP significantly outperformed the baseline algorithms at

various testing scenarios, particularly, when only a few trials are available for training.

Significance. Impressively, our results show that successful BCI interactions could be

achieved with a calibration session as small as only one trial per class.

Keywords: Brain-computer Interface, Transfer learning, Common spatial patterns,

Calibration time, Dynamic time warping.
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Dynamic Time Warping-based Transfer Learning for Improving CSP in BCI 2

1. Introduction

Brain-computer interface (BCI) allows a direct communication to control an

electronic device using a person’s brain signals without any muscular means [1].

Electroencephalogram (EEG) is the most popular brain signals used in BCI as it is

recorded non-invasively with high temporal resolution and low cost [2]. Users’ mental

states are identified and converted to control signals in EEG-based BCIs by classifying

the features extracted from the recorded brain signals. In motor imagery (MI)-based

BCIs, these features are commonly extracted using common spatial patterns (CSP)

algorithm [3].

CSP mainly aims to reduce the high dimensionality of the multi-channel EEG

signals by maximising the difference between variances of the two classes of EEG signals.

The quality of CSP features can be affected by several issues, such as noise due to

movement artifacts, and non-stationarity of EEG signals. Moreover, CSP is computed

based on covariance matrix estimation. Thus, it is likely to overfit when few trials are

available from the user to train the CSP-based BCI model [4, 5]. This issue leads to

one of the main challenges that prevents BCI systems from being used in daily-basis

applications which is the long calibration time. Calibration time is the time required to

record sufficient number of labelled trials to train the CSP-based BCI model. Typically,

the calibration time is 20-30 minutes for each single session. This long calibration time

leaves BCI users mentally exhausted before starting the real interactions.

For using a BCI system in daily life-based applications, it must be accurate

across sessions and subjects, and with the shortest possible calibration time. The

aforementioned challenges could be tackled at different stages by improving either the

BCI user training part [6, 7], or the signal processing part. Regarding the EEG signal

processing part, developing accurate and more robust CSP-based algorithms which can

be calibrated with the minimum possible training data is greatly desirable for MI-based

BCIs [8, 9].

Transfer learning could be potentially used to reduce the calibration time of BCI

systems while the loss in the accuracy is minimised. Using transfer learning approaches,

shortage of labelled trials from the current user can be compensated by incorporating

other sessions/subjects data in the learning process [10]. Transfer learning can be applied

on different domains to improve MI-based BCIs. In raw EEG domain, previously

proposed transfer learning algorithms are mostly based on either instance selection

[11] or importance sampling [12]. Available transfer learning algorithms on feature

domain try to enhance CSP by improving either the estimation method of covariance

matrix [13, 14, 15] or the optimization function of CSP [9, 16, 5]. For classification

domain, existing transfer learning algorithms use either domain adaptation techniques

[17], ensemble learning of classifiers [18, 19], or classifier objective function modification

[20].

To the best of our knowledge, none of these studies considered the temporal

variations between EEG trials of a new subject and those of previous subjects to
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Dynamic Time Warping-based Transfer Learning for Improving CSP in BCI 3

reduce between-subjects non-stationarity during transfer learning. Moreover, most of

the proposed algorithms in the feature domain require calculating multiple regularization

parameters which is computationally expensive.

This paper proposes a novel transfer learning framework in raw EEG and feature

domains, called DTW-based regularized CSP (DTW-RCSP). At first, in the raw EEG

domain, we transform previous subjects’ trials to be more similar to the target subject’s

few training trials using a novel alignment method in time domain based on DTW, and

hence use these aligned trials to form the transferred covariance matrix. Then, in the

feature domain, we propose a novel regularization between the subject-specific and the

transferred covariance matrices to improve the CSP covariance matrix estimation. The

output of our proposed DTW-RCSP framework is a new regularized CSP matrix which

is a combination of the subject-specific covariance matrix and the transferred covariance

matrix from other subjects. Finally, to address the issue of regularization parameter

selection when very few training trials are available, we propose an online method based

on the upcoming first few labelled testing trials, where some predefined regularization

parameters are evaluated based on the confidence scores of the trained classifier.

The proposed DTW-RCSP framework is evaluated across different scenarios based

on the available subject-specific training trials using two datasets. The proposed DTW-

RCSP performance is compared against two state of the art algorithms, standard CSP

and Composite CSP (CCSP) [13].

2. Methodology

This section presents our proposed transfer learning framework (DTW-RCSP) to

improve the CSP features of EEG signals, when few trials from the target subject

and a group of trials recorded previously from other subjects are available. First, we

will give a brief description about transfer learning definition. A domain d is defined by

its feature space X and its marginal probability distribution P (X). Subsequently, for

each domain, its task consists of label space y and objective classification function f .

This classification function can be learnt using the available training trials to find the

labels of the testing trials. Generally, two different domains might have different feature

space, different marginal probability distributions or both. Similarly, two different tasks

have either different label space, different classification function or both.

Definition: Given source domain ds, source task ts, target domain dt, target task tt,

transfer learning aims to help improve the learning of the target classification function

ft in dt using the knowledge in ds and ts, where ds 6= dt or ts 6= tt. Where ds 6= dt
means Ps(X) 6= Pt(X) or/and Xs 6= Xt. Moreover, ts 6= tt means yt 6= ys and/or

Ps(y|X) 6= Pt(y|X)[10]. For more information about transfer learning and its application

in BCI, the reader can refer to [21, 10].

In our proposed DTW-RCSP framework, the previously recorded EEG trials from

other subjects and sessions are pooled together as one single session s, and referred to

as the source domain. Subsequently, the source domain is presented as ds=(Xi
s
, yi

s
)N
i=1

,
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Dynamic Time Warping-based Transfer Learning for Improving CSP in BCI 4

where Xi
s
and yi

s
∈ {−1, 1} respectively denote the EEG instance matrix and the class

label of the ith trial, and N points to the trials number. In each trial Xi
s
⊂Rh×V , h is

the EEG samples contained in each trial and V is the channels number. Similarly, the

set of labelled trials of the target subject, t, is denoted as dt = (Xi
t
, yi

t
)M
i=1

, where M is

the number of the available subject-specific trials.

2.1. Dynamic Time Warping-based Transfer Learning Regularized CSP Framework

(DTW-RCSP)

To improve CSP covariance matrix estimation when few trials are available for training,

regularization based transfer learning techniques could be used. Regularized CSP works

by specifying a trade-off between the estimates obtained using few target subject-

specific trials and informative estimates obtained using previously recorded trials from

other subjects/sessions [22]. In our proposed DTW-RCSP framework, the average CSP

covariance matrix ΣTLRc
for each class c is calculated as follows:

ΣTLRc
= (1− r)ΣSSc + rΣDTWc

, (1)

where r is the regularization parameter (0 ≤ r ≤ 1). ΣDTWc
is the proposed DTW-

based transferred average covariance matrix of the aligned trials of class c from other

subjects which will be explained in 2.2. ΣSSc is the average covariance matrix of the

few subject-specific trials of class c from the target subject. ΣSSc is calculated as

ΣSSc =
1

mc

mc
∑

i=1

Xi
t
⊤Xi

t

tr(Xi
t
⊤Xi

t)
, (2)

where mc is the number of trials per class c, ⊤ is the matrix transpose function, and tr

is the trace function.

The regularization parameter r shrinks the subject-specific covariance matrix

towards the DTW-based transferred covariance matrix to neutralize the possible

estimation bias due to the availability of few training trials from the target subject. In

fact, ΣDTWc
represents the information on how the covariance matrix for the considered

intellectual condition should typically be. Finally the DTW-RCSP filters,WDTW-RCSP,

are calculated by maximising the following objective function using joint diagonalization

[3]:

WDTW-RCSP = arg max
W

W ΣTLR1
W⊤

W(ΣTLR1
+ΣTLR2

)W⊤
. (3)

From (1), the classical CSP can be considered as a special case of DTW-RCSP

framework, when r=0.

2.2. Estimation of the Dynamic Time Warping Transferred Covariance Matrix

DTW has been initially proposed as a solution of the time distortion issue between two

time series in speech recognition problems in a non-linear fashion. DTW finds an optimal

alignment between two given sequences under certain restrictions to compensate the
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Dynamic Time Warping-based Transfer Learning for Improving CSP in BCI 5

timing differences between them [23]. After-that, different research areas have applied

DTW such as object recognition, motion analysis, and classification of time domain

signals including EEG, and ECG [24, 25]. For EEG, DTW is used as a dissimilarity

measure between two EEG segments after being optimally aligned. In our previous

paper, DTW has been used to reduce subject-specific temporal variations between two

EEG segments [26].

In this paper, DTW is used for the purpose of transfer learning. Unlike the previous

EEG-based studies, the goal is to align a collection of EEG trials from other subjects or

sessions to the average of the few available trials from the new target subject. Thus, to

calculate ΣDTWc
, the DTW-based transferred average covariance matrix, the following

steps are taken.

First the average of the available few trials of the target subject from class c is

computed as follows:

X̄tc = (1/mc)
mc
∑

i=1

Xi

t
, (4)

where X̄tc and mc respectively refer to the average and the total number of the target

trials of class c.

Next, each trial from the source session gets aligned to the average of the few target

trials from the same class, X̄tc , using DTW. To align Xi
s
⊂ Rh×V to X̄tc ⊂ Rh×V , we

construct a distance matrix Dh×h, where D(a, b) is the Euclidean distance between the

EEG signals of two time instances of a and b from Xi
s
and X̄tc respectively,

D(a, b) =

√

√

√

√

V
∑

v=1

(Xi
s
(a, v)− X̄tc(b, v))

2. (5)

Thereafter, the elements of Xi
s
and X̄tc

are mapped through the matrix D by finding

an optimum warping path, whereby the cumulative distance between the two above-

mentioned EEG trials is minimised. Generally, a warping path, P, defines a mapping

between Xi
s
and X̄tc , and its elements are presented as

P = [p(1), .., p(k), ..., p(K)] h ≤ K < 2h− 1 (6)

where p(k)=D(ak, bk). ak and bk belong to {1, 2, ..., h}, and remap the time indices of Xi
s

and X̄tc respectively. A warping path requires to be subject to the following constraints:

1- Boundary conditions: p(1)=D(1, 1) and p(K)=D(h, h). In other words, a1 = b1 = 1

and aK=bK=h.

2- Continuity and monotonicity: 0≤ ak−ak−1≤1 and 0≤ bk−bk−1≤1.

3-In addition to the above mentioned constraints, there are some other global constraints

on the warping path. These constraints limit how far the warping path from the

diagonal path, could be. Global constraints are generally applied to prevent pathological

warpings, where a relatively small section from one time sequence being mapped to a

relatively large section of another, and to calculate the DTW distance matrix slightly

faster. The two most frequently used global constraints are the Sakoe-Chiba band [27]

and the Itakura parallelogram [28].
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Dynamic Time Warping-based Transfer Learning for Improving CSP in BCI 6

Numerous warping paths can satisfy the above-mentioned conditions. However, we

are interested in the optimum warping path, P∗, with the shortest non-linear alignment

between Xi
s
and X̄tc , as follows [29, 30]

P∗ = arg min
P

(
1

K

√

√

√

√

K
∑

k=1

p(k)). (7)

To reduce the computational time, P∗ is computed using dynamic programming to

assess the following recurrence [25], where the cumulative distance γ(a, b) is defined as

the distance between two time instances a and b from Xi
s
and X̄tc , D(a, b), and the

minimum of the cumulative distances of the adjacent elements:

γ(a,b)=D(a,b)+min[γ(a−1,b−1),γ(a−1,b),γ(a,b−1)] (8)

Given P∗, Xi
s
is aligned to X̄tc as:

Xi

saligned
=











Xi
s
(a∗

1
, 1) Xi

s
(a∗

1
, 2) · · · Xi

s
(a∗

1
, V )

Xi
s
(a∗

2
, 1) Xi

s
(a∗

2
, 2) · · · Xi

s
(a∗

2
, V )

...
. . .

...

Xi
s
(a∗

K
, 1) Xi

s
(a∗

K
, 2) · · · Xi

s
(a∗

K
, V )











(9)

where [a∗
1
, a∗

2
, ..., a∗

K
] are the time indices of Xi

s
forming the minimum warping path P∗.

These time instances are the instances that will make Xi
s
to be as much similar to X̄tc

as possible given the above constraints. Subsequently the covariance matrix of Xi
saligned

is calculated as follows:

Σi

saligned
=

(Xi
saligned

)⊤Xi
saligned

tr((Xi
saligned

)⊤Xi
saligned

)
. (10)

Finally, the proposed DTW-based transferred average covariance matrix of the

aligned trials from previous subjects/sessions for each class c is computed as

ΣDTWc
= (1/nc)

nc
∑

i=1

Σi

saligned
, (11)

where nc is the total number of trials of class c from other subjects/sessions.

2.3. Regularization Parameter Selection

Typically, regularization parameter is selected from a set of predefined values by applying

cross-validation on the training data [31]. However, cross-validation becomes ineffective

and in some cases impossible when we have very few training trials available from

the target subject. Moreover, conventional optimization methods such as iterative

optimization methods, or heuristic methods such as evolutionary algorithms could also

be used to select the regularization parameter. However, a main drawback of using

these techniques is that they require extensive computational time [32]. In this paper,

we address the above-mentioned challenge by selecting the best regularization value

using the classifier scores (i.e confidence scores) rather than the accuracy.
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Dynamic Time Warping-based Transfer Learning for Improving CSP in BCI 7

Algorithm 1: Offline method

Input: ΣDTWc
, ΣSSc for each class c, A predefined values of r, K

cross-validation folds, and neva evaluation trials from the target subject

Output: Regularization parameter r∗

1 for r = r1 to rA do

2 for k = 1 : K do

3 for c do

4 calculate ΣTLRc
using (1)

5 calculate the corresponding DTW-RCSP features using (3)

6 train the classifier

7 for tr = 1 : neva do

8 calculate the classifier score CS for each tr

9 scoretr= CStr ∗ labeltr

10 scorek=
∑

neva

tr=1
scoretr

11 scorer=
∑

K

k=1
scorek

12 Score∗= arg max scorer
13 Return: r∗ assigned to the highest Score∗

Figure 1. The proposed offline method to select the regularization parameter based

on the confidence scores of the classifier on the training trials from the target subject

We propose using the classification scores to select the best regularization value

in two different ways, namely referred to as offline and online. The offline method is

applicable if we have sufficiently enough training trials available from the new target

subject. The offline method applies cross-validation on the training trials and selects the

regularization value that yields the highest summation of classification scores multiplied

by the true class labels of the corresponding evaluation target trials over the 10-fold

validations. Please see our algorithm in Fig. 1 for more details.

In online method, the few upcoming testing trials with known labels will be used

for selecting regularization value. Thus, among a set of predefined values, the selected

regularization value is the one which yields the highest summation of the classification

scores multiplied by the true classification labels of the upcoming few testing trials.

Fig. 2 provides more details on the proposed online regularization parameter selection

method. The proposed online method can be used for any available number of training

trials, while the proposed offline method is not applicable if less than K training trials

are available from the new target subject where K is the number of cross-validation

folds.
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Dynamic Time Warping-based Transfer Learning for Improving CSP in BCI 8

Algorithm 2: Online method

Input: ΣDTWc
, ΣSSc for each class c, A predefined values of r, and T upcoming

labelled test trials from the target subject

Output: Regularization parameter r∗

1 for r = r1 to rA do

2 for c do

3 calculateΣTLRc
using (1)

4 calculate the corresponding DTW-RCSP features using (3)

5 train the classifier

6 for tr = 1 : T do

7 calculate the classifier score CS for each tr

8 scoretr= CStr ∗ labeltr

9 scorer=
∑

T

t=1
scoretr

10 Score∗= arg max scorer
11 Return: r∗ assigned to the highest Score∗

Figure 2. The proposed online method to select the regularization parameter based

on the classifier confidence scores of the upcoming few labelled testing trials

3. Experiments

3.1. Data Description

In order to evaluate the proposed transfer learning framework, two datasets with 9 and

17 subjects were used.

1) Dataset 2a from BCI Competition IV (medium dataset) [33]: This dataset

includes 9 subjects’ EEG data recorded using 22 electrodes. Each subject attended

two sessions of data recording on two different days. A total number of 288 trials were

recorded from each subject per session. Subjects were instructed to perform 4 motor

imagery tasks. In this paper, we used only trials recorded for right and left-hand motor

imagery (i.e. 144 trials). Moreover, to imitate a real life situation where the training

and the testing trials of a new BCI user are recorded at the same session we used only

data from the second session.

2) Dataset from [34] (large dataset): This dataset includes 19 healthy subjects’ EEG

data recorded using 27 electrodes. Two sessions at two separate days were recorded

for each subject without feedback. In this dataset , subjects performed hand motor

imagery, either left or right, versus rest condition. Each recorded sessions contained two

runs, each run consisted of 80 trials without feedback, half of the trials is MI and the

other half is rest condition. In this paper, only data from subjects who performed right

hand motor imagery (17 subjects) were included. We did that to ensure the data used

for transfer learning were neurologically relevant. Again, to fulfill the real life situation

mentioned before, only data recorded in the first session are used.
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3.2. Data Processing

A single zero-phase elliptic bandpass filter ranging from 8 to 30 Hz was used for EEG

data filtration, since the range of frequencies that are mainly associated with performing

motor imagery are included in this single frequency band. Then, the first and the last

three spatial filters of CSP/CCSP/DTW-RCSP are used to obtain the spatially filtered

signals as recommended in [35]. Thereafter, features are computed as the normalized

log band power of the spatially filtered signals. Finally, Linear support vector machine

(SVM) was used as the classifier.

For each subject, the investigated trials were divided into 3 sets, namely training,

validation , and testing. The testing set consisted of the last 50 trials for the medium

dataset, and the last 70 trials for the large dataset. For both datasets, the validation

trials are the 10 trials immediately before testing trials, and the training set consisted

of the remaining trials. Validation trials will be used in the proposed online method for

regularization parameter selection. To assess the performance of the proposed DTW-

RCSP framework, different scenarios have been considered when different numbers

of training trials from new target subjects were available. Moreover, the DTW-

based transfer learning covariance matrix is estimated using all the available training

trials of the other subjects from the same dataset, except the target subject in each

case. The optimum regularization parameter was selected from the predefined set of

r ∈ {0, 0.1, · · · , 1}.

The three proposed transfer learning-based regularized CSP algorithms (namely

DTW-RCSP-CV, DTW-RCSP-Off, and DTW-RCSP-On) were evaluated. These

algorithms are different on how the regularization parameter is selected. For DTW-

RCSP-CV, the optimum regularization parameter is selected using 10 fold cross-

validation on training data of the target subject based on the classification accuracy. For

DTW-RCSP-Off and DTW-RCSP-On, the regularization parameter is selected using the

proposed offline and online methods respectively. The results compares the proposed

algorithms against two baseline algorithms, i.e. the commonly used subject-specific CSP

algorithm, and CCSP (the first method proposed in [13]). The regularization parameter

in CCSP is selected using cross-validation on the available training data of the target

subject. In fact, if DTW alignment is omitted from the proposed DTW-RCSP-CV, it

gets identical with CCSP.

4. Results and Discussion

The first part of this section presents the results when 5 or more trials per class were

available from the target subject. Thus 10-fold cross-validation and our proposed offline

method could be used to select the regularization parameter using the available training

trials from the target subject. Fig. 3 compares the average classification accuracies

of the baseline algorithms (CSP, and CCSP) with the results of the proposed DTW-

RCSP-CV, DTW-RCSP-Off and Best-DTW-RCSP. Best-DTW-RCSP represents the
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(a) (b)

(c) (d)

Figure 3. Comparison of the average classification results between the baseline

algorithms (CSP, and CCSP), the proposed DTW-RCSP-CV, and DTW-RCSP-Off

algorithms, and the DTW-RCSP results if the best regularization parameter yielding

the highest test classification accuracy was selected (i.e. best DTW-RCSP). The

classification results were calculated for different number of trials available for training

from the new target subject.

classification accuracy if the best regularization parameter yielding the highest test

accuracy could have been selected from {0, 0.1, . . . , 1}. As shown in Fig. 3, for both

datasets the proposed DTW-RCSP-Off algorithm outperformed the CSP and CCSP

algorithms using most number of training trials. Interestingly, DTW-RCSP-Off was

more successful than DTW-RCSP-CV in selecting regularization parameters yielding a

higher average test classification accuracy.

Statistical paired t-tests revealed that for the large dataset using DTW-RCSP-Off

was significantly better than CSP when 10 trials were available for training from the

target subject (P = 0.04) and tended to be significantly better when 5 trials were

available (P = 0.09). Besides, DTW-RCSP-Off was significantly better than CCSP

when 5 trials were available with P value equal to 0.015. Moreover, DTW-RCSP-

CV was significantly better than CCSP when 10 and 20 trials were available with P

values equal to 0.04 and 0.017 respectively. These statistical results suggested that our

proposed transfer learning algorithms performed significantly better than the baseline
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Dynamic Time Warping-based Transfer Learning for Improving CSP in BCI 11

Figure 4. Comparing average classification results of the proposed DTW-RCSP-

On(v), where v is the number of the validation trials used to select the regularization

parameter and can be 2,4,6,8,or 10, with those of DTW-RCSP with (r=1) and CSP

when 1,2, and 5 trials per class were available for training from the new target subject.

algorithms if a large number of previously recorded data from other subjects were

available. Nevertheless, comparing the Best-DTW-RCSP results with those obtained by

DTW-RCSP-CV and DTW-RCSP-Off revealed that if better regularization parameters

could have been selected, the proposed DTW-RCSP algorithm could yield much higher

significant improvements.

Although the proposed DTW-RCSP-Off algorithm improved the average

classification accuracy, the Best-DTW-RCSP results showed that there was still room

for improvement. Moreover, DTW-RCSP-Off with 10-fold cross validation for selecting

the regularization parameter could not be viable if the number of the available training

trials from the target subject is less than 5 trials per class. Therefore, in such cases

our proposed DTW-RCSP-On could be used where the first few testing trials (referred

to as the validation set in this study) were employed to select the regularization

parameter. Apart from the benefits mentioned above, using the first few testing trials

for selecting the regularization parameter could possibly reduce the negative impact of

non-stationarity between the training and testing trials.

Fig. 4 shows the results of DTW-RCSP-On. The average classification accuracy

across all subjects from each dataset was reported when the subject-specific training

trials were as few as 1, 2, and 5 trials per class. The proposed DTW-RCSP-On, when

different number of testing trials were used to select the regularization parameter, was

compared to CSP and DTW-RCSP with (r=1) (i.e. only ΣDTW was used for obtaining

features). It is shown that using the proposed DTW-RCSP-On algorithm greatly

improved the average classification accuracy. Impressively, when only 1 subject-specific

trial per class was available for training, the proposed DTW-RCSP-On outperformed

CSP by an average 3.7%, 5.2%, 6.4%, 8.1%, and 8.7% for dataset 1, and 8.1%, 2.9%,

4.9%, 3.7%, and 4.2% for dataset 2 when using 2, 4, 6, 8, and 10 validation trials for

selecting the regularization parameter respectively. Moreover, in case of having only
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(a) (b)

(c) (d)

Figure 5. Classification accuracy comparison for each individual subject in both

datasets when 1, 2, and 5 trials were available for training from the new target subject.

(a) CSP versus DTW-RCSP-On(2) for medium dataset. (b) CSP versus DTW-RCSP-

On(2) for large dataset. (c) CSP versus DTW-RCSP-On(6) for medium dataset. (d)

CSP versus DTW-RCSP-On(6) for large dataset. ”v” in DTW-RCSP-On(v) refers to

the number of validation trials used for selecting the regularization parameter.

either 1 or 2 subject-specific trials per class, the classification results of DTW-RCSP

with (r=1) outperformed CSP (i.e. only data from other subjects after DTW alignments

were used to obtain features).

Fig. 5 provides more insight into the results of the proposed DTW-RCSP-On

algorithm compared to CSP. As shown in Fig. 5, although for a few cases the use

of DTW-RCSP-On led to small deterioration in the accuracy, for the majority of the

subjects a considerable improvements had been achieved. Indeed, in many cases the

improvement was as large as 20% to 35%.

Concerning statistical significance, A 6 (Number of trials= 1, 2, 5, 10, 20, and

40 trials per class)× 6 (Algorithms= CSP, DTW-RCSP-On (2,4,6,8,10)) repeated

measure ANOVA test was performed on the results of both datasets followed by post-

hoc analyses. For the large dataset, statistical results revealed that using different

algorithms had a main effect on the classification accuracy (P = 0.003). Based

on the post-hoc analysis, DTW-RCSP-On with different number of validation trials

significantly outperformed CSP with P values equal to 0.001, 0.017, 0.046, 0.035, and

0.027 respectively for 2, 4, 6, 8, and 10 validation trials used to select the regularization

parameter. Interestingly, using the proposed DTW-RCSP-On(2) was significantly better
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(a) (b)

Figure 6. Comparison between DTW-RCSP-On(v) versus CSP trained with the

available training trials(t) plus the used number the validation trials (v) when 1, 2,

and 5 trials were available for training from the target subject.

than using any other number of testing trials (i.e. P values of 0.038, 0.05, 0.025, and

0.036 for 4, 6, 8, and 10 validation trials). Similarly, for the medium dataset, the

statistical results revealed that using different algorithms had a main effect on the

classification accuracy (P = 0.012). Based on the post-hoc analysis, DTW-RCSP-

On with 2, 4, 6, 8, and 10 validation trials to select the regularization parameter

significantly outperformed CSP with P values equal to 0.043, 0.043, 0.028, 0.022, and

0.023 respectively. However, using DTW-RCSP-On with 6, 8, or 10 testing trials to

select the regularization parameter were not significantly different.

Another comparison was held to make sure that adding the validation trials used

by DTW-RCSP-On for selecting the regularization parameter to the training trials of

CSP would not achieve the same improvement as DTW-RCSP-On. Fig. 6 compares

the average classification results of the proposed DTW-RCSP-On algorithm with the

results of the CSP algorithm where the CSP was trained using the training trials plus

the validation trials (i.e. CSP(t+v)). Due to limitation of the space, we limited this

comparison to using 2 and 6 validation trials, and 1, 2, and 5 training trials. Fig. 6

shows that in all cases DTW-RCSP-On outperformed the corresponding CSP(t+v).

A 2 (Algorithms= CSP(t+v), and DTW-RCSP-On) × 2 (Number of validation

trials= 2, and 6)× 3 (Number of training trials per class= 1, 2, and 5)) repeated

measure ANOVA tests were performed on the results of both datasets followed by post-

hoc analyses. For the large dataset, there was a main effect of using different number of

training trials with P = 0.024. Moreover, the ANOVA results showed that our proposed

DTW-RCSP-On tended to be significantly better than CSP(t+v) with P = 0.059.

Posthoc analyses revealed that using 5 training trials per class were significantly better

than using 1, and 2 trials with P values equal to 0.025 and 0.043 respectively. For

the medium dataset using different algorithms, different training trials and different

validation trials had main effects on the results with P values 0.042, 0.034, and 0.013
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respectively. Thus, we can conclude that in the medium dataset our proposed DTW-

RCSP-On was significantly better than CSP(t+v) with p = 0.042. Posthoc analyeses

showed that using 5 training trials per class were significantly better than 1, and 2

trials with P values equal to 0.016 and 0.023 respectively, and using 6 validation trials

were significantly better than 2 withP = 0.034. In summary, our results showed that

the proposed DTW-RCSP based transfer learning framework led to improved CSP

features and hence improved BCI systems, particularly when a small subject-specific

training data were available. The proposed framework will significantly improve future

applications of BCI, such as BCI-based stroke rehabilitation, where the 20-30 minutes

calibration time can be saved for real therapeutic interaction.

5. Conclusion

This paper proposed a novel DTW-based transfer learning framework on raw EEG and

feature domains to improve the CSP covariance matrix estimations and hence enhance

MI-based BCI systems. The proposed framework minimises the temporal variations

between the EEG trials of other subjects and the few EEG trials of the target subject

using DTW. Then the temporally aligned trials of other subjects are mixed with the

few subject-specific trials in the CSP framework using a regularization parameter.

Our results suggested that applying the proposed framework reduced calibration

time of the MI-BCI systems. Moreover, our proposed framework significantly

outperformed the subject-specific CSP and CCSP algorithms in many different scenarios

specially when data were available for transfer learning from a large number of subjects.

The proposed framework uses only one regularization parameter which is not

computationally expensive compared to most of transfer learning-based regularized CSP

algorithms that use 2 regularization parameters. Besides, the proposed online method

required very slightly more computational time compared to CSP when the same number

of trials are used. Thus, with these two benefits and with using only two validation trials

the proposed DTW-RCSP-On could be potentially used for online applications.

Interestingly, our DTW-based transfer learning framework offered notable

classification accuracy increase for majority of the participants specially when only

few trials were available for training from the target subject. However, the observed

improvement for some subjects with initially very low BCI performance was not

pronounced. The possible reason might be having inseparable EEG signals between

two classes. In future, further investigation is needed to identify these participants

before transfer learning and possibly providing some human-training strategy.

In this paper the regularization parameters were selected using SVM scores.

Importantly, The proposed transfer learning framework (DTW-RCSP) is not limited

to the SVM classifier, and it can be applied on any classifiers. It is good to note that

in the future other measurements could be used to select the regularization parameters

and their performance could be compared to what we proposed.
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Graz data set A.”

[34] M. Arvaneh, C. Guan, K. K. Ang, T. E. Ward, K. S. Chua, C. W. K. Kuah, G. J. E. Joseph, K. S.

Phua, and C. Wang, “Facilitating motor imagery-based brain–computer interface for stroke

patients using passive movement,” Neural Computing and Applications, vol. 28, no. 11, pp.

3259–3272, 2017.

[35] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller, “Optimizing spatial filters

for robust EEG single-trial analysis,” IEEE Signal Processing Magazine, vol. 25, no. 1, pp.

41–56, 2008.

Page 16 of 16AUTHOR SUBMITTED MANUSCRIPT - JNE-103161.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t


