

This is a repository copy of Collagen I weakly interacts with the β -sheets of β 2-microglobulin and enhances conformational exchange to induce amyloid formation.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/155372/

Version: Supplemental Material

Article:

Hoop, CL, Zhu, J, Bhattacharya, S et al. (3 more authors) (2020) Collagen I weakly interacts with the β -sheets of β 2-microglobulin and enhances conformational exchange to induce amyloid formation. Journal of the American Chemical Society, 142 (3). pp. 1321-1331. ISSN 0002-7863

https://doi.org/10.1021/jacs.9b10421

© 2019 American Chemical Society. This is an author produced version of an article published in Journal of the American Chemical Society. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supporting Information

Collagen I weakly interacts with the β -sheets of β_2 -microglobulin and enhances conformational exchange to induce amyloid formation

Cody L. Hoop¹, Jie Zhu¹, Shibani Bhattacharya², Caitlyn A. Tobita¹, Sheena E. Radford^{*,3}, Jean Baum^{*,1}

¹Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA; ²New York Structural Biology Center, New York, New York 10027, USA; and ³Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK

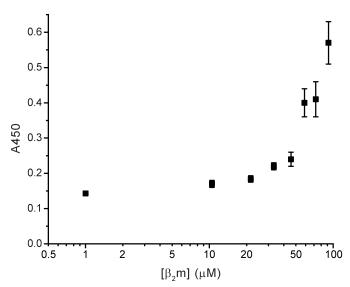
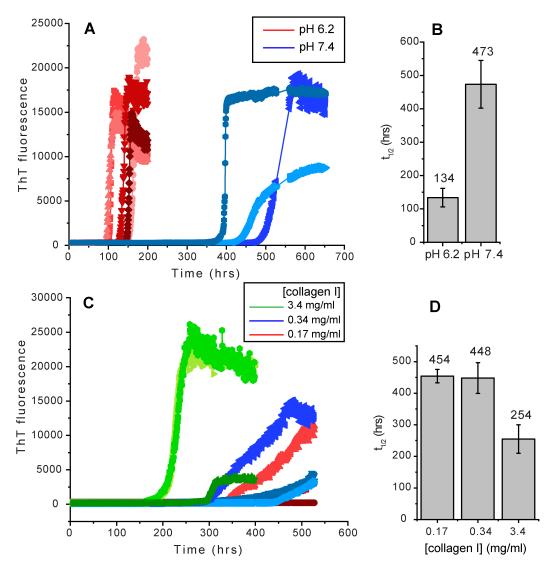



Figure S1. Weak β_2 m-collagen I binding as assessed by ELISA. Dose-dependent binding of varying concentrations of β_2 m (1–100 μ M) to immobilized collagen I at pH 7.4. The x-axis is plotted on a logarithmic scale. Each point is the average absorbance at 450 nm of triplicates within the same plate. The error bars represent the standard deviation of the triplicates.

Figure S2. Collagen I-induced amyloid formation of β2m observed by ThT fluorescence. A) ThT fluorescence curves of 85 μM β2m with 3.4 mg/ml collagen I in 10 mM sodium phosphate buffer pH 6.2 (red shades) or pH 7.4 (blue shades). The pH 7.4 data are the same data presented in Figure 1 in the main text. Data were acquired at 37 °C with shaking (600 rpm). B) Average half-times (t_{50} values) of β2m amyloid formation in the presence of 3.4 mg/ml collagen I at pH 6.2 or pH 7.4 calculated from the ThT fluorescence curves in panel A. Error bars represent the standard deviation of t_{50} values calculated from the multiple curves in the same condition. The mean t_{50} value (hrs) is given above each bar. C) ThT fluorescence curves of 85 μM β2m in the presence of collagen I at different concentrations (green shades- 3.4 mg/ml, blue shades- 0.34 mg/ml, red shades- 0.17 mg/ml) in 10 mM sodium phosphate buffer, pH 6.2. D) Average t_{50} value of β2m amyloid formation in the presence of different concentrations of collagen I at pH 6.2 calculated from the ThT fluorescence curves in panel C. Error bars represent the standard deviation of t_{50} value calculated from the multiple curves in the same condition. The mean t_{50} value (hrs) is given above each bar.

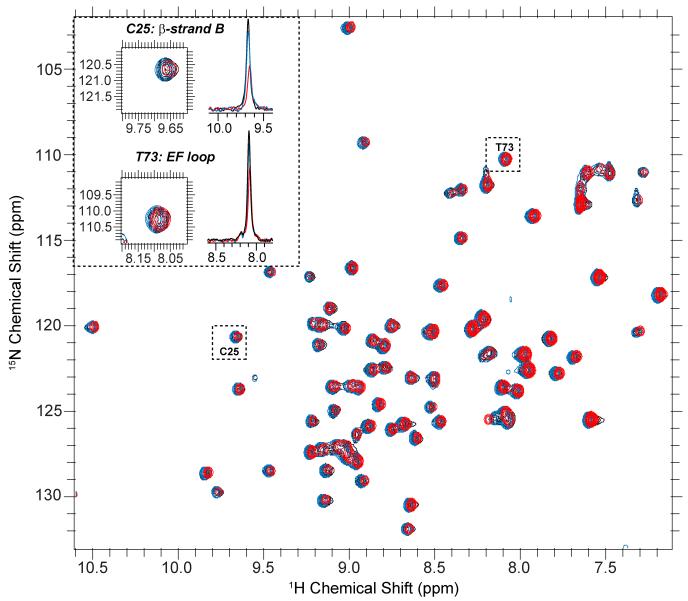


Figure S3. Minimal chemical shift perturbation with residue-specific intensity losses observed by titration of collagen I into β_2 m. $^1\text{H}-^{15}\text{N}$ -HSQC spectra of 300 μ M β_2 m in TBS, pH 7.4 containing 0.5 mg/ml casein in the absence (black) or presence of different concentrations of collagen I (blue- 0.12 mg/ml collagen I and red- 1.2 mg/ml collagen I). The inset shows a zoom-in on the 2D contours and the extracted ^1H 1D projections of a residue that has a higher degree of peak intensity loss (Cys 25, I/I₀ = 0.48) and one that has a low level of intensity loss (Thr 73, I/I₀ = 0.76) upon addition of collagen I. Experiments were conducted in 10% D₂O at 700 MHz ^1H Larmor frequency and 10°C .

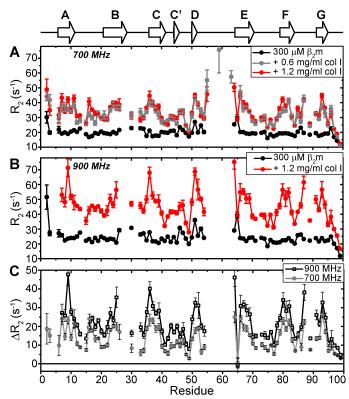
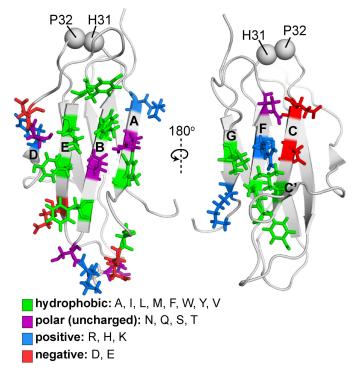



Figure S4. Perturbation of $β_2m$ ¹⁵N-R₂ values at different magnetic field strengths. A) Residue-specific ¹⁵N-R₂ measurements at 700 MHz ¹H Larmor frequency of 300 μM $β_2m$ in the absence (black) or presence of 0.6 mg/ml (gray) or 1.2 mg/ml (red) collagen I in TBS, pH 7.4 containing 0.5 mg/ml casein. ¹⁵N-R₂ data in the absence (black) or presence of 1.2 mg/ml collagen I (red) are replotted from Figure 2B in the main text. B) ¹⁵N-R₂ measurements at 900 MHz ¹H Larmor frequency of 300 μM $β_2m$ in the absence (black) or presence (red) of 1.2 mg/ml collagen I in TBS, pH 7.4 containing 0.5 mg/ml casein. C) Residue-specific ¹⁵N-ΔR₂s at 700 MHz (gray) or 900 MHz (black), taken as the difference in ¹⁵N-R₂ of $β_2m$ in the absence or presence of 1.2 mg/ml collagen I. All experiments were conducted in 10% D₂O and 10°C. All error bars are propagated from the fitting errors.

Figure S5. Amino acid composition of the β₂m interface for collagen I interactions. Amino acids determined to be at the β₂m–collagen I interface by ¹⁵N-DEST and that have side-chains oriented toward the interaction surface are shown in stick representation and colored by amino acid type (hydrophobic= green; polar, uncharged= purple; positive charge= blue; negative charge= red). His 31 and Pro 32 are shown as spheres. Both β₂m β-sheets are composed of a mixture of hydrophobic and hydrophilic amino acids, with the ABED β-sheet displaying several aromatic rings. Structural models are based on PDB: $2XKS^1$.

REFERENCES

1. Eichner, T.; Kalverda, A. P.; Thompson, G. S.; Homans, S. W.; Radford, S. E., Conformational conversion during amyloid formation at atomic resolution. *Mol Cell* **2011**, *41*, 161-72.