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Abstract 14	

Since the enforcement of the EU Landfill Directive, EU waste directives were successively 15	

enforced in EU member states to facilitate the establishment of sustainable MSW management. 16	

Various changes have been made in England to reduce the global impact of its MSW 17	

management, but the effectiveness of these changes on mitigating the global warming potential 18	

(GWP) from MSW management has never been investigated in detail. This study assessed the 19	

historical GWP of MSW management in Nottingham throughout the period from April 2001 20	

to March 2017 through life cycle assessment (LCA). The LCA results indicate continuous 21	

reductions in greenhouse gas (GHG) emissions from MSW management during the study 22	

period due to improvements in waste collection, treatment and material recycling, as well as 23	

waste prevention. These improvements resulted in a net reduction of GHG emission from 24	

1076.0 kg CO2–eq./t of MSW (or 498.2 kg CO2–eq./Ca) in 2001/02 to 211.3 kg CO2–eq./t of 25	

MSW (or 76.3 kg CO2–eq./Ca) in 2016/17. A further reduction to –142.3 kg CO2–eq./t of MSW 26	

(or –40.2 kg CO2–eq./Ca ) could be achieved by separating food waste from incinerated waste, 27	

treating organic waste via anaerobic digestion and by pretreating incinerated waste in a material 28	

recovery facility.  29	

Keywords: EU waste directives; municipal solid waste; evolution; life cycle assessment; global 30	

warming potential; Nottingham. 31	

 32	

 33	

 34	

 35	

 36	
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1. Introduction 37	

Climate change is one of the most serious of current international concerns, to which 38	

municipal solid waste (MSW) management is a significant contributor, through greenhouse 39	

gases (GHG) emissions (Turner et al., 2016, Kaza et al., 2018), such as methane resulting from 40	

the decomposition of biodegradable municipal waste (BMW) (El-Fadel et al., 1997). MSW and 41	

landfills are the third largest anthropogenic source of global CH4 emission (Das et al., 2019). 42	

In 2016, the greenhouse gas (GHG) emissions from the waste management sector were 1.6 43	

billion tons of CO2-eq., accounting for 5% of global emissions (Kaza et al., 2018). To mitigate 44	

the global warming potential (GWP) of MSW management, the EU Landfill Directive (EU 45	

Directive 99/31/EC) was introduced in 1999 to reduce the quantity of BMW sent to landfill, 46	

and setting a target of lowering the amount of landfilled BMW to 35% of that in 1995 by 2016 47	

(EC, 1999). Subsequently, regulations have been successively introduced to divert waste from 48	

landfill to more environmental friendly treatment options such as recycling, composting and 49	

energy recovery, with corresponding management targets (Table S1). EU member states were 50	

legally obligated to establish and enforce regional policy instruments to meet these targets. 51	

Furthermore, the EU Waste Framework Directive (EU Directive 2008/98/EC) established the 52	

“waste management hierarchy” to guide the practice of sustainable waste management. These 53	

EU Directives have gradually promoted the establishment of sustainable MSW management, 54	

which has the ability to harness resource from waste in the form of materials and energy (Liang 55	

and Zhang, 2012, Cobo et al., 2018). To achieve the targets set in EU Directives, a variety of 56	

strategies, technologies and techniques aiming at material recycling and energy recovery from 57	

waste, as well as waste prevention, have been introduced in the last two decades in England, 58	

but their realistic effects on the improvement of the performance of MSW management has not 59	

to date been investigated.  60	
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A number of studies have been conducted to assess the evolution of MSW management, 61	

and the pros and contras of the corresponding policies and strategies. Uyarra and Gee (2013) 62	

investigated the transformation of waste management in Greater Manchester from a simple 63	

landfill model to a complex, multi-technology waste solution based on intensive recycling and 64	

composting, and sustainable energy usage. Pomberger et al. (2017) assessed the performance 65	

of MSW management concerning the rate of landfilling, incineration, recycling and 66	

composting, from 1995 to 2014 in Europe. Castillo-Giménez et al. (2019) assessed the 67	

performance and convergence in the treatment of MSW by the EU-27 during the period 1995-68	

2016, by country and year. However, these studies focused on the final destinations of waste, 69	

paying less attention to the environmental impacts of changing MSW management practices 70	

from a life cycle perspective. This latter is of interest, since it has the potential to show for 71	

example that landfill could be a desirable waste treatment option when landfill gas to energy is 72	

considered (Khandelwal et al., 2019). Besides, waste prevention, which ranks at the top of the 73	

waste management hierarchy, has seldom been considered as an indicator in evaluating the 74	

performance of MSW management.  75	

Life cycle assessment (LCA) has been extensively applied to evaluate environmental 76	

burdens associated with MSW management (Fernández-Nava et al., 2014, Yay, 2015, 77	

Milutinović et al., 2017, Coelho and Lange, 2018). But in addition to quantifying the 78	

environmental impacts and burdens associated with waste management options, LCA can also 79	

be used to explore opportunities for improvements (Cherubini et al., 2009). It also helps to 80	

expand the perspective beyond the waste management system. This makes it possible to take 81	

the significant environmental benefits that can be obtained through alternative waste 82	

management options into account; for example, energy-from-waste (EfW) reduces the 83	

consumption of energy from fossil fuels; recycled materials replace part of virgin materials; 84	

and the compost from biological treatment substitutes the production of chemical fertilizers 85	
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(Franchetti and Kilaru, 2012, Jeswani et al., 2013, Turner et al., 2016). On the other hand, LCA 86	

results can be affected by multiple factors such as the definition of system boundary, the 87	

assumptions in life cycle inventory (LCI), and the methodologies or software adopted for 88	

calculation (Yadav and Samadder, 2018,	Zhou et al., 2018a,	Khandelwal et al., 2019). There 89	

are a number of impact assessment methods (e.g. CML, EDIP, IPCC 2013) and more than 50 90	

LCA software (e.g. SimaPro, Gabi, WASTED) available to aid the performing of LCA (Yadav 91	

and Samadder, 2018). Winkler and Bilitewski (2007) pointed out that the LCA results 92	

calculated by different models showed high variation and not negligible, even led to 93	

contradictory conclusions in some cases. Therefore, sensitivity analysis is often included in the 94	

assessment to inform the robustness of the LCA results and the potential for improvement 95	

(Khandelwal et al., 2019). 96	

Most LCA studies have focused on the environmental impacts associated with the present 97	

and possible future MSW management at specific sites, with less attention paid to the evolution 98	

of an MSW management system in a historical context. Habib et al. (2013) assessed the GWP 99	

of MSW management in Aalborg, Denmark from 1970 to 2010, with the focus on the effect of 100	

EfW. Zhou et al. (2018b) evaluated the environmental performance evolution of MSW 101	

management in Hangzhou, China, focusing on the treatment technologies and source-separated 102	

collection. Evaluation of the environmental impacts over time reveals and documents the trend 103	

in environmental impacts of a given waste management system for the study site, or whether 104	

there has actually been progress towards a more environmentally friendly waste management 105	

strategy (Poulsen  and Hansen, 2009). 106	

On the basis of the research gaps identified above, this study attempts to evaluate how the 107	

implementation of new waste management options and regulations over time has affected the 108	

GWP of MSW management at a selected city by quantifying the GHG emissions from MSW 109	

management scenarios at different stages of development using LCA. Nottingham in Eastern 110	
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England was chosen as it has changed its MSW management strategy several times since the 111	

implementation of the EU Landfill Directive, beginning with combined landfilling and 112	

incineration with energy recovery and ending at present with a combination of source 113	

separation, recycling, composting and incineration with energy recovery, and ambitious MSW 114	

management targets have been set. The balance for GHG has been evaluated for three specific 115	

years: 2001/02, 2006/07 and 2016/17, and a future scenario which would potentially reach the 116	

2025 recycling target and 2030 landfill target set by Nottingham City Council (Section 2.1). 117	

The results provide an insight into how the waste management policies and regulations drive 118	

the improvement of waste management, and hence support local policy and decision making 119	

by identifying the areas where the enforcement of policies, regulations, strategies and 120	

technologies can be strengthened in the future development of MSW management, as reference 121	

to other similar cities. 122	

2. Methodology   123	

2.1. Study city 124	

Nottingham is one of the Core Cities in England, located in the central UK (52° 57' N and 125	

1° 09' W) (Fig. 1). It covers an area of 7,5378 hectares and had an estimated population of 126	

329,200 in 2017 (Nottingham Insight, 2018). Since the start of the new millennium, new waste 127	

management strategies, measurements and technologies were adopted in Nottingham to divert 128	

waste from landfill, as well as to prevent unnecessary waste generation. As a result, the 129	

quantities of waste generated and landfilled were significantly reduced (Fig. S1). A kerbside 130	

collection service (KCS) was introduced in Nottingham in 2002, separating at source recyclable 131	

materials including paper, cardboard, cans, mixed plastics, mixed glass, as well as garden waste. 132	

Advance booking is required for bulky waste collection. One Civic Amenity (CA) site (also 133	

known as a Household Waste Recycling Center) and dozens of bring sites (also known as Mini 134	

Recycling Centers) are also located across the city for the further collection of recyclables. 135	
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Orange recycling bags are provided to homes that cannot use bins, such as communal dwellings 136	

and flats. 137	

Nottingham is the pioneer regarding EfW and waste minimization in England. With a 138	

capacity of 170,000 tons/year, the Eastcroft EfW was built in the early 1970s, and upgraded in 139	

1998 to cogenerate combined heat and power (CHP) from waste. Recovered power and heat 140	

are supplied to National Grid and for heating city center buildings via a district heating scheme, 141	

respectively. Refuse-derived fuel (RDF) is also produced from a material recovery facility 142	

(MRF) for improved energy recovery. Nottingham City Council has also introduced ambitious 143	

MSW management targets for 2025: 1) to reduce household waste generation to 390 kg per 144	

person, 2) to recycle 55% of household waste; and for 2030: 1) to reduce the residual household 145	

waste generation to less than 200 kg per person, 2) to achieve “zero waste to landfill” (NCC, 146	

2010). Waste prevention measures have been introduced to reduce waste generation. Per capita 147	

MSW generation had been reduced from 463 kg in 2001/02 to 361 kg in 2016 (Fig. S1), which 148	

was much lower than the average value in England (412 kg) and the EU (487 kg) in that year 149	

(Eurostat, 2017, DEFRA, 2018). The reduction target for 2025 seems has been achieved in 150	

advance.  151	

2.2. Goal and scope  152	

The goal of this study was to quantify and compare the GWP of three historical MSW 153	

management strategies at three development stages in Nottingham, and a future scenario in 154	

response to the EU directives. MSW is defined as the solid waste arising from household 155	

sources, for consistency with targets set in waste regulations and available data. The functional 156	

unit is defined as the treatment of one ton of MSW, to ensure that the presented scenarios are 157	

comparable to each other. To assess the influence and importance of waste prevention on 158	
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establishing sustainable MSW management, GHG emissions from managing MSW generated 159	

by each person were also quantified.   160	

2.3.  System boundary 161	

The spatial boundary of the MSW management system is the administrative boundary of 162	

Nottingham City Council. The overall system addressed in the present study is illustrated in 163	

Fig. 2. It contains all waste management processes including the collection, transport, treatment 164	

and disposal of waste. All possible future emissions were accounted for the year when the 165	

MSW was managed. This is necessary to ensure that the calculations for all MSW management 166	

scenarios comparable. The major sources of emissions were determined as follows: 167	

• Fuel and power used in MSW management processes, but excluding emissions from 168	

upstream activities such as mining and transport. Due to the evolution of energy mix, the 169	

emission factors of electricity production were estimated to be 0.45kg CO2 eq./kWh in 2002, 170	

0.47 CO2 eq./kWh in 2007 and 0.35 CO2 eq./kWh in 2017.  171	

• Waste collection.  172	

• Transport to/between treatment facilities. 173	

• Direct emissions from waste; for example, CO2 from waste incineration.  174	

• Avoided GHG emissions due to materials recycling and energy recovery.  175	

• Environmental burdens from the operation of the CA and bring sites were excluded due to 176	

data deficiency. 177	

2.4. Scenarios 178	

In total, four MSW management scenarios including three historical scenarios and a future 179	

scenario have been developed and assessed in this study (Fig. 3). The statistical year in the UK 180	

is the period from April to the following March; for example, April 2016 – March 2017, so that 181	

the years to our MSW management scenarios are expressed to cross two years, i.e. 2001/02. 182	
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The selection of scenarios was based on the enforcement time of EU waste directives and data 183	

availability. The scenarios are discussed in detail in the following sub-sections. 184	

2.4.1. Description of Scenario S1: 2001/02 185	

This scenario relates to MSW management as at 2001/02, when the EU Landfill Directive 186	

began to be enforced in Nottingham, and is the earliest year for which complete data is available. 187	

In this scenario, weekly house-to-house collection without separation was provided by the local 188	

authority (Parfitt et al., 2001). A transfer station was used to store and transfer waste to landfill. 189	

MSW was disposed in landfills (54.7%) and incinerated at the Easrcroft EfW facility (40.7%) 190	

(NCC, 2005). Under these circumstances, the compositions of incinerated and landfilled MSW 191	

were assumed to be the same (Table 1 and 2).	3.4% and 1.2% of MSW were recycled and 192	

composted (NCC, 2005). Materials were recycled at the CA site and bring sites. Recycled 193	

materials were assumed to be paper, glass and metal (estimated at 50%, 25% and 25% of 194	

recycled materials, respectively) (Data.Gov, 2018). Garden waste was composted via open 195	

windrow composting. Pretreatment before incineration/landfill and methane collection systems 196	

at the landfill were unavailable. Bottom ash from incineration (BAI) was landfilled.  197	

2.4.2. Description of Scenario S2: 2006/07 198	

S2 corresponds to the year 2006/07, before the enforcement of the EU Waste Framework 199	

Directive. It is the earliest year of documented waste flows. In this scenario, new waste 200	

management initiatives, such as the KCS, bespoke bulky waste collection and MRF, had been 201	

introduced but were not fully implemented (Fig. 2). A transfer station was still used, but now 202	

to store and transfer waste to MRF. Landfilling rate was reduced to 32.7% because of the 203	

improved recycling (17.5%) and composting (8.6%) rates. 41.2% of waste sent for EfW. Metal 204	

from BAI was recycled. The compositions of MSW and incinerated waste are illustrated in 205	

Table 1 and 2.  206	
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2.4.3. Description of Scenario S3: 2016/17 207	

S3 corresponds to the year of 2016/17 and represents the most recent full year for which 208	

data was available for our analysis (Fig. 2). KCS was further strengthened to serve all 209	

households in Nottingham, which led to increased recycling and composting rates of 31.5 % 210	

and 12.9%, respectively. Production of RDF was also introduced. BAI was recycled for 211	

aggregates. Landfill became the least favorable waste disposal method with 7.3% of MSW 212	

landfilled. 57.6% of MSW was incinerated for energy recovery.  213	

2.4.4. Description of Scenario S4: Future scenario 214	

Based on our experience in analysing historical MSW management scenarios, an 215	

alternative future scenario is proposed, to further improve the material and energy recovery 216	

capability of the MSW management system in Nottingham. This scenario was constructed 217	

based on the same quantity and quality of waste in 2016/17. Food waste is separately collected. 218	

Anaerobic digestion (AD) replaces open windrow composting for treating food and garden 219	

waste. Biogas from AD is utilized for power and heat generation. Regularly collected residual 220	

waste is pre-treated in the residual MRF for material recycling before incineration.  221	

2.5. Life cycle inventories 222	

2.5.1. Collection, transfer and transport 223	

Detailed estimations of the travel distance and LCI for MSW collection and transport are 224	

presented in Appendix Section S1. Electricity and diesel consumption due to the transfer station 225	

was assumed to be 4 kWh/t and 0.84 kg/t, respectively (Turner et al., 2016).   226	

2.5.2.  Landfill 227	

1.8 kg/t diesel and 8 kWh/t electricity were assumed to be consumed for operating landfill 228	

(Turner et al., 2016). The amount of methane emitted from landfill can be estimated based on 229	
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equations reported by Fong et al. (2015) (Presented in SI Section S2).  This method calculates 230	

the total mass of methane potentially generated based on the mass and composition of landfilled 231	

waste as listed in Table 1.  232	

2.5.3. Incineration with energy recovery 233	

The flue gas emitted from the incinerator fed by MSW after treatment mainly contains CO2, 234	

but also some trace gases including CO, SO2, NOx and N2O, etc. Given that CO2 capture is not 235	

in place in most waste incineration plants worldwide, the quantity of CO2 emitted from the 236	

incinerator could be calculated based on the mass and composition of the incinerated waste 237	

(Table 2) using equations provided by the IPCC (2006) (Presented in SI Section S2). Air 238	

pollution control equipment, such as selective noncatalytic reduction (SNCR) for the reduction 239	

of nitrogen oxides, was installed by Eastcroft EfW to control the emission of air pollutants 240	

(FCC Environment, 2015). After treatment, the concentrations of methane and NOx emitted 241	

from the incinerator was under the emission limit values set by the EU (EC, 2000, WRG, 2008, 242	

FCC Environment, 2015). Thus, the GWP of methane and NOx emitted from MSW combustion 243	

were ignored. 244	

Eastcroft EfW could harness 89% of the LHV of MSW to produce steam (FCC 245	

Environment, 2015). This steam is sent to an energy generation facility for electricity and hot 246	

water production with conversion efficiencies of 17.2% and 31.7%, respectively (FCC 247	

Environment, 2015). 62 kWh/t of recovered electricity and 3.76 kg/t fuel oil were consumed in 248	

operating the incineration plant (WRG, 2008). The LHV of incinerated waste was estimated 249	

through physical composition based empirical model (Eq. 1), developed by the authors using 250	

151 datasets collected from 47 cities in 12 countries.  251	

𝐿𝐻𝑉	(𝑘𝐽 𝑘𝑔) = 	−72.42𝑃𝑟 + 83.20𝑃𝑎 + 67.90𝑃𝑙 + 7669.08                                    (1) 252	
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Where Pr is the percentage of putrescible including food waste and garden waste, Pa is the 253	

percentage of paper; and Pl is the percentage of plastics. The value of percentage is within the 254	

range between 0 and 100. 255	

Recovered heat from waste was assumed to substitute the equivalent heat generated from 256	

gas boilers, as these dominate home heating in England, due to insufficient district heating 257	

networks (Euroheat & Power, 2017, DECC, 2013). The majority of boilers available on the 258	

British market have efficiencies in the range of 88 % and 89.7 % (Knight, 2018). Hence, 89 % 259	

was uded in this study. The LHV of natural gas is 47.82 MJ/kg with a GHG emission factor of 260	

2.72 kg CO2-eq./kg (DEFRA, 2016). Based on these assumptions, the quantity of natural gas 261	

and associated GHG emission saved by EfW were quantified.  262	

2.5.4. Recycling 263	

Avoided emissions by material recycling were modeled based on the England Carbon 264	

Metric Report (DEFRA, 2012). 265	

2.5.5. Composting 266	

GHG emissions from composting were calculated after excluded the 36% non-compostable 267	

fraction (NCC, 2013). Details of LCI for composting are presented in Table 3. The produced 268	

compost was used to substitute inorganic N, P and K fertilizers. Hill et al. (2011) reported that 269	

GHG emission from production 1 kg of inorganic N, P and K fertilizer were 6.8 kg CO2-eq., 270	

1.2 kg CO2-eq. and 0.5 kg CO2-eq. respectively. 271	

2.5.6. Material recovery facility 272	

There are two types of MRF. One is designed to process comingled collected recyclables 273	

for the recovery of paper, glass, plastics and cans. Diesel and electricity consumption in this 274	

MRF are 2 kg/t and 35 kWh/t, respectively (Turner et al., 2016). The other is Residual MRF, 275	
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which is designed to recover materials from bulky waste, street waste and residual waste from 276	

a CA site. Diesel and electricity consumption in a Residual MRF are 44 kWh/t and 2 kg/t, 277	

respectively (Pressley et al., 2015, Turner et al., 2016).  278	

2.5.7. Production and incineration of RDF with energy recovery  279	

Burnley et al. (2011) recommended that electricity consumption in a facility with a yield 280	

of RDF in the range of 14 – 22% was 40 kWh/t. The RDF yields in both types of MRF in 281	

Nottingham were around 20%. RDF was assumed to be incinerated in a power plant to generate 282	

electricity only. The efficiency of a dedicated RDF incineration plant was assumed to be higher 283	

than the EfW plant; at 25% on an LHV basis (Burnley et al., 2011). The LHV of standard UK 284	

MSW derived RDF is 25 MJ/kg with a fossil carbon content of 32% by weight (Materazzi et 285	

al., 2015, IPCC, 2006). Emissions from RDF combustion could thus be calculated based on the 286	

equations provided by IPCC (2006) (Presented in SI Section S2)  .  287	

2.5.8. AD 288	

Biogas production with a yield of 20% by weight of which 63% is methane in an AD 289	

process, was assumed (Zaccariello et al., 2015, Turner et al., 2016). The LHV of biogas is 30 290	

MJ/kg (DEFRA, 2016). Biogas is used for electricity and heat production on site using the CHP 291	

engine. Energy recovery efficiencies of 31% and 49% for electricity and heat were assumed 292	

(Turner et al., 2016). A detailed LCI for the AD process is presented in Table 4. 293	

2.6. Impact assessment 294	

The life cycle impact assessment was characterized by GWP at a 100 year period (GWP100) 295	

based on the results of the inventories using the IPCC 2013 GWP 100a method (IPCC, 2013). 296	

This method provides a comprehensive methodology to calculate GWP100, associated with 297	

amount of GHG emission and its equivalency factor. The total GWP of the MSW management 298	
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is the sum of GWPs of all GHGs. The GHGs of interest in MSW management include carbon 299	

dioxide (CO2), methane (CH4) and nitrous oxide (N2O). These GHGs account over 90% of total 300	

GHG emissions from MSW management (Bogner et al., 2007). According to IPCC guidelines 301	

on GHG inventories, only CO2 from fossil origins is regarded to have a GWP (IPCC, 2006). 302	

2.7. Interpretation 303	

Interpretation relates to the presentation of results and associated sensitivity analysis. LCA 304	

results were presented in two ways: the GWP100 of managing 1 ton of MSW (expressed as 305	

GWP100 per ton of MSW), and the GWP100 of managing MSW generated by each citizen 306	

(expressed as GWP100 per capita). Sensitivity analysis is a crucial step in assessing the 307	

reliability and robustness of LCA results, by understand how they are affected by changes in 308	

certain parameters, such as waste composition and the adopted calculation models. In this study, 309	

two sensitivity analyses were carried out. Sensitivity analysis 1 was carried out by varying the 310	

DOC in landfilled waste, the content of N, P, K in composted organic waste (Table S9), and 311	

the LHV and fossil carbon of RDF. Sensitivity analysis 2 was carried out by using another 312	

LHV predictive model to estimate the LHV of incinerated MSW. 313	

3. Results and discussions 314	

3.1.Historical GWP100 of MSW management 315	

3.1.1. GWP100 per ton of MSW  316	

The LCA results are presented in Fig. 4 – 5 and Table 5. Fig. 4a clearly illustrates that the 317	

GWP100 of MSW management has significantly decreased from 1076.0 kg CO2-eq./t of MSW 318	

in 2001/02 to 211.3 kg CO2-eq./t of MSW in 2016/17. This is mainly due to the diversion of 319	

waste from landfill to more sustainable management options such as recycling, composting and 320	

incineration. S1 has the highest GWP100 amongst all historical scenarios, because over half of 321	
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MSW was landfilled without any methane recovery, which made landfill the major emitter of 322	

GHG, accounting for 82.5% of the total GWP100 in S1. 323	

In S2, the GWP100 reduced to 487.9 kg CO2-eq./t of MSW, less than 50% of that of S1. A 324	

further reduction to half of that in S2 was achieved in S3 (Fig. 4a). This was because more 325	

materials such as paper, plastics, glass and metal were recycled, more garden waste was 326	

composted and RDF was produced. The fully implemented KCS improved the separate 327	

delivery rate, so as to enhance the quantity and quality of recycled materials. Recycled 328	

materials compensate the equivalent GWP100 from the consumption of virgin materials and 329	

fossil fuels.  330	

Materials recycling was the only waste management practice that consistently resulted in 331	

GWP100 savings in all historical scenarios. A significant reducing trend of GWP100 achieved by 332	

materials recycling was observed from 2001/02 to 2006/07. This is mainly because the 333	

introduction of KCS and MRF greatly improved the material recycling rate. However, GWP100 334	

contributed by materials recycling increased by 5.8 kg CO2-eq./t of MSW in 2016/17 as 335	

compared to that in 2006/07. The reason is that producing products from secondary materials 336	

(recycled or recovered materials from waste) does not always cause less global warming impact 337	

than from virgin resources (Björklund and Finnveden, 2005). DEFRA (2012) reported that it 338	

produced more GHG to recycle food and beverage cartons than to produce it from virgin 339	

materials in the UK. Alternative treatment options should be considered to treat these materials, 340	

which could cause greater GWP to recycle it, or to improve the efficiency of recycling and 341	

reprocessing. As Fig. 5 depicted, GWP100 saved by recycling varies among materials. 342	

Recycling metals followed by recycling paper, saved the most GHG emission in all historical 343	

scenarios. The quantity of recycled paper was far more than for other recycled materials in both 344	

2006/07 and 2016/17, but the GWP100 saved by recycling paper was less than metal recycling 345	

because chemical and fossil fuel consumption in paper recycling was greater (Habib et al., 346	
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2013), and the substituted CO2 emission from steel manufacturing from virgin material was 347	

relatively higher (Rankin, 2012, Burchart-Korol, 2013, Laurijssen, 2013). 348	

Composting of garden waste was a contributor of GWP100 in all historical MSW 349	

management scenarios, because open windrow composting was applied, through which GHGs 350	

were directly emitted to the ambient atmosphere and no energy was recovered. The detailed 351	

LCA result for the composting process indicates that the production of organic fertilizer 352	

avoided the utilization of inorganic fertilizers (N, P, K) and cut the overall GWP100, but the 353	

GHG emission from decomposition and facility operation was more than the saved amount. 354	

The gross GWP100 of composting was 122.5 kg CO2-eq./t of garden waste, while the saved 355	

GWP100 by inorganic fertilizer avoidance was only 20.4 kg CO2-eq./t of garden waste. 356	

GWP100 generated by EfW were 195.0 kg CO2-eq./t, 272.9 kg CO2-eq./t and 172.8 kg CO2-357	

eq./t of MSW in S1, S2 and S3, which accounted for 18.1%, 55.9% and 81.8% of GWP100 in 358	

these scenarios, respectively. The energy recovery efficiency in Nottingham was 15.3% for 359	

electricity and 28.2% for heat, which appeared to be lower than other cases reported in the 360	

literature. Reimann (2012) reported that average energy recovery efficiency in European EfW 361	

plants was 26.1% in the case of electricity production only, 77.2% in case of heat production 362	

only and 52.1% in case of CHP. Habib et al. (2013) reported that the gross energy recovery 363	

efficiency of EfW reached 28% for electricity and 85% for heat in Aalborg, Denmark, which 364	

made MSW management in that city a GHG saver. Therefore, upgrading the EfW facility to 365	

improve the energy recovery efficiency is recommended as a possible solution to improve the 366	

future environmental performance of the waste management system in Nottingham. 367	

The quantity and share of GWP100 contributed by collection and transport were lower 368	

compared to other processes, but an obvious increasing trend has been observed during the 369	

period of study. As MSW management options were shifted to upper layers of the waste 370	
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management hierarchy, the GWP100 generated by transport increased significantly from 4.7 kg 371	

CO2-eq./t of MSW in 2001/02 to 44.2 kg CO2-eq./t of MSW in 2016/17; whereas the GWP100 372	

from collection stayed relatively stable with a gentle declining trend during the same period 373	

(Table 5). The reduction in GWP100 from collection is due to the amount of waste collected at 374	

bring sites and street cleaning was reduced due to the introduction of KCS. Generally, a 375	

relatively longer distance was traveled to collect recyclables from distributed bring sites and to 376	

clean streets than to collect waste through KCS. The GWP100 of transporting recycled materials 377	

to reprocessing facilities increased significantly (Table 5), due to two factors: more materials 378	

were recycled, and reprocessing facilities were usually located some distance from Nottingham. 379	

For example, recycled glass and paper was transported 173 km and to overseas for reprocessing, 380	

respectively. GWP100 of transporting recycled materials to reprocessing facilities in S3 was 381	

nearly 44 times and 9 times more than those in S1 and S2, respectively. The increased GWP100 382	

by transport led to the increase of overall GWP100 from materials recycling. Similar result was 383	

observed by Turner et al. (2016) and they suggested that promoting domestic reprocessing of 384	

secondary materials was a possible solution to reduce the GWP100 from transport and 385	

eventually enhance the overall environmental benefits from materials recycling.  386	

3.1.2. GWP100 per capita  387	

Similarly, GWP100 per capita significantly reduced from 498.2 kg CO2-eq. in 2001/02 to 388	

76.3 kg CO2-eq. in 2016/17, a nearly sevenfold reduction (Fig. 4b). This is due to the 389	

improvements in MSW management discussed in section 3.1.1, as well as efforts in waste 390	

prevention. MSW generation per capita decreased from 463 kg to 361 kg during the same 391	

period (Fig. S1). GWP100 added by collection and transport increased significantly from 0.4 kg 392	

CO2-eq./Ca in 2001/02 to 17.0 kg CO2-eq./Ca in 2016/17 (Table 5), the reason for which has 393	

also been detailed in section 3.1.1.   394	
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3.2.GWP100 in the future scenario (S4) 395	

MSW management in S4 becomes a net saver of GHG emissions, due to improvements in 396	

material recycling and waste treatment. Both GWP100 per ton of MSW and GWP100 per capita 397	

reduce to just –142.3 kg CO2-eq. (Fig. 4a) and –40.2 kg CO2-eq (Fig. 4b), respectively. AD 398	

reduces GWP100, because of energy recovery from biogas. 81.3 kg CO2-eq./t of MSW will be 399	

saved when garden waste and food waste are treated by AD. Incineration will be another saver 400	

to reduce GWP100 by 0.2 kg CO2-eq./t of MSW and 0.1 kg CO2-eq./Ca. GWP100 saved by 401	

materials recycling will be further improved to 257.5 kg CO2-eq./t of MSW because more 402	

materials are recycled from residual waste. However, EfW and combustion of RDF will 403	

consistently be GHG emitters, if no more advanced technology is applied to improve the EfW’s 404	

energy recovery efficiency. GWP100 from transport in S4 will increase, since more materials 405	

are transported for recycling (Table 5).  406	

In addition to improving the recycling/composting rate and upgrading the biological 407	

treatment technology to reduce GWP from MSW management, attention should also be paid 408	

to the quality of secondary products from recycled materials and compost. Accumulation of 409	

hazardous substances in recycled materials reduces the quality of products made up of 410	

secondary materials and increases the release potential of hazardous substances (Kral et al., 411	

2013). An apparent example is found in the steel industry where copper contaminates the steel 412	

cycle (Kral et al., 2013). The accumulation of copper hardens steel and decreases steel quality 413	

(Haupt et al., 2017). Recycling material from mixed residual waste could improve the recycling 414	

rate, but also introduce contaminates to recycled materials, and this will reduce the quality of 415	

secondary products made from them. Production of RDF might be an alternative option. The 416	

suitability of compost from bio-treatment as fertilizer is influenced by the quality of feedstock 417	

(proteins, minerals, and presence of undesirable materials) which depends mainly on the source 418	
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separation (Kumar and Samadder, 2017). Thus, enhancing source separation and public 419	

participation will be crucial to improve the quality of secondary products. 420	

3.3. Sensitivity analysis 421	

As presented in Table 6 and Fig.6, sensitivity analysis results indicate that the variations in 422	

waste composition and the LHV prediction model affect the estimated GWP100 values, but not 423	

the downwards trend.  424	

The DOC (Table 1), N, P and K (Table S9) contents in organic waste varied within a range 425	

due to the diversified compositions within this category (Boldrin et al., 2009). Furthermore, the 426	

LHV and fossil carbon of RDF in the UK vary in the ranges 13 – 25 MJ/kg and 21.7 – 32.0 %, 427	

respectively, depending on its composition (Burnley et al., 2011, Materazzi et al., 2015). All 428	

these variations in waste composition affect the total GWP100 of MSW management. Table 6 429	

illustrates the minimum and maximum GHG emission from managing 1 ton of MSW when the 430	

variations in waste composition are taken into consideration. 431	

To assess the sensitivity of LCA results affected by the LHV predicting model, the model 432	

developed by Khan and Abu-Ghararah (1991) (Eq. 2), using global data collected and the same 433	

explanatory variables as Eq. 1, was used to predict LHV of incinerated waste in S1, S3 and S4 434	

(the LHV of incinerated waste in S2 was measured using a bomb calorimeter). As Fig. 6 435	

illustrated, both the LHVs and associated GWP100 of incinerated waste in all three scenarios 436	

change significantly when using Eq. 2. However, this model was developed 30 years ago, and 437	

so may not be suitable for estimating the LHV of modern waste, because the characteristics of 438	

MSW have changed dramatically during this period. Therefore, the updated model (Eq. 1) is 439	

recommended to estimate the LHV of MSW. Nevertheless, the GWP100 of MSW management 440	

in Nottingham is estimated to have reduced during the study period, irrespective of the model 441	

adopted. 442	
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𝐿𝐻𝑉	(𝑘𝐽 𝑘𝑔) = 53.5	 𝐹 + 3.6	𝑃𝑎 + 372.16	𝑃𝑙                                                 (2) 443	

4. Conclusions 444	

To assess the effectiveness of waste regulations and the evolution of MSW management 445	

under the guidance of these regulations, in this study, LCA was carried out to estimate and 446	

compare the GWP100 of three historical MSW management scenarios in Nottingham, since the 447	

enforcement of the EU Landfill Directive. A further future scenario designed to meet the local 448	

2025 recycling target and 2030 landfill target was also evaluated and compared with the 449	

historical scenarios. The results indicate that both GWP100 per ton of MSW and GWP100 per 450	

capita in Nottingham have reduced significantly during the last 16 years. Waste regulations 451	

effectively incentivised the shifting of MSW management from a landfill centered mode to a 452	

more environmentally friendly management approach. The results also indicate the importance 453	

of waste prevention in mitigating the GWP of MSW management. In future works, other 454	

environmental impacts in addition to GWP and sustainability at social and economic 455	

dimensions of MSW management can be assessed to comprehensively assess the effectiveness 456	

of waste regulations. 457	

MSW management system in Nottingham is still a net emitter of GHGs, partly because of 458	

the low energy recovery efficiency in EfW facility and increased emissions due to the transport 459	

of materials for recycling. Thus, improving the energy recovery efficiency in EfW by 460	

upgrading its technology and promoting domestic reprocessing of secondary materials are 461	

recommended to mitigate GHG emission from MSW management. The LCA results of the 462	

future-looking scenario indicate that separating food waste at source and treating it via AD, 463	

pretreating residual waste before incineration and replacing open windrow composting by AD 464	

could turn the MSW management system into a net saver of GWP100. To achieve the future-465	
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looking scenario, public participation also need to be enhanced to ensure the source separation. 466	

Besides, attention should be paid to the quality of recycled and recovered materials. 467	
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Table 1. Composition of MSW and the landfilled waste (%) 640	

Composition 

category 

MSW Landfilled waste Degradable 

organic 

carbon (DOC) 

content in wet 

waste
 c
 

2001/02
 

a
 

2006/07 2016/17 2001/02 
2006/07

 

b
 

2016/17
 

b
 

Paper & 

card 
32.0 22.7 14.4 32.0 21.1 19.3 

36 – 45 (40) 

Putrescible
 d
 21.0 33.7 36.2 21.0 37.6 2.3 8 – 20 (15) 

Plastics 11.0 10.0 8.6 11.0 3.0 2.4 0 

Glass 9.0 6.6 5.5 9.0 1.5 10.6 0 

Metals 8.0 4.3 3.7 8.0 3.8 1.5 0 

Wood - 3.7 2.7 - 11.5 29.6 39 – 46 (43) 

Textiles 2.0 2.8 5.8 2.0 4.5 1.1 20 – 40 (24) 

Other 17.0 16.2 23.1 17.0 17.0 33.2 0 – 54 (0) 

Total 100 100 100 100 100 100 - 
a: (Burnley, 2001); b: Waste composition was estimated based on material flow analysis (Fig. S2-S4). c: sourced 641	

from IPCC (2006). d: Putrescible includes garden waste and food waste. Values in brackets () are the default 642	

values set by IPCC (2006). 643	

 644	

Table 2. Composition of waste incinerated at Eastcroft EfW.  645	

  
2001

 

a
 

2006
 b
 2016

 c 
 

Futuristic 

scenario 
d
 

Dry matter 

content of 

wet weight 
e
 

Total 

carbon 

content in 

dry weight
 

e
 

Fossil 

carbon 

fraction of 

total carbon
 

e
 

Paper and card 32.0 20.8 10.2 2.9 90 46 1 

Putrescible 21.0 25.8 34.9 12.0 40 38 - 

Textiles 2.0 3.3 9.0 5.1 80 50 20 

Fines (< 10mm) 7.0 3.4 0.4 1.4 90 3 100 

Miscellaneous 

combustibles 
8.0 10.9 19.2 51.7 40 70 10 

Miscellaneous 

non-

combustibles 

2.0 3.2 4.7 0.5 100 - - 

Ferrous metal 6.0 3.3 2.6 2.4 100 - - 

Non-ferrous 

metal 
2.0 1.3 0.9 2.9 100 - - 

Glass 9.0 9.4 3.2 3.8 100 - - 

Dense plastics 6.0 8.0 7.2 2.8 100 75 100 

Plastics film 5.0 8.1 4.0 2.7 100 75 100 

Others 0 2.7 3.7 12.4 - - - 

Lower heating 

value (LHV) 

(MJ/kg) 

9.6 
f
 8.8

 
 6.8

 f
 7.4

 f
 - - - 
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a: Burnley (2001). b: WRL (2008). c: NCC (2013). d: Waste composition was calculated based on material flow 646	

analysis (Fig. S2-S4). e: IPCC (2006). f: LHV was calculated using the regression model built by authors based 647	

on waste composition, which would be explained in section 2.4.5.  648	

 649	

Table 3. LCI for composting. 650	

 Unit  Value Reference 

Pre-treatment input   

Diesel kg/t 0.1 (Turner et al., 2016) 

Electricity kWh/t 1.1 (Turner et al., 2016) 

Composting input  

Diesel kg/t 3.07 (Fisher, 2006) 

Electricity kWh/t 0.51 (Fisher, 2006) 

Process emission  

CH4   kg/t 4 (IPCC, 2006)  

N2O kg/t 0.24 (IPCC, 2006)  

Avoided fertilizer product  

N fertilizer kg/t 3.4  (Boldrin et al., 2009)  

P fertilizer kg/t 2.8  (Boldrin et al., 2009)  

K fertilizer kg/t 9.7  (Boldrin et al., 2009)  

Table 4. Life cycle inventory data for the AD process. 651	

 Unit Value Reference 

Pre-treatment input  

Diesel kg/t 0.1 (Turner et al., 2016) 

Electricity kWh/t 1.1 (Turner et al., 2016) 

Process input  

Diesel kg/t 1.3 (Fisher, 2006) 

Electricity kWh/t 20.6 (Fisher, 2006) 

Process parameters  

Biogas yield rate % by weight 20 (Zaccariello et al., 2015) 

LHV MJ/kg 30 (DEFRA, 2016) 

CH4 content of biogas % biogas 63 (Turner et al., 2016) 

Emission from incomplete combustion  

CH4 mg /MJ biogas 434 (Nielsen et al., 2010) 

N2O mg /MJ biogas 1.6 (Nielsen et al., 2010) 

Process emission  

CH4 kg/t 0.0213 (Fisher, 2006) 

N2O kg/t 0.0115 (Fisher, 2006) 

Avoided fertilizer product 

N fertilizer kg/t 3.4  (Boldrin et al., 2009) 

P fertilizer kg/t 2.8  (Boldrin et al., 2009) 

K fertilizer kg/t 9.7  (Boldrin et al., 2009) 

 652	



																																																																																																																																																					Word count: 8371	

28	

Table 5. GWP100 added by collection and transport (unit: kg CO2-eq.)  653	

  S1 S2 S3 S4 

Per tonne of MSW 

Collection 3.4 3.1 2.8 2.8 

Transport to reprocessor 1.1 4.7 42.2 44.9 

Transport between facilities 3.5 2.5 2.0 2.8 

Total 8.1 10.2 47.1 50.5 

Per capita 

Collection 0.2 1.4 1.0 1.0 

Transport to reprocessor 0.1 2.2 15.3 16.2 

Transport between facilities 0.2 1.1 0.7 1.0 

Total 0.4 4.8 17.0 18.2 

 654	

Table 6. Effect of waste composition variation on GWP100 (unit: kg CO2-eq./t MSW) 655	

 S1 S2 S3 S4 

 Min. Max. Min. Max. Min. Max. Min. Max. 

Landfill 595.1 2868.5 235.1 831.8 80.2 312.1 0.3 0.3 

Composting/AD 1.3 1.5 8.8 9.3 13.2 13.5 -81.4 -73.2 

RDF 0.0 0.0 0.0 0.0 8.6 37.6 34.8 144.0 

Total 787.6 3061.1 371.8 969.0 151.8 413.0 -250.9 -133.5 

 656	

Fig.1. The location of Nottingham in Nottinghamshire and the UK, and Lower Layer Super 657	

Output Areas (LSOA) within Nottingham. 658	

Fig. 2. The overall scheme of MSW management system analyzed in the present study.  659	

Fig. 3. Schematic illustration of MSW management in all scenarios assessed in the current 660	

study. Newly introduced processes and changed waste flows are identified by different colors. 661	

BAI represents bottom ash from the incineration plant. 662	

Fig. 4. The GWP100 of MSW management scenarios in Nottingham. (a): GWP100 per ton of 663	

MSW. (b): GWP100 per capita. 664	

Fig. 5. The fraction of GWP100 saved by recycling different materials. 665	

Fig. 6. Comparison between estimated LHVs (a) and GWP100 (b) of incinerated waste when 666	

different models were used to estimate its LHV.    667	
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 668	

Fig.1. 669	
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 670	

Fig. 2.  671	

 672	

Fig. 3.  673	
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 674	

 675	

Fig. 4.  676	
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 677	

Fig. 5.  678	

 679	
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 680	

 681	

Fig. 6.  682	
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