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Abstract

A good framework for the quantification and decomposition of uncertainties in dynamic

building performance simulation should: (i) simulate the principle deterministic processes

influencing heat flows and the stochastic perturbations to them, (ii) quantify and decompose

the total uncertainty into its respective sources, and the interactions between them, and (iii)

achieve this in a computationally efficient manner. In this paper we introduce a new frame-

work which, for the first time, does just that. We present the detailed development of this

framework for emulating the mean and the variance in the response of a stochastic build-

ing performance simulator (EnergyPlus co-simulated with a multi agent stochastic simulator

called No-MASS), for heating and cooling load predictions. We demonstrate and evaluate the

effectiveness of these emulators, applied to a monozone office building. With a range of 25-

50 kWh/m2, the epistemic uncertainty due to envelope parameters dominates over aleatory

uncertainty relating to occupants’ interactions, which ranges from 6-8 kWh/m2, for heating

loads. The converse is observed for cooling loads, which vary by just 3 kWh/m2 for envelope

parameters, compared with 8-22 kWh/m2 for their aleatory counterparts. This is due to the

larger stimuli provoking occupants’ interactions. Sensitivity indices corroborate this result,

with wall insulation thickness (0.97) and occupants’ behaviours (0.83) having the highest

impacts on heating and cooling load predictions respectively. This new emulator framework

(including training and subsequent deployment) achieves a factor of c.30 reduction in the

total computational budget, whilst overwhelmingly maintaining predictions within a 95%

confidence interval, and successfully decomposing prediction uncertainties.

Keywords: Gaussian Process Emulator, building performance, stochasticity, uncertainty

quantification and decomposition.
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1. Introduction

Building performance simulation tools have evolved considerably in recent decades, with

significant efforts having been invested to improve the scope and validity of their underlying

algorithms and the usability of interfaces to these algorithms, to the extent that they have

now entered into the mainstream. Indeed they are now commonly required to demonstrate

compliance with national regulations, as required for example by the European Energy Per-

formance of Buildings Directive [1]. Yet predictions from standard Building Performance

Simulation tools - whether in relation to existing or proposed buildings - continue to deviate

significantly from those that are observed. This is commonly referred to as the performance

gap. This deviation is problematic for two main reasons. Firstly, it undermines confidence in

the accuracy of energy use estimates, as required for example by energy performance certifica-

tions schemes. Secondly, it may negatively impact on the design decisions made, potentially

leading to suboptimal design decisions, or design features that lack robustness.

The causes of the energy performance gap are many and complex [2, 3], including: (1)

errors or omissions in the simulation of non-trivial phenomena [4] such as coupled heat and

moisture flow and its dependence on changing thermo-physical properties or of occupants’

stochastic interactions [5], (2) use of standardised external boundary conditions and building

systems’ control settings for thermostat and operation hours [6], (3) practical issues, such

as the inability to fully predict a building’s future functions during design, or to account for

plausible future variations in function during the design process, (4) failure to meet specified

insulation and airtightness standards due to poor workmanship, (5) unavailability of data

regarding e.g. internal gain and plug loads that are representative of the building’s post-

occupancy operation [7].

Efforts to improve the robustness of BPS tools, for instance by developing ’reference

simulations’ as part of model calibration processes [8, 9], and through feedback from post-

occupancy evaluation exercises [10], are ongoing. But a particularly promising avenue of

current exploration is through the characterisation and propagation of aleatory (e.g. due to

occupants’ stochastic interactions) and epistemic (e.g. due to poorly or un- observed input

parameters) uncertainties, so that these can be quantified and decomposed.

It is self evident that buildings’ energy demands for heating and cooling are dependent

upon the heat transfers across the building envelope: on conductive heat transfers across

opaque and transparent surfaces; on radiative transfers through the transparent surfaces;

on advective transfers through accidental (imperfections) or deliberate (windows) openings

in the envelope. These latter pathways may also be influenced by occupants’ interactions

with windows and shading devices. Haldi and Robinson [11] have shown that these aleatory

(behavioural) uncertainties in energy use can be equivalent, even greater, in magnitude to

their epistemic (envelope) counterparts. They also argue [12] that as the performance of the

envelope improves, thus better conserving energy, so the consequences of occupants’ actions

to regulate the envelope will be exaggerated; that it will be more and more important to accu-

2



rately model occupants’ behaviours and the uncertainties arising from them, simultaneously

with their epistemic counterparts. This paper introduces a new computationally efficient

framework to do just that, accounting for uncertainties in the simulation of deterministic

processes influencing heat flows in buildings, and for stochastic perturbations to them.

In this we also wish to accelerate the computation of uncertainties by substituting the

expensive BP simulators, of both deterministic and stochastic processes, by inexpensive em-

ulators / metamodels, trained on datasets from the simulators. The emulator that we have

developed for this purpose is generic in nature; it can be trained using monitored real-world

data to support future predictions for the case study in hand. Indeed, this would be a very

useful future application (e.g. to support model predictive control applications).

1.1. Uncertainty quantification in the building simulation context

The relationship between building design / retrofit input parameters, X = (X1, . . . , Xp),

(e.g. wall thickness, window transmittance) and the corresponding BPS outputs (e.g. an-

nual heating and cooling demand), Y , can be expressed via Y = f(X), where f is typically

a deterministic function with values defined by running the simulator for a given choice of

inputs X. When the inputs are uncertain, only their probability density function, p(X), may

be available to us. Since the functional form of f is generally unknown, propagating uncer-

tainty from BPS inputs through to the corresponding predictions/outputs is only feasible via

Monte Carlo (MC) sampling as applied in [13] [14] for uncertainty and sensitivity analysis

and demonstrated using an uncertainty analysis workbench [15]. More specifically, samples

from p(X) are mapped onto the corresponding outputs and then used to construct an empir-

ical distribution that approximates the distribution of model predictions p(Y ). Even when

optimal MC sampling techniques such as Latin Hypercube Sampling (LHS) [16] and quasi-

random sequences [17] are used, accurate approximations of p(Y ) via sampling often requires

thousands of samples (of the order of 103 to 105 simulation runs) depending upon model com-

plexity and the number of input parameters under consideration. Furthermore, if we wish

to decompose prediction uncertainty (i.e. to know which amongst k inputs are dominant)

via a variance decomposition technique, the total computation cost is N(2k+2) simulations

where N is the number of samples [18, 19]. For the simulation of complex phenomena, as is

the case in building simulation, each individual run entails a non-trivial computational cost.

Moreover, the number of uncertain inputs can be relatively large (e.g. 102). Comprehensive

uncertainty quantification studies thus tend to be highly computationally intensive, resource

and time consuming; at the limits, simply intractable.

To address the computational challenge of propagating uncertainties in building per-

formance simulation, numerous statistical metamodeling techniques have been proposed in

recent years for sensitivity analysis of building [20] and climatic [21] parameters, and to

support more accurate prediction of building energy performance [22] [23]. The aim of meta-

modeling is to use outputs from simulations at carefully designed inputs to train a statistical
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List of symbols used

X = (X1, . . . , Xp) vector of input random variables

Y model output random variable

f functional form

N number of input samples

ω uncontrollable variable representing aleatory uncertainty

F function random variable

Xn realisation vector of input variables at nth sample

Yn output response value for the nth sample of inputs

ǫ a gaussian noise

m(X) mean function

k(X,X′) covariance function

l characteristic length scale

σ2
Y signal variance

Q predictivity coefficient or coefficient of determination

s2n sample variance

Jn number of realisations of S-BPS

GP Gaussian process

fd(X) mean response

fs(X, ω) stochastic response

SI(Y ) individual effect sensitivity index value

STi
(Y ) total effect sensitivity index value of controllable variable

STω
(Y ) total effect sensitivity index value of uncontrollable variable

t thickness of material (m)

λ thermal conductivity of material (W/(mK)

C specific heat capacity of material (J/(kgK)

ρ density of material (kg/m3)

U thermal heat transfer coefficient (W/(m2K))

Yh annual heating demand (kWh/m2a)

Yc annual cooling demand (kWh/m2a)
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model that provides an accurate approximation of the simulator response at a lower compu-

tation cost than that of the simulator. Once a metamodel has been constructed, the BPS

tool can be substituted by the emulator and employed to conduct Monte Carlo uncertainty

propagation and variance-based sensitivity analysis in providing early stage building design

guidance [24] [25] and to estimate the performance of passively designed buildings [26]. We

note that metamodeling is also highly relevant for computationally intensive tasks relevant

to BPS such as Bayesian calibration [27, 28, 29] and optimisation [30, 31]. However, existing

approaches are restricted to the emulation and uncertainty quantification of deterministic

phenomena, as is the standard case in building simulation, neglecting sources of aleatory un-

certainty, for example that arise from stochastic phenomena such as occupants’ presence and

their interactions with the building envelope, and associated heat and mass transfers. Failing

to incorporate these stochastic phenomena, we argue, undermines the utility of uncertainty

quantification exercises, and efforts to reduce the performance gap.

However, coupling a framework for simulating occupants’ stochastic behaviours with BPS

tools can considerably increase the computational complexity in the simulation of buildings’

energy performance; particularly if repeated simulations are required to adequately quantify

these stochastic influences. For a fixed input X, repeated runs of such a stochastic simulator

will produce different outputs - yielding an ensemble of prediction values instead of a single

fixed value, as with a conventional deterministic BPS simulator. These prediction ensembles

now represent a probability distribution of the simulator output, associated with each input

X. A standard approach to describe the stochastic response (for each fixed input X) is via

Y = f(X, ω) (1)

where ω is a variable that we introduced to denote the intrinsic aleatory uncertainty in

the simulator. This new variable can be thought as an uncontrollable parameter (or seed

variable) encoded within the stochastic simulator. The distribution of this uncontrollable

variable is often unknown and, consequently, standard metamodeling frameworks, based on

sampling the (known) input space can no longer be applied in a straightforward fashion to

emulate/infer the functional form of f .

The function f defines here a system of coupled differential algebraic equations concerning

interactions between thermodynamic phenomena (such as heat conduction, convection and

radiation) occurring inside the buildings [32]. A numerical solver or computer code such as

the thermal building simulation program EnergyPlus employs numerical approximations to

the functional form f to solve this system of equations [33]. However, as Wetter and Polak [34]

point out, the numerical approximations to f result in discontinuity, nonlinearity and multi-

modality in the design parameters. As mentioned earlier, in order to reduce the computation

cost of UQ studies, a metamodeling approach is highly advantageous. The chosen approach

should then reliably approximate the underlying functional form as a precondition. Moreover,

the approach should also consider stochastic perturbations due to occupants’ behaviours
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while approximating the functional response. Therefore, there is a clear need for a new

metamodeling approach that: 1) estimates the functional form from training datasets whilst

specifying the uncertainty in estimating it, and 2) accounts for stochastic perturbations, such

as those arising from occupants’ behaviours, impacting on the function response.

In this work we propose a new metamodeling approach to simulate the stochastic response

of a BPS that simulates occupants’ behaviour. In this, we follow the generic stochastic Kriging

metamodeling approach of Ankenman et al. [35] which uses repetitions of the stochastic

simulator, at a given design point X, to characterise/approximate the input-depdendent

mean response and variance of the stochastic building performance simulator, via Gaussian

process regression (GPR). The proposed approach aims to provide GPR emulators to the

following quantities

fd(X) = Eω(Y |X), V (X) = Eω(Y |X− fd(X))2, (2)

where Eω denotes the expectation with respect to ω. By means of off-the-shelff GPR al-

gorithms [36], we fit a GP to the variance V (X) given the sample variance from repeated

simulator runs computed at design/training points. We subsequently use predictions from

the corresponding metamodel of V (X) to fit a non-heteroscedastic GP to fd.

We apply the proposed metamodeling approach to simulate the stochastic response from a

hypothetical office building model. In this we show, for our particular choice of BPS settings

in conjunction with a straightforward model of a monozone office building, that our GPR

of V (X) and fd(X) is both computationally efficient and provides an accurate emulation

of the simulator response, in the sense that the stochastic predictions of the simulator fall

within confidence intervals provided by the proposed framework. In this, we will also show

that the pair of predicted GP emulator response surfaces plausibly capture the underlying

behaviour of the detailed BPS program whilst representing the uncertainty bounds due to

the emulators themselves; emulators that successfully propagate both the input parameter

uncertainty and the stochastic uncertainty due to occupants’ interactions, by reproducing the

prediction probability distribution at test points, thereby quantifying the total uncertainty

in energy predictions. Finally, we combine the proposed metamodeling approach for V (X)

and fd(X) with a variance-based decomposition of total uncertainty in predictions into its

respective sources, computed in terms of sensitivity indices.

1.2. Paper Structure

In section 2 we introduce our approach to stochastic building performance simulation,

through the co-simulation of deterministic and stochastic phenomena. In section 3, we discuss

alternative candidate approaches that have been or could be applied to the emulation of

building performance simulators, with a view to identifying the most promising candidate

and how this can be extended for our purposes. In section 4, we present in detail our

implementation of the emulation strategy introduced in section 1, going on to present our
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related uncertainty quantification strategy in section 5. The combined methodology is then

evaluated, using a case study which we describe in section 6, through a series of numerical

experiments; the results of which we discuss in section 7. The paper closes with a brief

summary and a discussion of how this new framework is being further developed and applied,

for the more comprehensive quantification of uncertainties in building and urban performance

simulation.

2. Stochastic Building Performance Simulation (S-BPS)

Significant progress has been made in recent years in the modelling of occupants’ be-

haviours, employing a range of techniques. A large number of data-driven stochastic models

have been developed to model occupants’ presence (or activities and dependent presence in

the case of residences) and dependent interactions with the building envelope and its sys-

tems. The underlying phenomena are typically represented as a Bernoulli process [predicting

the probability that a particular state will be observed, such as a window being open], as a

discrete-time random or Markov process [predicting the probability with which a state tran-

sition will take place], as a continuous-time random or survival time process [predicting the

duration for which a particular state will survive], or hybrids of them [37]. Other techniques

are needed to model phenomena for which data is not abundant. These include belief-desire-

intention (BDI) and agent-learning frameworks, both applied to agent-based representations

of occupants [38]. In the former case, agents evaluate their beliefs about the state of the en-

vironment in which they are immersed, comparing these with their desired states and effect

plans intended to achieve their desires. In the latter case, agents progressively learn, through

repeated simulations, behavioural interactions that maximise rewards. BDI rules are suited

to relatively simple interactions, whereas agent learning is able to accommodate considerably

more complex behaviours, though this can come with a penalty in terms of the number of

computations needed to learn reward-optimal behaviours. Finally, and as noted by Robinson

et al. [37], it is also desirable to represent social interactions amongst occupants’ sharing

spaces, emulating their negotiation processes and the outcomes (agreed interactions) arising

from them. Chapman et al. [38] describe a vote casting and processing mechanism to achieve

this in the case of data-driven models. Similar mechanisms are encodable in the case of BDI

rules.

Several computational platforms have been developed to couple stochastic models of oc-

cupants’ behaviours within BPS tools, including those of Langevin et al. [39], Hong et al.

[40] and Chapman et al. [5]. Langevin et al’s platform integrates rules (akin to BDI rules)

that allow agents to modify their clothing and the use of windows, fans and heaters (and

corresponding setpoints) to achieve their comfort desires. This is integrated with the Energy-

Plus solver using the Building Controls Virtual Test Bed (BCVTB). Hong et al’s platform is

in principle more general in character, employing an XML schema to structure the modelling

approaches to be employed for a particular application, populated with the parameters to be
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employed by this structure, which is then solved using obFMU. The Functional Mockup In-

terface (FMI) co-simulation standard is employed to couple obFMU with EnergyPlus, with

EnergyPlus acting as the master algorithm. As far as the authors are aware, only Chap-

man et al’s platform (No-MASS) incorporates all of the above mechanisms; in common with

obFMU, utilising FMI to co-simulate with EnergyPlus.

As noted in the introduction, the intention of this paper is to demonstrate a proof-of-

concept - that we can effectively emulate a building performance simulator incorporating

aleatory uncertainties arising from occupants’ stochastic interactions, and to employ this

simulator to quantify and decompose uncertainties. For this purpose we use EnergyPlus

co-simulated with No-MASS. For this proof-of-concept study, we restrict our scope to un-

certainties relating to the physical properties of the envelope of a simple monozone office

and the stochastic behaviours of its occupants, limited to their presence and associated use

of windows and shading devices. For presence, we employ the time-inhomogeneous Markov

chain model of Page et al. [41]; for the use of windows we employ the hybrid discrete- and

continuous- time model of Haldi and Robinson [42]; while for shading devices we employ a

similar hybridisation, due to Haldi and Robinson [43].

For further information regarding behavioural models and associated modelling tech-

niques, we refer the interested reader to the reviews of Dong et. al. [44], Wagner et. al.

[45], Gunay et. al. [46] and Robinson et. al. [37].

3. Gaussian process metamodeling for deterministic BPS

Numerous metamodeling techniques have been employed to overcome the computational

costs of running thousands of expensive BP simulations for building design space exploration

[47, 25], optimization, [30, 31], model calibration [29, 48] and uncertainty quantification (UQ)

[49, 26]. Techniques that have been used within (deterministic) BPS workflows include or-

dinary least squares regression (OLS) [50], multivariate adaptive regression splines (MARS)

[51], random forest (RF) [52], Gaussian process regression (GPR) [53], support vector regres-

sion (SVR) [54] and artificial neural networks (ANN) [50]. For a thorough practical evaluation

of these techniques, we refer the interested reader to : the works of Cheng and Cao [22] for

the application of MARS, Yidil et. al. [55] and Amasyali and El-Gohary [56] for reviews of

regression models, Østerg̊ard et. al. [57] and Wei et. al. [58] for comparative studies, and

Lim and Zhai [59] for an analysis of the impact of metamodels on bayesian calibration.

While the literature above reveals that there exists no single emulator-based approach

that is suitable for all purposes, numerous evaluations (see for example [59] and [57]), study-

ing the effects of training set size, the nature of the simulator functions to be emulated and

the number of inputs points to be represented, have shown that GPR is consistently able

to emulate the underlying simulator response more accurately than competing techniques.

Østerg̊ard et al. [57] compare the six mentioned metamodeling techniques applied to build-

ing performance simulations, judging these against performance indicators such as accuracy,
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efficiency, robustness, simplicity and transparency. They conclude that GPR metamodels

are the most accurate (with a coefficient of determination R2 > 0.99) in approximating the

nonlinear nature of BPS problems. Applications of GPR in the context of BPS include − (1)

studies to optimise the design of glazing systems for office buildings [60]; real time optimiza-

tion of cooling energy systems for efficient energy management in high-rise office buildings

[61]; building design optimization [62] [63], (2) calibration and diagnosis of building energy

simulation models for the formulation of energy conservation and model predictive control

strategies [64], and (3) sensitivity analysis of energy performance predictions to weather and

building envelope characteristics [21].

To the best of our knowledge, metamodeling approaches for BPS have only been applied

where the simulator response is deterministic (for a particular choice of inputs). In this paper

we address the case when BPS is coupled with a stochastic model for occupants’ behaviour.

As described in the introduction, standard metamodeling techniques (including GPR) cannot

be directly applied to emulate the response of a stochastic BPS. The main challenge arises

from the fact that the variance of the simulator (with respect to an uncontrollable variable),

V (X) is a function of input parameter X (see equation(2)) which is, in general, unknown.

From the statistical literature we identify two possible routes to address this challenge. With

the approach proposed in [65, 66] the unknown values of the variance V (X), at the training

points, can be treated as hidden variables within the GPR framework with non-heterosedastic

variance. Alternatively, when repetitions of the computer code are available for each input,

the stochastic Kriging (SK) method can be applied to emulate the variance (given the sample

variance from repetitions) [67, 35, 68]. Once V (X) has been approximated via an emulator,

GPR can be applied to emulate the mean response surface using information from the GP

emulator for the variance. There is good evidence to suggest that SK lends itself more

naturally to variance based sensitivity analysis which, in turn, requires an explicit emulation

of both the mean and variance [69]. An SK approach is proposed in Section 4 for the

emulation for the stochastic response of BPS, for which we demonstrate its efficiency for the

computation of sensitivity indices in Section 5. Since standard GPR is at the core of the

SK method, we introduce in the following section the basic elements of standard GPR (for

deterministic computer simuators) and refer the interested reader to [53] for further details.

3.1. Standard Gaussian Process (GP) Metamodeling for deterministic simulators

Let us assume that we have a deterministic computer simulator that depends on a vector

of input parameters denoted by X = (X1, . . . , Xp), that we assume belong to a space of

admissible inputs X ⊂ Rp. We further assume that the outputs of the simulator can be

described via the evaluation of a deterministic function F : X → R, which maps inputs

X ∈ X into the corresponding simulator response (output) F (X). For simplicity, in what

follows we consider the case of a univariate simulator response, but the results will be extended

to the multivariate case.
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As discussed earlier, when running the simulator (i.e. evaluating F (X) for a given input

X) is a computationally costly exercise, propagating inputs uncertainty through the simulator

can become unfeasible. The aim of metamodeling is to replace F with a function that

emulates the simulator response at much lower computational cost. GPR provides for this,

by inferring the underlying functional form of F , given observations of the evaluation of F

at a carefully selected number of design or training points {Xn}
N
n=1 in the input space X .

More specifically, we consider the training set defined by D = {(Xn, Yn)}
N
n=1 where Yn are

obsevations of F (Xn). Following standard assumptions we consider an observational model

of the form [53]

Yn = F (Xn) + ǫ, (3)

where ǫ ∈ Rd is Gaussian noise with zero mean and covariance σ2I.

Before observing the data D, the underlying Bayesian framework for GPR metamodeling

requires the specification of a prior distribution (over a space of functions) for the function F

that we wish to infer. In the standard framework, the prior on F is a Gaussian distribution

of functions with mean (function) m(X) and covariance k(X,X′) (we denote this by F ∼

GP(m(X), k(X,X′))). For the sake of clarity, we consider here the case m(X) = 0 for all

X ∈ X which corresponds to the case in which we have no prior knowledge of the simulator.

The covariance function k(X,X′), on other hand, characterizes the variability of the family

of functions defined by the GP prior. A covariance that enables a wide class of functions to

be characterised is the Mattern covariance, defined as [53] :

k(X,X′) = σ2
Y

21−ν

Γ(ν)

(

||X−X′||

l

)ν

Kν

(

||X−X′||

l

)

, (4)

where Γ is the gamma function, l is the characteristic length scale, σ2
Y is the signal variance,

Kν is the modified Bessel function of the second kind of order ν, and || · || is the Euclidean

norm (in Rp). The parameter ν controls the regularity/smoothness of the samples. For

the present work we consider ν to be fixed and so the Gaussian is fully characterised via

the specification of the prior hyperparameters l, σY that are contained in the single vector

θ = (l, σ2
Y ).

In order to make predictions of F at a test location X∗ (i.e. F (X∗)), we consider the pre-

dictive distribution, p(F (X∗)|X∗,D, θ), which from the standard GPR framework, is Gaus-

sian with mean F̂ (X∗) and variance K̂(X∗) defined by:

F̂ (X∗) = KT
θ (X

∗)(Kθ + σ2I)−1Y (5)

K̂(X∗) = kθ(X
∗,X∗)−KT

θ (X
∗)(Kθ + σ2I)−1Kθ(X

∗), (6)

where Kθ satisfies: [Kθ]i,j = kθ(Xi,Xj), Kθ(X
∗) = (kθ(X

∗,X1), . . . , kθ(X
∗,XN))

T , and Y =

(Y1, . . . , YN). We note that if θ and σ are known, expression (5) can be used to make
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predictions of the simulator F , at testing point X∗. A measure of the uncertainty in those

predictions is provided by the variance (6). In practice, however, the (hyper)parameters θ

and σ are unknown and hence these must be inferred from the training set D. The standard

practice for estimating these parameters is to maximise the posterior density p(θ, σ2|D),

which from Bayes’ rule, satisfies the condition:

p(θ, σ2|D) ∝ p(D|θ, σ2)p(θ, σ2) (7)

where p(θ, σ2) is the (hyper-)prior distribution on (θ, σ2) and p(D|θ, σ2) is the marginal

likelihood given by the following expression [53]:

p(D|θ, σ2) =
1

2
YT (Kθ + σ2I)−1Y +

1

2
log |Kθ + σ2I|+

N

2
log 2π (8)

The maximum a posteriori (MAP) estimate of the prior hyperparameters is:

(θ̂, σ̂2) = argmax
θ,σ2

p(θ, σ2|D) = argmin
θ,σ2

[

− log p(D|θ, σ2)− log p(θ, σ2)
]

(9)

Finally, predictions of F (X∗) together with a measure of their uncertainty can be used by

employing (θ̂, σ̂2) in expressions (5)-(6).

As stated earlier, expressions (5) -(6) are derived under the assumption of zero prior

mean m(X) = 0. It is worth mentioning, however, that it is often beneficial to incorporate a

non-zero mean function. A common choice is to consider m(X) a polynomial of some degree,

with coefficients that can be inferred by including them in the setting of (7). We refer the

reader to [53] for further details and the corresponding equations that generalise those in (5)

-(6) for the case of non-zero prior mean.

Finally, we emphasize that the Gaussian assumptions in the GPR framework relate to the

family of functions that approximate the functional form of the simulator (i.e. F ). The GPR

framework impose neither restrictions on the distribution of the input space X nor on the

distribution of the simulated outputs F (X ) . The GPR framework can be used to propagate

uncertainties for an arbitrary distribution of inputs which may, in turn, yield a distribution

of non-Gaussian outputs.

3.2. Selection of design points

Sampling strategies for the careful selection of design/training points are broadly clas-

sified into stratified sampling and quasi-random sequences. In contrast to pseudo-random

sampling [17], these more sophisticated sampling techniques are designed to achieve uni-

formity in the design points’ distribution in the input space, providing sufficient and well

dispersed data/observations from which to construct a highly representative metamodel re-

sponse surface.

Latin Hypercube Sampling (LHS) is a popular stratified sampling strategy, where each

input Xi is divided into say m sub-intervals, having equal marginal probability 1/m [16]. A
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sample is selected from each consecutive sub-interval to form a sequence of m points. These

sequences of m points from each input are randomly matched to form a k-dimensional set

of m sample points [70]. In contrast, quasi-random sequences follow space filling criteria of

discrepancy and geometric deviation to generate a uniformly dispersed sequence of sample

points [71].

In the context of this work and for future extentions of its scope, we adopt the standard

practice of using LHS for GPR, which has an estimated error convergence rate that is inde-

pendent of the dimensionality of the input space [72] and is almost as fast as quasi-random

sequences for large samples (N) [70] [73].

3.3. Validation measures

Numerous validation measures can be employed to determine the goodness of fit of an

emulator [31]. A common choice is a unit-less measure called the predictivity coefficient (or

coefficient of determination) Q defined by:

Q(Y, Ŷ ) = 1−

∑Nt

i=1(Yi − F̂ (X∗
i ))

2

∑Nt

i=1(Ȳ − Yi)2
(10)

where Y = {Yi}
Nt

i=1 denotes the observed simulator outputs over a set of Nt testing points

{X∗
i }

Nt

i=1, Ȳ denotes their empirical mean, and Ŷ = {F̂ (X∗
i )}

Nt

i=1 are the GP metamodel

predictions computed by (5).

Van Gelder et al [31] propose that a metamodel be constructed with as few training

samples as possible, through a new strategy that is independent of the type of metamodel,

by systematically adding samples in steps until the constructed metamodel meets defined

validation criteria. If the evaluation measures indicate a poor fit (low Q and high error) then

the number of sampling points, within a fixed computation budget, are increased and the

model fit is re-analysed; the process being repeated until the goodness of fit criteria (high Q

and low error) are satisfactory i.e. addition of more sampling points to the training datasets

does not lead to any significant increase or change (say by more than 5%) in the predictivity

coefficient. Since the desired accuracy is problem-dependent, the goodness of fit of the

metamodel is evaluated based on the converged value of our chosen indicator of accuracy i.e.

predictivity coefficient. We apply and demonstrate this new metamodel-type independent

strategy in Section 7.1, to obtain mean and stochastic variance GP response surfaces by

analysing their goodness of fit at test data points, and by observing the convergence in

predictivity coefficient values over sampling sets of increasing size.

In addition, since the GP framework produces a statistical distribution of predicted out-

puts, it is important to quantify the uncertainty in the GP emulator response at valida-

tion/testing data points. To this end, we make use of a credible interval technique, as

proposed in Bastos and O’Hagan [74]. At any given test point X∗, the GP framework that
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yields expressions (5) and (6) enables us to compute credible intervals defined by

Cα(X
∗) = [F̂ (X∗)− τ

√

K̂(X∗), F̂ (X∗) + τ

√

K̂(X∗)]) (11)

where τα is the (1−α
2
) quantile of the standard Normal distribution and F̂ (X∗) and K̂(X∗) are

the values that we obtain from expressions (5) and (6), respectively. According to Bastos and

O’Hagan [74], evaluating the statistical accuracy of the emulator response can be performed

by computing the percentage of observations (obtained from a set of testing points) that

fall within this interval. An accurate emulator response should yield credible intervals that

contain a proportion of approximately (1 − α
2
) of those observations. In Section 7.1, we

evaluate the uncertainty of the emulators trained in this study.

4. Proposed methodology for the emulation of S-BPS

In this section we propose a methodology to emulate the stochastic response of S-BPS

described by (Eq. 2). Again we reiterate that while X is a vector of stochastic input

parameters (e.g. wall thickness, window transmittance), these are assumed to have a well-

characterised probability density function. In contrast, ω is a variable associated with the

aleatoric nature of the S-BPS associated with occupants presence and their interactions with

the envelope (e.g. use of windows and shading devices). We assume that we only have access

to the distribution of ω via repetitions of the simulator at a training point. In this case, our

aim is to construct metamodels for the mean response fd(X) and the variance, V (X), of the

stochastic component of the simulator. More precisely, we consider the log-transformed 1

variance log V (X) to ensure positivity of the estimates produced by the metamodel.

Figure 1 depicts the exchange of simulation variables between EnergyPlus and No-MASS,

constituting our Stochastic Building Performance Simulator (S-BPS), while figure 2 illustrates

the deployment of the S-BPS within our Monte Carlo uncertainty propagation scheme for

the generation of training datasets with which to construct metamodels.

4.1. Gaussian process fitted to the log-variance log V (X).

We consider a set of training points {Xn}
N
n=1 ∈ X in the input space and denote by Yn =

f(Xn, ω)
2 the random variable that arises from evaluating the stochastic simulator at each

training pointXn. For eachXn we generate a set of Jn realisations of the stochastic simulator.

We denote these realisations by {Y (j)
n }Jnj=1, and we assume that these are independent and

identically distributed (iid) according to the law of Yn. We compute the sample mean, Y n,

and sample variance, s2n, of these realisations via the following expressions:

1Since variance is always positive, the log transformation of the sample variance avoids prediction of

negative variance values.
2For the purposes of simplicity in notation, in this section we also use Yn to denote the simulator response,

so that Yn is now a random variable since the function f is stochastic .
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Figure 1: Schematic of EnergyPlus and No-MASS co-simulation platform [75]: the Stochastic Building

Performance Simulator (S-BPS)

Y n =
1

Jn

Jn
∑

j=1

Y (j)
n and s2n =

1

(Jn − 1)

Jn
∑

j=1

(Y (j)
n − Y n)

2. (12)

Following the work of [68, 67], we use the log of the sample variance {log(s2n)}
N
n=1 computed at

the training points to construct a GP metamodel for the unknown log-variance log(V (X)).

In order to introduce an observational model of the form (3) suitable for GPR, we note

that under Gaussian assumptions on the distribution of the observations {Y (j)
n }Jnj=1, the log-

transform introduces a bias βn. More specifically, according to [68, 67], we know that:

log V (Xn) = E(log(s2n)) + βn (13)

where

βn = −Ψ

(

Jn − 1

2

)

+ log

(

Jn − 1

2

)

.

In the previous expression Ψ denotes the digamma function. Motivated by (13) we thus

consider the following observational model for the true log-variance at the training points:

log(s2n) + βn = log V (Xn) + ηn (14)
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Figure 2: Monte Carlo Uncertainty Propagation Scheme for S-BPS
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where ηn ∼ N (0, σ2). The training set for the metamodel log V (X) is thus defined by

Dv = {(Xn, log(s
2
n)+βn)}

N
n=1. We use the GPR described in subsection 3.1 to fit a stationary

Gaussian process log V (X), i.e. we assume a centred (i.e. zero mean) GP prior on log V (X):

log V (X) ∼ GP(0, kθv(X,X
′

)) (15)

with a covariance function defined by (4) and hyperparameters θv. From the GP framework

we obtain mean predictions for l̂og V (X∗) and variance K̂v(X
∗) defined via the following

expressions:

l̂og V (X∗) = KT
θv
(X∗)(Kθv + σ2I)−1ξ (16)

K̂v(X
∗) = kθv(X

∗,X∗)−KT
θv
(X∗)(Kθv + σ2I)−1Kθv(X

∗) (17)

where Kθv , Kθv(X
∗) are defined analogous to those in (5)-(6), and where ξ = (log(s21) +

β1, . . . , log(s
2
N)+βN). Hyperparameters θv and σ2 are estimated by maximising the posterior

density as described earlier. In this case the marginal likelihood is given by:

p(Dv|θv, σ
2) =

1

2
ξT (Kθv + σ2I)−1ξ +

1

2
log |Kθv + σ2I|+

N

2
log 2π (18)

4.2. Gaussian process fitted to the mean response fd(X).

Let us note that if the realisations {Y (j)
n }Jnj=1 are iid samples from a Gaussian, then from

the Central Limit Theorem [76] we know that Y n follows a Gaussian distribution with mean

fd(Xn) and variance V (Xn)/Jn; we write this as follows:

Y n ∼ N (fd(Xn), V (Xn)/Jn), n = 1, . . . N (19)

If the assumption of normality on {Y (j)
n }Jnj=1 is not satisfied, expression (19) provides a good

approximation for sufficiently large sample size Jn. Therefore, from (19) we consider the

following observational model for fd(X):

Y n = fd(Xn) + ǫn, n = 1, . . . , N (20)

where ǫn ∼ N (0, V (Xn)/Jn). We now follow the approach proposed in [35] where the true

(unknown variance) V (Xn) is replaced by the predictions of the metamodel constructed in

(16). More specifically, we assume that:

Y n = fd(Xn) + ǫn, ǫn ∼ N
(

0,
1

Jn
el̂og V (Xn)

)

. (21)

We note that (21) defines an observational model for fd(X) that can be used within a GPR

framework with heteroscedastic (i.e. non-constant and input-dependent) variance [68, 67] to

construct an emulator for fd(X). To this end, we define the training set DY = {(Xn, Y n)}
N
n=1.

We further assume a centred GP prior for fd. That is:

fd(X) ∼ GP(0, kθy(X,X′)) (22)
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Under the GPR framework, predictions at testing points are then given via the mean f̂d(X
∗)

and variance K̂y(X
∗) defined by:

f̂d(X
∗) = KT

θy
(X∗)(Kθy + Σ

V̂
)−1Y (23)

K̂y(X
∗) = kθy(X

∗,X∗)−KT
θy
(X∗)(Kθy + Σ

V̂
)−1Kθy(X

∗), (24)

where Kθy and Kθy(X
∗) are defined in a similar fashion to Kθv and Kθv(X

∗) above (i.e.

with kθv replaced by kθy) and where ΣV = diag( 1
J1
el̂og V (X1), . . . , 1

JN
el̂og V (XN )) and Y =

(Y (X1), . . . , Y (XN). Finally, we estimate the parameter θy from the pre-averaged marginal

likelihood given by [68]:

p(Dy|θy) =
1

2
Y

T
(Kθy + Σ

V̂
I)−1Y +

1

2
log |Kθy + Σ

V̂
|+

N

2
log 2π (25)

Similar to the discussion of the preceding subsection, predictions of fd(X
∗) can be computed

via (23)-(24) with θy replaced by θ̂y. The methodology is now summarised in Algorithm 1

Algorithm 1. Algorithm to construct metamodels for fd(X) and log V (X).

(1) Select/sample N training points from the input space {Xn}
N
n=1 ⊂ X

for n = 1, . . . , N do (e.g. via LHS)

(1.1) Compute realisation Jn of the stochastic simulator Y
(j)
n = F (Xn, ω

(j)), (j = 1, . . . , Jn)

(1.2) Compute the sample mean and variance Y n and s2n

end for

(2) Use the training set Dv = {(Xn, log(s
2
n) + βn)}

N
n=1 to fit a GP to log V (X) (given by

(16) with θv and σ2 computed for example via MAP estimation).

(3) Use the estimate from (2) and the training set DY = {(Xn, Y n)}
N
n=1 to fit a GP

with input-dependent variance to the mean response fd(X) (given by (23)-(24) and θy

computed via MAP estimation).

end

Figure 3 illustrates the methodology workflow, according to algorithm 1, for obtaining a

validated pair of mean and variance GPs.

4.3. Computational aspects

For the selection of training points to construct the GPs involved in Algorithm 1 we use

the LHS sampling strategy. To generate the GP metamodels for the log-variance and the

mean response we use the GPstuff package for Gaussian process models developed in [36] and
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Figure 3: Flow diagram for Algorithm 1
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available at https://github.com/gpstuff-dev/gpstuff. Note that the GP fitted to the

mean response fd requires a modification of GPstuff to incorporate non-constant variance

given by (16), as well as the corresponding routines that compute the MAP estimator of

hyperparameters.

For a given computational budget, in terms of the maximum number of simulation runs

allowed, Algorithm 1 can be implemented with different combinations of Nd training/design

vs Nr number of repetitions/samples. In a similar vein to a sequential search methodology, as

proposed in [77], to optimise the specification of the input space and the number of stochastic

simulation replicates, we specify a fixed total computational budget C = NdNr. Then, we

conduct a number of numerical experiments corresponding to different combinations of the

number of design points and associated replicates by systematically increasing the number

of design points in steps, and by reducing the replicaties to respect our set computational

budget. For each combination, we evaluate the goodness of fit of GP response surfaces using

the predictivity coefficient and observe the set of these values for the considered computa-

tional budget. Depending upon the quality of GP fits, the initial computational budget is

incrementally increased and the procedure for conducting numerical experiments for design

point and replicate combinations is repeated for this new budget. In Section 7.1 we compare

goodness of GP fits evaluated at test data for different combinations of design points and

repetitions under obtained computational budget.

4.4. Emulation of the stochastic response

Constructing the metamodels in the previous sections enable us to capture uncertainty

due to the stochasticity of the simulator at a given input point X. This is relevant for

the propagation of uncertainty through complex models [here through an inexpensive meta-

model - a plausible approximation of our simulator] and its subsequent quantification under

stochasticity. Note that a particular case of the stochastic simulator from (1) arises when

the function f can be written in the following form:

Y = f(X, ω) = fd(X) + fs(X, ω), fs(X, ω) ∼ N (0, V (X)). (26)

where, as before, fd(X) is the mean response. In this case fs(X, ω) is a Gaussian random

variable with input-dependent variance. Under the modelling assumption given by (26), the

mean response fd(X) and the variance V (X) fully characterise the stochastic response at

a given point X in the input space. Constructing metamodels according to the methodol-

ogy described in subsections 4.1-4.2 allows us to simulate the response from the stochastic

simulator. Indeed, simulations of the variable Y at at testing point X can be obtained by:

Y = fd(X) +
√

V (X)ξ, ξ ∼ N (0, 1). (27)
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Similarly, two-sided α-tailed credible intervals can be defined by:

CIα(X) =
[

fd(X)− τα
√

V (X), fd(X) + τα
√

V (X)
]

(28)

where, as before, τα is the (1−α
2
) quantile of the standard Normal distribution. The predictors

from the metamodels for fd(X) and V (X) can be used in expressions (27)-(28) for the efficient

emulation of our stochastic simulator and to approximate credible intervals. In Section 7.3,

we assess using (28) the capabilities of the emulator to capture the stochastic observations

obtained from the stochastic building performance simulator.

5. Global sensitivity analysis through metamodeling

We now discuss how the proposed approach to quantify uncertainties in S-BPS can be

combined with a Global Sensitivity Analysis (GSA) technique to decompose the total un-

certainty in the model output into the respective sources of uncertainty in the model inputs

[78]. We consider a variance based method, based on sensitivity indices that enable us to

quantify the importance of a given uncertain input relative to others. These indices are the

quantitative measures of knowing an impact of uncertain sources on the model predictions

(so that those uncertainties can be subsequently addressed if possible).

5.1. The deterministic case

Let us consider again the case of a deterministic simulator Y = F (X) discussed in sub-

section 3.1. We denote by I a set of indices from {1, . . . , p} with cardinality denoted by |I|.

We use standard index notation for which XI denotes a vector that contains the components

of X = (X1, . . . , Xp) with indices in I. For example, if I = {1, 4}, then X{1,4} = (X1, X4).

Furthermore, we denote byX∼I the vector with all components ofX except those that belong

to the set I. Using the total variance decomposition theorem, the unconditional variance of

the model output Y can be expressed as [79]:

VX[Y ] =

p
∑

i=1

∑

|I|

VI(Y ), (29)

where

VI(Y ) = VXI
[EX∼I

(Y |XI)]. (30)

In (30) we use Eκ(Z) and Vκ(Z) to denote expectation and variance of Z with respect to κ.

Let us note that when I = {i} and I = {i, j}, for example, we have

Vi(Y ) = VXi
[EX∼i

(Y |Xi)] (31)

and

Vi,j(Y ) = VXi,Xj
[EX∼i,j

(Y |Xi, Xj)]− Vi(Y )− Vj(Y ), (32)
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respectively.

Sobol indices of Y = F (X) with respect to controllable parameters is defined by [79]:

SI(Y ) =
VI(Y )

VX(Y )
. (33)

For I = {i}, Si represents the main (first order) effect giving the measure of Xi on the model

predictions Y . The second order effect Sij expresses sensitivity of the model outcomes to

the interaction between the variables Xi and Xj without the individual effects of Xi and Xj;

higher order indices represent third, fourth, ... order interaction effects. From (29) it follows

that the sum of these indices (all positive) is equal to one. The larger and close to one an

index value is, the higher will be the importance of that input or the group of inputs that is

linked to this index. Note that for a model with p inputs, the number of Sobol indices would

amount to 2p − 1; leading to an intractable number of indices as p increases.

The total sensitivity of the model output variance to an input Xi is given by [79]:

STi
(Y ) =

∑

i∈⊂I

SI (34)

For instance, for a model with three input parameters, ST1
= S1 + S12 + S13 + S123. In

practice, when the model function F has multiple input parameters, only the Sobol indices

for the main and total effect are computed.

5.2. The stochastic case

We follow the approach of [69] for GSA for our S-BPS of the form Y = f(X, ω), in which

variable ω is treated as an additional uncontrollable parameter. Using the total variance

decomposition theorem, the unconditional variance of the model output Y can be expressed

as:

VX,ω[Y ] = Vω(Y ) +

p
∑

i=1

∑

|I|

[VI(Y ) + VI,ω(Y )], (35)

where:

Vω(Y ) = Vω[EX(Y |ω)], VI(Y ) = VXI
[EX∼I ,ω(Y |XI)]−

∑

I′(I

VI′(Y )), (36)

VI,ω(Y ) = VXI ,ω[EX∼I
(Y |XI , ω)]−

∑

I′(I

VI′,ω(Y )−
∑

I′(I

VI′(Y )− Vω(Y ) (37)

Similar to the deterministic case, Sobol indices of Y = f(X, ω) with respect to controllable

parameters X can be defined by:

SI(Y ) =
VI(Y )

V(Y )
, STi

(Y ) =
∑

i∈⊂I

SI (38)
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Sensitivity indices that involve the uncontrollable parameter ω are given by:

SI,ω(Y ) =
VI,ω(Y )

V(Y )
, Sω(Y ) =

Vω(Y )

V(Y )
. (39)

and the total sensitivity with respect to ω is:

STω
(Y ) =

p
∑

i=1

∑

|I|

SI,ω + Sω. (40)

which from (29) can be written as:

STω
(Y ) =

p
∑

i=1

∑

|I|=i

SI,ω + Sω =
1

V(Y )

[

p
∑

i=1

∑

|I|=i

VI,ω(Y ) + Vω(Y )
]

= 1−
1

V(Y )

p
∑

i=1

∑

|I|=i

VI(Y ),(41)

The method proposed in [69] then allows us to write (38) and (41) in terms of fd(X) and

V (X), for which we have constructed GP-based metamodels. Indeed, from (31), (2) and the

assumption of independence between ω and Xi we have that:

Vi(Y ) = VXi
EX∼i,ω(Y |Xi) = VXi

[EX∼i
[Eω(Y |X)|Xi]] = VXi

[EX∼i
(fd|Xi)] = Vi(fd(X)). (42)

More generally, it can be shown that VI(Y ) = VI(fd(X)). Thus, (38) becomes:

SI(Y ) =
VI(Y )

V(Y )
=

VI(fd(X))

V(Y )
= SI(fd(X))

VX(fd(X))

V(Y )
(43)

where SI(fd(X)) = VI(fd(X))
VX(fd(X))

is the Sobol index of fd(X). In addition, from the total variance

theorem and the definitions (2) we have:

V[Y ] = VX[Eω(Y |X)] + EX[Vω(Y |X)] = VX[fd(X)] + EX[V (X)] (44)

Substitution of (44) in (43) yields:

SI(Y ) = SI(fd(X))
VX(fd(X))

VX[fd(X)] + EX[V (X)]
(45)

Note that that the variance of fs(X) can now be decomposed into the respective contributions

of its inputs X:

VX[fd(X)] =

p
∑

i=1

∑

|I|=i

VI(fd(X)) =

p
∑

i=1

∑

|I|=i

VI(Y ) (46)

Therefore, combining (46) with (41) and (44) we obtain:

STω
(Y ) = 1−

1

V(Y )

p
∑

i=1

∑

|I|=i

[VI(Y )] = 1−
VX[fd(X)]

V(Y )
=

EX[V (X)]

VX[fd(X)] + EX[V (X)]
, (47)
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Expression (45) and (47) enable us to compute Sobol indices by using the approximation of

fd(X) and log V (X) that we obtained from the GP metamodel constructed in subsections

4.1-4.2. In other words, we use the following approximations:

SI(Y ) ≈ SI(f̂d(X))
VX(f̂d(X))

VX[f̂d(X)] + EX[exp(l̂og V (X))]
, (48)

STω
(Y ) ≈

EX[exp(l̂og V (x))]

VX[f̂d(X)] + EX[exp(l̂og V (X))]
. (49)

For the computation of sensitivity indices, accounting for both individual and total effects

of our parameters, we use the Sensitivity Analysis For Everybody (SAFE) package developed

in [80] and available at https://www.safetoolbox.info. After obtaining well trained and

validated GP emulators for fd(X) and log V (X), we study the convergence of our sensitivity

indices (48) and (49) by running this inexpensive substitute to the stochastic BPS for different

sample sizes, and correspondingly perform uncertainty propagation and decomposition. Since

the sensitivity indices (48) and (49) involve statistical quantities computed from samples, a

convergence study is required to ensure that the enough samples are used to accurately

approximate those sensitivity indices.

For the convergence of sensitivity indices we adopt the criterion proposed in [81], as the

index value remains stable (or changes to a limited degree within the credible interval) when

computed at multiple samples of increasing size. This convergence criterion uses the boot-

strap technique to provide a measure of uncertainty in the value of the sensitivity index [82].

Since the sensitivity index value is an estimate obtained from the drawn samples, so that its

true value cannot be known, it is advisable to account for uncertainty in estimates of sensi-

tivity index due to the sampling variability. The application of a bootstrap technique, along

with the chosen sampling scheme, allows for the estimation of an approximate probability

distribution around the sensitivity index value, giving confidence intervals as lower and up-

per bounds for the measure of uncertainty in its estimate. This is particularly helpful when

assessing the error in the index estimate at sampling sets of increasing size. In bootstrapping,

the different resamples are randomly drawn with replacement from the original sample of the

model input / output. To assess the convergence of the sensitivity indices, we observe the

width of the 95% credible intervals of the index distribution obtained via bootstrapping. In

particular, for each input and across different sample sizes, we observe:

CIindices = (Sub − Slb) (50)

where, Sub and Slb are the upper and lower bounds of the probability distribution of the

sensitivity index of the input factor at the given sample size. When the value of the width

of the confidence interval is close to or stabilizes near to zero or a small threshold value

(say, 0.05), the sensitivity index is deemed to have converged. In Section 7.4, we present the

23



convergence of main and total effect sensitivity indices of the inputs involved in this study,

across multiple sample sizes.

Algorithm 2 summarises the algorithm to estimate sensitivity indices for the stochastic

simulator with respect to controllable variables.

Algorithm 2. Algorithm to compute Sobol indices SI and STω
. Consider approxima-

tions fd(X) ≈ f̂d(X) and V (X) ≈ exp(l̂og V (X)) from the metamodels constructed from

Algorithm 1.

(1) Compute Sobol sensitivity indices for f̂d(X) (i.e. SI(f̂d(X))) using standard tech-

niques.

(2) Compute VX[f̂d(X)] via Monte Carlo sampling (i.e. Sample from the distribution of

X, evaluate f̂d(X) via the GP predictor (23) and compute sample variance).

(3) Compute EX[exp(l̂og V (X))] via Monte Carlo sampling (i.e. Sample from the dis-

tribution of X, evaluate exp(l̂og V (X)) via the GP predictor (16) and compute sample

mean).

(4) Use (1)-(3) to compute SI(Y ) and STω
(Y ) via expressions (48)-(49)

end

Figure 4 illustrates algorithm 2, employing validated metamodels following algorithm 1

for the efficient computation of sensitivity indices i.e. the quantification and decomposition

of the total uncertainty into its respective sources.

6. Case Study

We analyse the individual and collective impacts of two deterministic phenomena: (d1)

heat conduction through a wall construction, and (d2) incoming shortwave irradiation3; and

through three stochastic phenomena: (s1) occupants’ radiative and convective metabolic heat

gains due to their presence, (s2) advective heat losses due to ventilation through the opening

and closing of windows, and (s3) radiative heat gains due to the raising and lowering of

shading devices. The impacts of variation in the deterministic phenomena are studied by

assessing the impacts of variations in wall insulation thickness and window transmittance, in

plausible ranges of their uncertainty. We have selected insulation thickness for convenience,

3Here, the incoming shortwave irradiation through a window is assumed to be a deterministic component

because for the purpose of our study we are considering deterministic input weather excitations.
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Figure 4: Flow diagram for Algorithm 2
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as this has a similar effect on heat transfer to variations in conductivity 4. We realise that

we could also have varied density and specific heat capacity for opaque materials, as well

as emissivity and conductivity for transparent materials. However, as our primary aim here

is merely to present the proof of principle of our framework and to compare the impact of

deterministic phenomena against their stochastic counterparts, we believe that our pragmatic

choices of parameters are sufficient for our purposes; that this peculiarity does not negatively

impact on the usefulness of our evaluation exercise. For stochastic phenomena, we simply

repeat simulations with the relevant models enabled, randomly seeding a random number

generator for each run.

6.1. Experiment set up

As noted earlier (2), we generate our training data through a co-simulation approach, us-

ing the Functional Mockup Interface co-simulation standard, in which the dynamic BPS tool

Energy Plus is the master algorithm, controlling the execution of the multi-agent stochastic

simulation tool, No-MASS [5]. In common with Haldi and Robinson’s 2011 study of the

impact of stochastic models on simulated building performance [11], we employ a model of

a simple hypothetical monozone (shoe-box) office building, also located in Geneva Switzer-

land (46.25◦N, 6.13◦E, elevation 416m), for which the corresponding Energy Plus weather

data file was used. This hypothetical office building has dimensions 3.5m×4.5m, and a floor

to ceiling height of 2.8m (Figure 5). The south facade of the building has a double glazed

window occupying 40% of its surface area, located above the working plane height of 0.8m

above the ground. The wall and window construction compositions used in this study are

given in Table 1. The sensible internal heat gains are assumed to be a maximum of 400W,

collectively accounting for metabolic heat gains due to occupants’ presence and casual heat

gains due to lighting and any electrical equipment in use whilst occupants are present.

The heating (and cooling) and ventilation temperature set-point (SP) schedules are set to

21◦C (and 25◦C) and 24◦C during working hours, according to ANSI/ASHRAE/IES Standard

90.1 for a small office prototype building model, representing an ideal loads HVAC system

operation.

The graphical user interface to Energy Plus, DesignBuilder 4.3, was used to generate the

input data file (.idf) according to the above specifications.

6.2. Parameters studied

We consider two controllable parameters in the S-BPS model described earlier: insulation

thickness X1 and window transmittance X2. The prediction outputs are annual heating Yh

and Yc cooling demand per unit floor area. Our objective is to quantify the uncertainty in

4However, we do acknowledge that conductivity is more likely to vary as a result of manufacturing prac-

tices, and in response to variations in moisture content, than is thickness; but this latter remains useful for

the purpose of demonstration.
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Figure 5: Building geometry of hypothetical office

Table 1: Thermophysical properties of construction layers : thickness, thermal conductivity, specific heat

capacity, density and U-value

Surface Material t(m) λ(W/(mK)) C(J/(kgK)) ρ(kg/m3) U(W/(m2K))

Wall

Brick 0.1 0.84 800 1700

0.28
Insulation 0.111 0.034 1400 35

Concrete 0.1 0.51 1000 1400

Plaster 0.013 0.4 1000 1000

Ground

Foam 0.1327 0.04 1400 10

0.26
Concrete 0.1 1.13 1000 2000

Screed 0.07 0.41 840 1200

Flooring 0.03 0.14 1200 650

Roof

Asphalt 0.01 0.7 1000 2100

0.26
Glass Wool 0.1445 0.04 840 12

No mass Thermal Resistance = 0.18

Plasterboard 0.013 0.25 896 2800

Window

Glass 0.003 0.9 750 2500

2
Air 0.013 0.0262 1005 1.17

Glass 0.003 0.9 750 2500
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Yh and Yc given uncertainty in X = (X1, X2) as well as the (uncontrollable) uncertainty that

arises from occupants’ behaviour, encoded in the model described earlier. We assume that X1

and X2 are independent and characterised by uniform distributions, and that the values for

these design variables are equally likely within the possible uncertain ranges specified [13] [83].

The assignment of a uniform distribution is desirable for the case of poorly defined design

variables (e.g. during early design stage) where only an estimate of the lower and upper

bounds may be available [84]. For the distribution of insulation thickness we use values

between 0.06m and 0.16m to account for plausible variations in insulation thickness (e.g.

from low to moderate thickness) within the office building’s facades, entailing a corresponding

variation in heat conduction through walls. For glazing solar transmittance, the distribution

takes values between 0 and 1, effectively modulating the quantity and quality of glazing

in the south façade, entailing a corresponding variation in transmitted shortwave radiation
5. The solar transmittance is applied to the façade glazing ratio, where zero transmittance

represents a combination of glazing utilisation (the proportion of the glazed surfaces that is

taken up by frames) and transmission (more or less transparent materials) that effectively

renders the glazing opaque, and a value of unity represents completely unobstructed glass

of perfect transmission properties; with values tending to lie between these (unphysical)

extremes. The formulation of the occupant behavioural models and their related parameter

settings are adopted as described in Chapman [75].

To apply the proposed framework described in Sections 4- 5 we treat the annual heating

and cooling demand Yh and Yc independently, and thus construct GP metamodels for each of

these output variables. More specifically, we apply Algorithm 1 for each of the model outputs

Yh and Yc, and subsequently use those GPs within Algorithm 2 to conduct sensitivity analysis

for each output variable. Technical details relevant to the GP prior settings used within the

proposed approach can be found in Appendix A.

7. Results and Discussion

7.1. Design points vs repetitions

We note from Algorithm 1 that the proposed metamodeling framework applied to the

case study introduced above involves constructing GP emulators of both the mean response

fd(X1, X2) and the log variance V (X1, X2) for each of the S-BPS response outputs Yh and Yc.

We also observe that the methodology requires us to select a number of design points (via

LHS) within the input space for (X1, X2) that we introduced in subsection 6.2, and to conduct

a number of repetitions of the model outputs at each of those design points. The accuracy of

the proposed methodology relies on having a large enough sample of design points (so that

5Note that we have not considered in this work uncertainty in visible transmittance, and its possible

intercorrelation with solar transmittance, as we are not modelling daylight responsive controls of artificial

lights and associated heat gains.
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Table 2: Comparison of quality of prediction Q of fitted GP response surfaces at test data given a fixed com-

putation budget (of 3000 simulation runs) for training. Here the item entry 5×600 represents 600 simulation

repetitions at 5 design points and so on.

Output Emulated Predictivity coefficient Q

target variable quantity 5×600 10×300 15×200 20×150 25×120 30×100

Heating demand Yh

fd(X) 0.9367 0.9949 0.9997 0.9999 0.9999 0.9999

log V (X) 0.3179 0.9186 0.9159 0.9235 0.962 0.9483

Cooling demand Yc

fd(X) 0.9704 0.9858 0.9831 0.9782 0.9841 0.9719

log V (X) 0.0841 0.7765 0.932 0.8993 0.9184 0.9092

input uncertainty X is well characterised) and a sufficient number of repetitions that can

accurately inform, at those design points, the mean and variance response (with respect to

ω) of each model output. To arrive at the reasonable computational budget of 3000 simulator

runs, we follow the sequential search approach outlined in 4.3 and observe the accuracy of the

predictions of each GP involved in the proposed methodology using different combinations

of design points and replicates.

Once all GPs have been constructed for each combination, we compute the predictivity

coefficient Q and the CI validation measure discussed in subsection 3.3. The test data for this

case study consists of simulation runs at 60 new sampling points in the input design space,

each with 600 repetitions of the stochastic simulator. For the design point and replicate

combinations having a budget of 3000 simulator runs to train the emulator, Table 2 reports

the accuracy in terms of Q obtained at the test data points by the GP emulators of the

mean and log-variance. The coefficient of predictivity saturates to a value of more than

0.92 when around 25 design points with 120 repetitions are available for training (Figure

6). Any further increase in the number of design points does not lead to significant increase

in predictive accuracy. Table 3 reports the proportion of test observations that lie inside

the 95% CI (according to Eq. 11)) predicted by the GP emulators. Also, for the training

combination (25 × 120), the proportion of test observations within the emulator uncertainty

interval is more than 80% without a loss in predictive accuracy. We note that the cooling

demand log-variance GP displays less accuracy in the CI measure, arguably due to the large

variation in non-constant variance exhibited by occupants’ behaviours.

7.2. Gaussian Process emulation of the mean fd(X) and log-variance log V (X) of the S-BPS

outputs

Based on the fixed computation budget study of prediction accuracy of GPs (Table 2 and

3), the combination 25 design / sample points with 120 repetitions of stochastic building

performance simulator has been selected to be optimum in order to obtain a plausible pair

of GPs predicting mean and log-variance of energy demands Yh and Yc. The GP regression

surfaces for the computed energy demands’ mean and log-variance are shown in Figure 7
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Table 3: Comparison of emulator uncertainty (Eq. 11) of fitted GPs in terms of proportion of test points

lying inside the uncertainty interval

Output Emulated Emulator uncertainty interval CI

target variable quantity 5×600 10×300 15×200 20×150 25×120 30×100

Heating demand Yh

fd(X) 0.9999 0.95 0.9999 0.9999 0.9833 0.9999

log V (X) 0.9999 0.8167 0.6333 0.7 0.8667 0.7167

Cooling demand Yc

fd(X) 0.9999 0.9833 0.8667 0.7333 0.8167 0.75

log V (X) 0.6667 0.3833 0.6333 0.35 0.4333 0.4333

Figure 6: Comparison of prediction accuracies of mean and log-variance GPs
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together with the training set used for the construction of each GP. Each GP response surface

is an interpolation surface that predicts mean energy demand value and variance around it

due to stochastic occupants’ behaviours for any given test point within the uncertainty ranges

of the input parameters.

The GP regression surfaces from Figure 7 allow us to understand the effect of input

variables on predictions. These results show that an increase in insulation thickness lowers

heating demand, due to the expected reduction in heat loss through building envelope, anal-

ogously to a lowering of thermal conductivity (see Figure 7 top-left). As variations in only

solar (not visible) transmittance is considered, its direct impact on heating demand is some-

what dampened. Furthermore, with a relatively moderate availability of irradiation during

the heating season, variations in transmittance have a relatively lower impact than those due

to insulation thickness.

Conversely, during the cooling season, our results show the inverse trend; with variations

in transmittance have a greater impact, owing to the increased magnitude of available solar

irradiation. Transmittance and cooling demand now show positive correlation, as an increase

in transmitted shortwave radiation entails a corresponding increase in cooling loads (Figure

7 bottom-left). Furthermore, the internal storage of heat can be exacerbated by envelope

thermal insulation, which inhibits heat transfer to the outside whilst the indoor temperature

is higher, so increasing cooling loads (as shown in Figure 7 bottom-left). These results

are consistent with the underlying physics abstracted by the BPS. Furthermore, Figure 7

illustrates the heteroscedastic (i.e. non-constant) nature of the variance due to occupants’

behaviours and it exhibits a positive correlation with energy demand i.e. the non constant

variance is high at higher energy demands and vice-versa.

7.3. Uncertainty quantification using the GP emulator

The validation measures discussed in subsection 7.1 enable us to assess the accuracy of the

predictive capabilities of each GP (for mean and log-variance). We now assess the accuracy

of the proposed methodology to statistically reproduce uncertainty in the outputs of the S-

BPS within the same input-space. To this end, we consider the credible intervals introduced

in (28) for α = 0.05 (i.e. 95% CI), where the mean and variance are replaced with those

obtained via the GP emulators obtained in the previous subsection. We generate test data

with 100 replicates of the S-BPS at a collection of 60 randomly selected input points. Some

95.2% and 96.08% of the simulator’s random response values [at each test point] for heating

and cooling demands lie within the 95% CI predicted by the pair of (mean and variance)

GPs (Figure 8), suggesting that this new GP emulator can be used with confidence.

To further evaluate the effectiveness of the proposed GP-based metamodeling approach,

we compare in Figures 9-10 the probability density functions (PDFs), at some specific test

points, computed by Monte Carlo Simulation, the S-BPS outputs (in red) and outputs from

the GP emulator (in blue); this latter by simulating stochastic observations with (27) using
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Figure 7: GP regression surface fitting to sampled mean (left) and log-variance (right) of heating demand

(top) and cooling demand (bottom)
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Figure 8: Comparison of S-BPS simulated random values within GP predicted credible intervals at test data

for heating (a) and cooling (b) demand

GP emulators for fd(X) and V (X)). In Figure 11 we also compare cumulative distribution

functions (CDFs) of predicted energy demands from the GP emulator with those of the S-

BPS simulations, again obtained using Monte Carlo Simulation. A single CDF in these plots

represent variation in prediction due to occupants’ stochastic behaviour [aleatory uncertainty]

and their spread represents uncertainty in predictions due to input parameters [epistemic

uncertainty]. Figures 9-11 offer numerical evidence that the proposed framework enables

us to accurately and robustly reproduce the underlying PDFs and CDFs obtained with the

S-BPS, at a small fraction of the computational cost, since once the GP emulators have been

constructed, S-BPS runs are no longer required for subsequent uncertainty analyses.

In the specific case of heating demand (the top row in Figure 11), the collective spread of

CDFs is more than the spread of an individual one - illustrating that epistemic uncertainty

due to inputs plays a more dominant role than the aleatory uncertainty due to occupants’

behaviours. And in the case of cooling demand (the bottom row in Figure 11), we observe

the opposite trend, the spread of an individual CDF exceeds the collective one, showing that

the aleatory uncertainty is more dominant than its epistemic counterpart. This is expected,

because the stochastic models used in this work (windows and blinds) are essentially biased

towards more frequent user interactions during warmer weather (higher ambient tempera-

tures and incident irradiances, these stimulating the opening of windows and the lowering of

shading devices) when cooling loads are at their largest.

Finally, the quantitative comparison between the means of heating and cooling demand

replicates presented in Figure 12 underline how accurate the GP emulator’s predictions are.

Having demonstrated that the GP emulator is an acceptably accurate means for acceler-

ating stochastic building performance simulations, we proceed now to decompose the total

uncertainty in predictions into its component parts by computing sensitivity indices for our

case study.
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Figure 9: Uncertainty propagation comparison between GP predicted (blue) and S-BPS simulated PDFs

(red) for heating demand

7.4. Uncertainty decomposition using the GP emulator : Sensitivity analysis

We now employ our GP-metamodeling framework in conjunction with the GSA approach

discussed in section 5. More specifically, we decompose the total uncertainty in energy de-

mand prediction using the individual and total effect indices of (48) and (49). The individual

effect indices account for the impact of design variables ’insulation thickness’ and ’window

transmittance’ and the total effect index includes that of occupants’ behaviour. The index

scale is between 0 and 1, with highly influential factors having values close to unity. Ta-

ble 4 reports these indices, computed for both small (500) and large (20000) input sample

sizes. In the case of heating demand, and as discussed earlier, epistemic uncertainty due to

insulation thickness dominates the uncertainty in predictions, at an individual index value

of 0.97. This result is in line with expectation. During heating season envelope heat losses

(and thus impact of uncertainty in insulation thickness) dominates the energy balance, much

more so than occupants’ behaviour, since occupant are relatively less likely to open windows

(to avoid excessive heat losses) and to lower shades (thus reducing useful transmitted solar

heat gains) during the heating season. In contrast, for cooling demands, aleatory uncertainty

due to occupants’ behaviour is the most influential factor, at total index value of 0.83, as

occupants are correspondingly more likely to interact with windows and shading devices, as

explained in the previous section.
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Figure 10: Uncertainty propagation comparison between GP predicted (blue) and S-BPS simulated PDFs

(red) for cooling demand

Table 4: Sensitivity indices quantifying the impacts of thickness, transmittance and occupants’ behaviour on

the heating and cooling energy demand predictions. S1 and S2 are individual effects due to thickness and

transmittance and STw
total effect due to occupants’ behaviours

Output variable Sample size Sensitivity indices

S1 S2 STw

Heating demand
Small (500) 0.9709 -0.0654 0.0266

Large (20000) 0.9715 -0.0729 0.0266

Cooling demand
Small (500) 0.0752 0.1279 0.829

Large (20000) 0.0527 0.1277 0.8275
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Figure 11: Comparison of GP predicted (left) and S-BPS simulated (right) CDFs for heating (top) and

cooling (bottom) demand

Figure 12: Comparison between S-BPS Simulated and GP predicted means of heating (left) and cooling

(right) demand replicates in Figures 11
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Figure 13: Convergence of main (left) and total (right) effect sensitivity indices of design variables for heating

demand. The top row shows the convergence of the width of index credible interval and bottom row shows

the actual credible interval.

Figures 13 and 14 (top rows) show the convergence of indices values for the emulator

evaluations at different sample sizes, ranging from 500 to 20,000. We consider 0.05 as the

convergence threshold for the width of the 95% credible interval CIindices, below or close to

which the index value is deemed to be stable. In the case of heating demand, for the main

effect index of ’insulation thickness’, the index value converges rapidly (at a small sample

size of 1,000) below the threshold, while the other indices values approach the threshold (at

values of around 0.2) at large sample sizes of 20,000. The bottom rows of the figures show the

convergence of the actual credible intervals around indices values obtained via bootstrapping,

demonstrating the trend for convergence at large sample sizes.

Now, the computational cost of a classical GSA framework is given by N(k+2) [19] [70],

where N and k are number of samples and inputs, respectively. For the present example

with 2 input parameters and 20,000 samples (large sample sizes at which indices converge as

shown), the number of simulator runs that we need in our proposed Emulation based Un-

certainty and Sensitivity Analysis (EmUSA) framework is a small fraction (3,000 / 80,000 =
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Figure 14: Convergence of main (left) and total (right) effect sensitivity indices of design variables for cooling

demand. The top row shows the convergence of the width of index credible interval and bottom row shows

the actual credible interval.
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Table 5: Comparison of computational runs between Classical and EmUSA framework

Classical Emulator based

Training Sensitivity Analysis

Simulator runs 80× 103 3× 103 -

Emulator runs - - 0.5 to 20× 103

Table 6: Comparison of computational expense between Classical and EmUSA framework (One simulation

run benchmark = 20 seconds)

Classical Emulator based

Training Sensitivity Analysis

Simulator runs 18.5 days 16.67 hours -

Emulator runs - - 15 to 20 minutes

0.0375) of that required by the standard approach (see Table 5), as the emulation framework

only requires simulator runs to train GPs, which can then be employed to conduct sensitivity

analyses at negligible computational cost. This represents a significant saving not only in

terms of the number of simulator runs, but also of the computational time available to con-

duct of UQ study. Consequently, the computation time reduces to a manageable c.17 hours,

in contrast to the infeasibly large number of days that are required by a classical approach

(see Table 6). Moreover, these training runs can be readily distributed over a High Perfor-

mance Computing cluster, thus benefiting from additional acceleration from computational

hardware. In this way, it is possible to complete an entire UQ study using our proposed

EmUSA framework in just a couple of hours.

However, for a whole multizone building, the conclusions drawn may differ from those of

the current monozone office configuration; because this relatively small use case exaggerates

to some extent the effects of envelope interactions and heat transfers (the effects of which

would be relatively dissipated in a large multizone building). In this sense then, our small

use case is a good choice for this proof-of-principle study.

8. Conclusions

The purpose of this study was to develop a computationally efficient emulator of a Stochas-

tic Building Performance Simulator (EnergyPlus co-simulated with NoMASS), to support the

quantification and decomposition of both epistemic and aleatory uncertainties. Our approach

has been to estimate Gaussian Process Regression emulators for both the mean response and

the variance of the stochastic component of the simulator, and to deploy these emulators to

decompose the total uncertainty in predictions into its respective sources, computed in terms

of sensitivity indices.

We have demonstrated the application of this new framework using a relatively simple
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use case: a small monozone (shoebox) office building, computing both individual and total

effect indices. The former accounts for the effect of design variables (e.g. insulation thickness

or glazing transmittance), while the latter also accounts for stochastic variance arising from

occupants’ behaviours (e.g. opening windows and lowering shading devices). From these

results we conclude that:

• The pair of fitted GP emulators successfully emulate the behaviour of the stochastic

building performance simulator (S-BPS) at the chosen test design points, with predic-

tivity coefficient Q2 > 0.95, (save for a small number of moderate exceptions).

• The proposed GP Emulator-based UQ framework, requiring simulator runs only to fit

the emulators, is highly computationally efficient; reducing the computational cost to a

small fraction (0.0375) of its classical counterpart, as simulator runs are required only

for training the emulator which subsequently computes at negligible cost.

• The variance-based uncertainty quantification and decomposition framework is an ef-

fective means for studying the combination of epistemic and aleatory uncertainties that

arise from a S-BPS tool.

• The effects of uncertainties in insulation thickness on heating demand are more signifi-

cant that those arising from stochasticity in occupants’ behaviours; as these behaviours

are relatively constrained during the heating season.

• Conversely, the effects of uncertainties arising from stochasticity in occupants’ be-

haviours on cooling demand exceed those arising from uncertainties in effective glazing

system transmittance; as these behaviours are less constrained - representing occupants’

interactions with windows and shading devices to restore their thermal comfort, with

corresponding impacts on cooling demand.

This work demonstrates, for the first time, the viability of an Emulation based Uncertainty

and Sensitivity Analysis (EmUSA) framework for the computationally efficient quantification

and decomposition of both epistemic (design variable) and aleatory (occupants’ stochastic

behaviours) uncertainties. So far this demonstration has been constrained in scope, in terms

of the number of design variables and the range of occupants’ behaviours investigated as well

as the complexity of the adopted use case. We are currently extending the scope of appli-

cability of this new framework, in terms of the design variables and occupants’ behaviours

that are addressed, and applying this to a more complex use case. We aim to report on the

outcomes of this work in a future paper.

In terms of the wider applicability, the EmUSA framework supports, through a rigorous

quantification and decomposition of uncertainties:

• Load and energy use prediction: More reliable load and energy use prediction, and the

associated sizing of HVAC plant and renewable energy technologies.
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• New building design: The more robust design of building envelopes and systems.

• Renovation design: The identification of parameters yielding the greatest potential per-

formance improvements, identified through sensitivity analysis and the decomposition

of uncertainties, and their corresponding design.

• Predictive control: (ongoing) Bayesian calibration of metamodels, using real measured

training data, to support predictive control of building systems. In principle, this

technique could also be applied to the control of larger scale heat and power grids.

• Stock modelling: metamodeling of archetypes describing regional or national building

(e.g. housing, office) stocks, with which to test hypotheses for their decarbonisation,

in support of building stock decarbonisation policy.
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Appendix A. Prior Informations used for GP emulation.

For the present work we we use a Matern covariance function (see equation 4) with

parameter ν = 3/2. Table A.7 shows the distributions used for the hyperparameters of these

function. Table A.8 displayed the values for the hyperparameters in the mean and covariance

functions. We use two distinct length scale parameter setting of covariance structure for

respective two inputs - wall insulation thickness and window transmittance. For the log-

variance emulators the uniform hyper-priors are used for the noise variance with small (0.001)

value. The hyperpriors for the length scales and signal variances are log-Normal and uniform,

respectively. We use a linear function for the mean prior mean functions for log-variance

target variable. Unlike log-variance variables, we have fixed noise variances while fitting GP

to mean variables as they are known following equation 21 from the predictions of GP fitted

to log-variances. The length scales and signal variances both are assigned loggaussian priors.

We use constant, linear and squared mean structures as prior mean functions for mean target

variable.
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