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ABSTRACT: Ecological risk assessment is carried out for chemicals such as pesticides
before they are released into the environment. Such risk assessment currently relies on
summary statistics gathered in standardized laboratory studies. However, these statistics
extract only limited information and depend on duration of exposure. Their extrapolation
to realistic ecological scenarios is inherently limited. Mechanistic effect models simulate
the processes underlying toxicity and so have the potential to overcome these issues.
Toxicokinetic−toxicodynamic (TK−TD) models operate at the individual level,
predicting the internal concentration of a chemical over time and the stress it places
on an organism. TK−TD models are particularly suited to addressing the difference in
exposure patterns between laboratory (constant) and field (variable) scenarios. So far, few
studies have sought to predict sublethal effects of pesticide exposure to wild mammals in
the field, even though such effects are of particular interest with respect to longer term
exposure. We developed a TK−TD model based on the dynamic energy budget (DEB)
theory, which can be parametrized and tested solely using standard regulatory studies. We
demonstrate that this approach can be used effectively to predict toxic effects on the body weight of rats over time. Model
predictions separate the impacts of feeding avoidance and toxic action, highlighting which was the primary driver of effects on
growth. Such information is relevant to the ecological risk posed by a compound because in the environment alternative food
sources may or may not be available to focal species. While this study focused on a single end point, growth, this approach could
be expanded to include reproductive output. The framework developed is simple to use and could be of great utility for
ecological and toxicological research as well as to risk assessors in industry and regulatory agencies.

■ INTRODUCTION

Before chemicals can be registered for use they undergo
ecological risk assessment (ERA), this process is particularly
rigorous for agricultural pesticides, which are designed to be
toxic to pest species.1,2 It is not practically possible to
determine a chemical’s ecological impact experimentally.
Instead, risk assessment relies on extrapolation from summary
statistics such as the “no observed adverse effect level”
(NOAEL) generated for a few species in standardized
laboratory studies.3 However, such statistics should only be
extrapolated with caution as they do not account for the
processes that lead to toxic effects and are dependent on
duration of exposure.4,5 Moreover, they are generated in
controlled (supposedly optimal) conditionsregulated tem-
perature and freely available food and water6that are
unrealistic in the field. The resulting lack of ecological realism
in current standard risk assessment methods is problematic.7

Mechanistic effects models (MEMs) aim to simulate the
mechanisms by which chemicals affect individuals, populations,
and communities and therefore enable us to predict how they
will respond in untested and more ecologically relevant
conditions.3 This is an appealing prospect with great potential
for use in ERA of pesticides.8,9 By focusing on the underlying

processes, modeling techniques can add ecological realism to
extrapolations and even reduce animal testing requirements.10

Accounting for the mismatch in exposure between
laboratory and field11 was identified as one of five key
obstacles to long-term risk assessment of pesticides for
mammals (along with selection of suitable toxicity end points,
extrapolation of toxicity between species, exposure assessment,
and evaluation of population level effects12). In chronic toxicity
tests rats or mice are exposed to a constant concentration of a
pesticide in their diet for periods as long as 2 years.6,13−15 Such
constant exposure is unrealistic in the field where pesticides are
not applied at a constant rate all year round. This disparity can
be addressed through the use of toxicokinetic-toxicodynamic
(TK−TD) modeling.10 TK−TD models work at the individual
level, predicting an internal measure of chemical concentration
over time (toxicokinetics) and the stress this places on an
organism (toxicodynamics). As such, the effects on a given end
point resulting from time varied exposure can be predicted.16

The use of TK−TD modeling has now been recommended
for certain regulatory purposes, such as predicting survival of
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aquatic organisms.17 However, European protection goals for
birds and mammals state that there should be no visible
mortality associated with pesticide1 use so sublethal effects are
more relevant with respect to realistic exposure. Sublethal
effects can be predicted using the “DEBtox” modeling
framework,18,19 combining TK−TD modeling with the
Dynamic Energy Budget (DEB) theory.20 DEB is an
established metabolic theory which has been applied to a
range of taxa,21 mathematically describing the processes of
energy acquisition and allocation that determine the life history
of an organism. Using TK−TD modeling to place stress on
these processes can produce predictions of effects on sublethal
end points such as growth and reproduction. Very little
research has concerned mammals, however, as DEBtox studies
have thus far mainly focused on invertebrates22 and more
recently fish.23,24

At present DEBtox is limited to research applications as it is
not regarded as user-friendly enough for use by regulators.25

To this end, a simplified version of the theory, “DEBkiss”, was
developed in which only structural body mass (bones, muscle,
organs, etc.) is considered with no reserve storage.26 The
model retains many DEB principles but with fewer parameters
and model equations. It was developed for applications where
simplicity and ease of use are important, such as the analysis of
toxicity data or for use within individual based population
models. The only published study to date in which TK−TD
modeling has been used to predict sublethal effects in
mammals utilized DEBkiss.27 Although limited data were
available, the model accurately simulated observed effects of
environmental toxicants on growth and reproduction in the
American mink (Mustela vison). These results suggest that this
simplified framework may be sufficient for practical and
regulatory applications.
Here we tested the utility of DEBkiss by working with raw

data from repeated dietary dose toxicity tests and modeled the
effects of several pesticides on rats. As the first study to use
regulatory data for this purpose, we adopted the practice of
beginning with the simplest possible methods and identifying
areas where more complex techniques may be required.
Internal pesticide concentration was modeled with a one
compartment model and a single end point, body weight, was
modeled over time using the DEBkiss growth model. Our
study aimed to establish a practical procedure for the
parametrization, calibration, and validation of DEBtox models
using regulatory data and to assess the quality and utility of
predictions. Furthermore, we aimed to improve the inter-
pretation of standard toxicity studies by extracting novel,
meaningful information using modeling.

■ METHODS

Data. All data used here were made available from existing
regulatory studies (Syngenta, unpublished) carried out according to
94/79/EC,28 investigating toxicokinetics and chronic toxicity of
acibenzolar-S-methyl (benzothiadiazole; fungicide, insecticide and
plant activator29), azoxystrobin (strobilurin; fungicide30), fenpropidin
(unclassified; fungicide31), fludioxonil (phenylpyrrole; fungicide32),
mandipropamid (mandelamide; fungicide33) and prosulfuron (sulfo-
nylurea; herbicide34), and thiamethoxam (neonicotinoid; insecti-
cide35) in laboratory rats (Rattus norvegicus).
The toxicokinetics studies followed OECD 41736 guidelines.

Animals were treated with a single oral (gavage) dose of a 14C
radiolabeled pesticide with total radioactivity found in various tissues
and excreta monitored over a period of days. The animals were
allowed free access to a certified standard diet.

Data sets differed between pesticides but followed a common
framework. At least two dose levels were studied with typically three
male and three female animals in each treatment group. The reports
include data detailing the proportion of the initial dose excreted in
faeces, urine, and bile over ∼48 h after a single oral dose, providing an
average percentage of the dose which was absorbed into the body.
Pesticide concentration in the blood of animals were measured over
∼48 h following a single high or low dose. Pesticide concentration
were also measured in different body tissues from animals terminated
at ∼4 time points following a single high or low dose. Details of
dosing, including exact dose (mg(AI)), body weight (g) at the start
(and in some cases the end) of testing and achieved dose (mg(AI) ×
kg(BW)

−1) were provided for each individual animal.
Chronic toxicity studies lasting 28 days (OECD 407), 90 days

(OECD 408) or 2 years (OECD 414 or 416) were carried out
according to OECD guidelines.6,13−15 Animals of around 5−7 weeks
in age were provided with diet containing pesticide and multiple
toxicological end points monitored over the study period. Animals
were kept in standard conditions with food and water available ad
libitum. Each study provided individual weekly observations of body
weight (g) and food consumption (g(diet) × day−1). Sample size was
typically 5 animals per sex per treatment in 28 day studies, 10 animals
per sex in 90 day studies and 50−80 animals per sex in 2 year studies.
The measured concentration of pesticide in the diet of each treatment
was also reported. Each study comprised a control group and at least 3
treatments fed diets containing different concentrations of pesticide.
As study duration was increased dietary doses were generally
decreased.

Models. Toxicokinetic Model. For each toxicant (denoted “AI” for
active ingredient), the internal concentration was modeled using a
one compartment TK model with first order kinetics. The internal
concentration here refers only to toxicant present in body tissues at a
given time and excludes any in the gut which has not yet been
absorbed. As terrestrial mammals are primarily exposed to pesticides
via the diet, the toxicant concentration in the gut was also modeled as
an intermediate “depot” compartment. This was a very similar
approach to Bednarska et al.37 but we also account for change in body
size by including dilution by growth and changes to surface area to
volume ratio as per Gergs et al.38 The model equations are shown
below.

Δ = − − Δ
∞

C I L Lk C F C W W/ ( / )Gut a Gut Gut (1)

Δ = − − Δ
∞ ∞

C L Lk C F L Lk C C W W/ / ( / )Int a Gut e Int Int (2)

where ΔC indicates change in the body weight (denoted “BW”)
normalized dose, C, of toxicant over time (Mass(AI)× Mass(BW)

−1 ×

t−1) and subscripts Gut and Int denote gut and internal respectively; I
is toxicant ingestion rate (Mass(AI) × Mass(BW)

−1 × t−1); F represents
bioavailability (dimensionless); ka and ke represent the rate constants
of toxicant absorption from the gut and toxicant elimination from the
system respectively (t−1); W denotes body weight, and ΔW is change
in weight over time; L is volumetric length (the cube root of body
volume), and L∞ is the ultimate volumetric length of the test species.

Growth Model. Body weight over time was modeled with the
DEBkiss26 growth equation:

Δ = −W y kfJ W J W( )
VA AM

a 2/3
M
v

(3)

where ΔW represents the change in total body weight (W) over time,
yVA represents the efficiency with which assimilates are converted to
structural mass (Mass(BW) × Mass(Assimilates)

−1), k is the proportion of
assimilates allocated to the soma, f is the scaled feeding rate (unitless),
JaAM is the maximum surface area specific assimilation rate
(Mass(Assimilates) × Mass(BW)

−2/3 × t−1) and JvM the mass specific
maintenance rate (Mass(Assimilates) × Mass(BW)

−1 × t−1). The DEBkiss
model is represented graphically in Figure 1.

Endotherms are also subject to surface area specific maintenance
costs, accounting for heat loss to the environment. However, as long
as the ambient temperature is within the thermoneutral zone of a
species39 these are assumed to be zero.40 Laboratory guidelines
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require rodents to be kept at 22 ± 3 °C, as this was considered to be
within the thermoneutral zone of the rat.41 More recent research has
suggested that this temperature range is too low42 but for simplicity it
was assumed that heat loss could be omitted.
The parameter k represents the proportion of assimilates allocated

to maintenance and growth with the remainder (1-k) going toward
maturation and reproduction. DEBkiss theory states that up to
puberty, these resources are used up as animals develop and are stored
as “reproduction buffer” during puberty and adulthood.26 However, as
reproduction was not modeled in this study, the reproduction buffer
would serve no purpose other than to make the model more complex.
Instead, it was assumed that the 1-k branch continues to be used up as
the animals develop into sexually mature adults (at 70−90 days of
age43) and then to maintain maturity, a process which can also be
included in DEBkiss.26 Only unmated animals were included in this
study, so body mass was not impacted upon by pregnancy.
If food intake is reduced such that kf JAM

a W2/3 < JM
v W but the total

assimilation rate f JAM
a W2/3 ≥ JM

v W (i.e., in a situation where food
intake is sufficient to maintain homeostasis but not to grow), then
ΔW = 0 as available resources are diverted from the 1-k branch to
meet maintenance costs. If the total assimilation rate is insufficient to
meet maintenance costs, that is f JAM

a W2/3 < JM
v W, then the growth rate

becomes negative as tissue is metabolized to meet maintenance
requirements.

Δ = −W fJ W J W y( )/
AM
a 2/3

M
v

AV (4)

where yAV is conversion efficiency of structure to assimilates. The
value of k therefore determines the point at which the feeding rate
becomes insufficient for growth but does not impact the onset of
weight loss. The point at which weight loss results in death is
unknown due to a lack of data. Any treatment that induced drastic
reductions in feeding would be abandoned as guidelines state that
dosing should not cause “death or severe suffering”.14,15

Toxicodynamic Model. Finally, the DEBtox toxicodynamic
model18,19,44 was used to link internal toxicant concentration to
stress on growth. It is assumed that for any xenobiotic, there exists a
“no effect concentration” (NEC) below which it causes no stress to
any biological processes. The NEC is a time independent threshold
and therefore has no relationship with duration of exposure. Assuming
that every molecule of toxicant beyond its NEC creates the same
amount of “stress” leads to a “linear with threshold” relationship,
which can be modeled quite simply (Figure 2):
In our approach, stress can be applied to one of three growth

parameters (“physiological modes of action”19,45) each of which
respond differently to stress, these are the maximum assimilation rate,

JaAM, the maintenance rate, JvM, or the conversion efficiency, yVA
(Figure 3). The proportion of resources allocated to the soma, k,
could theoretically be affected by a toxicant, but data on reproduction
would be required to distinguish this from effects on assimilation and
such effects are not well documented.44

Model Implementation. All models were implemented in Matlab
(ver. R2016b). TK and TK−TD growth models were developed with
the BYOM46

flexible model platform (ver. 4.1), several additional
functions and scripts were also developed as part of this study. All
fitted parameter values were derived using the Nelder Mead simplex
algorithm to maximize the likelihood function, given the observed
data.47 Likelihood profiling was also used to check that initial fits were
not local optima.48 TK model parameters were fitted to mean internal
pesticide concentration over time, while growth and TD model
parameters were fitted to mean body weight over time (Table 1).

Toxicodynamic modeling also required selection of a physiological
mode of action. The best fitting physiological mode of action was
determined using the Akaike information criterion.49 As the
alternative models were not nested, the likelihood ratio test would
be inappropriate however the AIC has no such requirement.50

TK Modeling. Parameterization. The percentage of the dose
which was absorbed into the body was reported in excretion studies.
These data provided the value of the parameter F in the TK model
(eq 1 and 2). If the percentage absorbed was very high (>90%), then
F was assigned the value 1 as this represents the worst-case scenario.
For single dose studies the value of I was zero while the starting gut
concentration was the average achieved dose for each treatment. If
body weight was recorded at the beginning and end of testing, then
ΔW was calculated as the linear growth rate observed in each
treatment. If not, then it was assumed that ΔW = 0 as dilution by
growth has a minimal effect on the model over the short testing
period, typically 48 h.

Ultimate length was calculated as the cube root of 782 cm3 which is
the average ultimate volume of male Sprague−Dawley rats with ad
libitum food availability,52 assuming that average wet tissue density is
equal to that of water.40

Calibration. Having determined the other model inputs directly
from experimental data, two free TK model parameters were left to be
fitted to data, the absorption and elimination rate constants ka and ke.
The best time course data for internal toxicant concentration (highest
number of time points) came from the blood as it can be sampled
without terminating animals. In order to ascertain whether pesticide
concentration in the blood was a suitable proxy for overall body
burden, the Pearson correlation coefficient was used to determine if it
was significantly correlated with the concentration in all other
sampled tissues. If so, then blood concentration data (in μg×

Figure 1. A graphical representation of the DEBkiss model. The value
of k determines the proportion of resources assimilated from food
allocated to maintenance and growth or maturity and reproduction.
Processes outlined in red are those that can be subjected to stress.

Figure 2. Stress increases with internal toxicant concentration beyond
a threshold, where S is dimensionless stress and CT is the “tolerance
concentration” (Mass(AI) × Mass(BW)

−1). Here the NEC determines
the point at which stress exceeds zero while CT is the increase in CInt

corresponding to an increase in S of 1. This means the gradient of S is
1/CT when CInt exceeds the NEC.
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g(blood)
−1) were deemed representative of CInt (in mg× kg(BW)

−1) and
could be used to fit ΔCInt (eq 2). Where available, whole carcass
concentration could be used as an alternative, however, fewer data
points were available.
Data were first inspected to determine whether there were obvious

differences in kinetics between males and females. Properties
considered were the mean peak concentration (Cmax), the time after
dosing at which it was reached (Tmax) and the time taken to eliminate
the pesticide from the blood. If clear differences were evident, then
models were calibrated separately for males and females.
For some pesticides, the same individual animals were sampled for

the whole observation period after dosing, for others only partial time
course data were available for each individual. Where complete time
course data were available, the model was first fitted to data for each
individual. A multiway ANOVA was conducted to determine whether

there were significant differences in fitted values of ka and ke
associated with sex, dose level (both discrete) or weight (continuous).
If more than one radiolabel was used, then this was also included as a
factor.

If sex was the only factor to have a significant effect, then the model
was calibrated to males and females separately. If both sex and weight
were shown to have significant effects, then a Mann−Whitney U test
was used to determine whether there was a significant difference in
weight between males and females. If so, then the ANOVA was
repeated with the data separated by sex. If no effects were found
within each sex, then the model was simply fitted to males and females
separately. If the rate constants were significantly affected by factors
other than sex, then this was noted along with the full TK results
(Supporting Information, SI).

Figure 3. Plots showing how growth model parameters respond to internal toxicant concentration when stress is applied. A. The maximum
assimilation rate JaAM decreases linearly with stress until it reaches zero when S = 1. B. The maintenance rate JvM increases linearly with stress and is
doubled when S = 1. C. As costs per unit of tissue synthesis increase linearly with stress, the conversion efficiency yVA approaches zero
asymptotically, efficiency is halved when S = 1.

Table 1. Full List of Model Parametersa

name explanation value dimensions

growth

k fraction of assimilates for growth and maintenance 0.8*

JaAM maximum assimilation rate per unit of surface area fitted to data g(Assimilates) × g(BW)
−2/3 × t−1

J v
M maintenance rate per unit of biomass fitted to data g(Assimilates) × g(BW)

−1 × t−1

yVA new biomass per unit assimilates 0.45 (as per Sibly & Calow51) g(BW) × g(Assimilates)
−1

yAV yield of assimilates per unit biomass 0.8* g(Assimilates) × g(BW)
−1

toxicokinetics

F proportion absorbed from gut calculated from data

ka absorption rate constant fitted to data t−1

ke elimination rate constant fitted to data t−1

toxicodynamics

NEC no effect concentration fitted to data mg(AI) × kg(BW)
−1

CT tolerance concentration fitted to data mg(AI) × kg(BW)
−1

other parameters

f scaled feeding rate calculated from data

I pesticide ingestion rate calculated from data mg(AI) × kg(BW)
−1 × t−1

L volumetric length W1/3 cm

L∞ ultimate volumetric length
W∞

1/3 or kf
J

J

AM

a

M

v

cm

Lm maximum volumetric length
Wm

1/3 or k
J

J

AM

a

M

v

cm

W∞ ultimate structural body mass 782 (as per Hubert et al.52) or L∞
3 g

Wm maximum structural body mass Lm
3 g

state variables

CGut pesticide concentration in gut (ΔCGut) − − Δ
∞
L Lk C F C W W1 / ( / )a Gut Gut mg(AI) × kg(BW)

−1 × t−1

CInt internal pesticide concentration (ΔCGut) − − Δ
∞ ∞
L Lk C F L Lk C C W W/ / ( / )a Gut e Int Int mg(AI) × kg(BW)

−1 × t−1

W structural body mass (ΔW) −y kfJ W J W( )
VA AM

a 2/3
M
v g(BW) × t−1

aParameter values marked with a “*” are default values suggested by Jager, Martin, & Zimmer.26.
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Finally, models were calibrated to mean (at each time point) blood
concentration observed in the high and low dose groups
simultaneously. Where appropriate, this was carried out separately
for males and females.
Validation. Toxicokinetics studies sampled pesticide concentration

found in different body tissues, including blood, from animals
terminated at different time points following a single oral dose. Blood
samples were arranged to provide an independent time course data set
of internal toxicant concentration. These were then used to assess the
model performance by comparing the pesticide concentrations in the
blood of the terminated individuals with concentrations in blood
simulated by the model with fixed parameters.
Generally, these data covered the same two dose levels as the

calibration data set so could not provide validation per se, since the
model inputs (i.e., dose levels) were virtually the same. Any
differences in achieved doses were generally very small so differences
between observed toxicokinetics were primarily due to individual
variability. This did however provide an indication of how well the
true average response was represented by the calibration data set and
therefore the calibrated model.
In most cases blood concentration data sets included only three

samples for each time point and responses could be highly variable
between individuals. We did not carry out any quantitative assessment
of predictions because this would be misleading due to the low sample
size combined with strong interindividual variability
TK−TD Growth Modeling. Parameterization. The full TK−TD

growth model comprises all the model eqs (eqs 1, 2 and 3) and
simultaneously predicts toxicant concentration in the gut (mg(AI) ×
kg(BW)

−1), internal toxicant concentration (mg(AI) × kg(BW)
−1) and

body weight (g).
The growth parameter k describes the proportion of resources

allocated to maintenance and growth. When only modeling growth,
its precise value is not crucial (only its product with the fitted
parameter JaAM contributes to the model) so this was fixed at its
default value of 0.8,26 which estimates suggest is reasonable for the
species.53,54 Physiological studies suggest assimilated energy is
converted to new tissue by homeotherms with an efficiency between
0.4 and 0.551 so the parameter yVA was fixed at 0.45. If strong evidence
were provided suggesting different values for either of these
parameters, then JaAM and JvM would simply need to be adjusted by
the appropriate correction factor. Stress functions would continue to
have the same impact and so would not need adjustment.
In repeated dose toxicity tests each animal’s weight and food

consumption were recorded at least weekly for some or all of the
study period.6,13−15 In some cases, food consumption was recorded
per cage, so the values provided were an average per animal but each
weight measurement had a corresponding measurement of food
consumption. The achieved toxicant concentration in the diet of each
treatment group was also measured. This allowed the growth
parameter f (scaled feeding rate) and the TK parameter I (toxicant
ingestion rate) to be calculated directly from the data.
The maximum feeding rate at a given food density is assumed to be

proportional to surface area. The scaled feeding rate, f, is equal to an
individual’s actual feeding rate at a given food density divided by the
maximum feeding rate for its size and therefore ranges from 0 to 1.26

Measured food consumption per day was converted into surface
area specific feeding rate by dividing by the associated body weight
raised to the power 2/3. Dividing these values by the maximum
feeding rate recorded in the study group (separated by sex) provided
scaled f values between 0 and 1 for each individual in each week of the
study period. A matrix was then produced containing average weekly
feeding rates for each treatment group, these provided the value of f
for each treatment in each weekly interval.
Multiplying the achieved toxicant concentration in the diet (mg(AI)

× kg(diet)
−1) by the mass specific daily feeding rate (kg(diet) × kg(BW)

−1

× d−1) provides the ingested dose (mg(AI) × kg(BW)
−1 × d−1). Again, a

matrix was produced, this time containing the weekly averages of daily
ingested dose for each treatment. This provided the values of the
toxicant ingestion rate I which fluctuates with feeding rate throughout
the study period. All other TK parameters remained fixed at the values

determined during TK model calibration (ka and ke were multiplied
by 24 to convert them from hourly to daily rates).

Calibration. The data from 90 day toxicity studies (OECD 408)
were intermediate in terms of sample size and dietary dose levels.
Thus, these data were more representative than the 28 day studies
(OECD 407) while the observed effects on growth were generally
larger than in 2 year studies (OECD 414 and 416). For this reason,
the 90 day studies were used to calibrate the TK−TD model.
Calibration of the growth and TD parameters was conducted
separately for males and females.

The two free growth model parameters, JaAM and JvM were fitted to
the growth data from the control group and then fixed. Next, the
model was run for all treatments but with no stress applied. This step
was used to identify the lowest dose group in which observed growth
was lower than predicted by the growth model based on feeding rate
alone (i.e., the lowest dose group in which chemical stress occurred).
The initial value for the estimation of the TD parameter NEC was
then set to half the average internal concentration predicted by the
TK model for that treatment. Only two treatments (the lowest
affected treatment and the top dose) were used for fitting as this
allowed more of the data to be used for testing predictions while still
providing a wide range of internal concentration predictions.

The TD parameters NEC and CT were then fitted to the lowest
affected treatment and the top dose group simultaneously, this was
repeated for each physiological mode of action. The fit which
produced the lowest AIC value was selected. The physiological mode
of action and resulting TD parameter values were then fixed.

Validation. For verification, the resulting model was then run for
all treatments in the 90 day study producing interpolations to the
intermediate dose groups. Then, the model was used to predict
growth in the 28 day and two year studies. Only the first 12−14 weeks
of growth data from two year studies were used to test model
predictions. The reasons for this cutoff point are addressed in detail in
the discussion.

Matrices containing weekly averages of feeding rate, f, and toxicant
ingestion rate, I, were generated from the data as described previously.
While the TK and TD parameters remained fixed, it was necessary to
repeat the fitting of growth parameters (JaAM and JvM) to the control
group data. This was important so that the effects of feeding rate on
growth were predicted relative to the control group of each study
rather than to that of a separate study in which conditions (laboratory
rat strain, feed, average temperature) may have differed.

All model parameters were then fixed and the model was used to
predict effects on growth in all treatments. Predictions were compared
to observed data for each treatment at each observed time point.
Predictions were considered in terms of animal weight (g) or the
proportional effect on body weight relative to the control group
(mean weight(treatment) × mean weight(control)

−1). Predictions were
deemed accurate if they were within one standard deviation of the
mean observed value at each time point as this measure takes into
account the individual variability within the data. The percentage of
predictions that were accurate was reported and any exceptions were
noted. Exceptions were used to determine the limitations of the
model and to infer the underlying reasons why they arise.

■ RESULTS

Results are summarized in this section, however, due to the
number of studies used to calibrate and test models, it was not
practical to include all tables and figures here. These can be
found in the SI.

Toxicokinetics. For all the pesticides the concentration
reached in the blood was significantly correlated with that in all
other tissues sampled (p < 0.01) except for the concentration
of fenpropidin in fat which was not significant (p = 0.0574).
However, when one outlier (residual >3 s.d. from mean) was
removed from the analysis, the correlation was highly
significant (p < 0.001).
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All the compounds exhibited first order kinetics, producing
blood concentration time curves which could be reproduced
by fitting of a one compartment TK model. In some cases
adjustments to the modeling procedure were required which
will be described in turn.
For thiamethoxam, global model fits at both high and low

dose levels closely matched the observed data. When model
predictions were tested against independent blood concen-
tration data, the predicted curves again closely emulated the
observed data.
For four of the compounds, acibenzolar-S-methyl, azox-

ystrobin, fludioxonil and fenpropidin, the global model fits
better represented blood kinetics in the high dose group, with
modeled curves not reaching the peak blood concentration
(Cmax) observed in the low dose groups. In all these cases this
same pattern was observed when model predictions were
tested against an independent blood concentration data set.
The likely explanation for this phenomenon is that, as pesticide
concentration in the gut is increased, absorption rate becomes
saturated and reaches a maximum.55 However, with only two
dose levels tested in most toxicokinetics studies, generally
differing by a factor of at least 100, it is not possible to estimate
the point at which this occurs or to determine whether it is a
gradual process or happens suddenly. Lower model accuracy at
low internal concentrations has little impact upon eventual
predictions of effects, and none at all if below the NEC. As the
high dose levels were more relevant to the dietary ingestion
rates associated with effects on body weight, these parameter
values were accepted.
Male rats administered a high dose (100 mg × kg(BW)

−1) of
fenpropidin appeared to exhibit a double peak in the
concentration reached in the blood. An initial peak was
reached 1 h after dosing with a second, lower peak after around
8 h. Double peaks have been attributed to variable absorption
in different regions of the gut, enterohepatic recirculation or
delayed gastric emptying.56 Were the dose delivered at a more
constant rate in the diet rather than as a single large dose one
would expect the overall rates of absorption and elimination to
reach equilibrium and so any of these mechanisms would have
less impact on blood kinetics. As the intended application of
the model was to predict the effects of dietary dosing, it was
decided to fit the model for males with the data collected 2 h, 3
h, 4 h, and 6 h after dosing excluded in the high dose group.
This allowed the model to fit a single peak in which the
observed Cmax, the time at which it was reached (Tmax), and
time for total elimination of the dose were matched closely by
the model.
Following administration of a high dose, peak concentration

of prosulfuron in the blood (μg(AI) × g(Blood)
−1) exceeded the

body weight normalized dose (mg(AI) × kg(BW)
−1). This could

not be modeled by our TK model (eqs 1 and 2) which uses
blood concentration as a proxy for overall internal concen-
tration. However, blood only accounts for around 7% of body
mass57 so in reality only >7% of the dose needs to be present
in the blood at one time for this to occur. Nevertheless, this
phenomenon was unusual among the chemicals included in the
study.
In order to address this, the relationship between

prosulfuron concentration in the blood (CBlood) and overall
carcass concentration of terminated animals was investigated.
Only male animals were used in the tissue sampling
experiments with three animals sampled at each of four time
points following a high or low dose. Blood and carcass

concentration were strongly and significantly correlated
(Pearson’s correlation coefficient, r = 0.99, n = 24, p <
0.0001) . The line of best fit, intercepting the y axis at zero, was
derived by finding the least-squares solution to the equation
CBlood = XCInt. The gradient, X = 2.4337, was determined as the
concentration factor by which prosulfuron concentration in the
blood exceeds that in the body as a whole.
A third equation, incorporating that concentration factor but

otherwise identical to eq 2, was then added to the TK model to
describe blood concentration over time as follows:

Δ = − − Δ
∞ ∞

C L Lk C F L Lk C C W W2.4337 / / ( / )Blood a Gut e Int Int (5)

This determines that, CBlood = 2.4337 × CInt at any given time
point, with ΔCInt modeled by eq 2. Blood and whole body
internal concentration could then be modeled simultaneously.
The fitted model produced curves matching the data well for
both variables at the high dose.
In contrast to other compounds the prosulfuron model

predicted higher than observed internal concentrations at the
low dose level. This was the case for concentration in the
whole body as well as in the blood so the concentration factor
was not the cause of the discrepancy. In fact, for the low dose
group alone the concentration factor was higher than the
overall figure. A possible explanation in this case is that the
elimination rate becomes saturated beyond a certain internal
concentration,58,59 this would be consistent with the unusually
high internal concentrations measured in the high dose groups.
The high dose in the prosulfuron toxicokinetics experiments
was around 450 mg(AI) × kg(BW)

−1, several times higher than
the high dose used for other chemicals included in this study
(100 mg(AI) × kg(BW)

−1). Had the other chemicals been tested
at such high doses it is possible that a similar pattern would
have been evident. Unfortunately, only two dose levels
(differing by a factor of around 900) provide insufficient
data to determine the maximum elimination rate and the
internal concentration at which it is reached.
With fixed parameters and independent data, the model

again predicted higher prosulfuron concentration in the blood
than was observed at the low dose. The data were predicted
well at the high dose however. For both sexes, Cmax and Tmax

were predicted with reasonable accuracy. Elimination of the
compound was slower than predicted in females, but the
parameters were deemed acceptable and the model was not
fitted to males and females separately.

Growth. The fitted DEBkiss growth curve was able to
accurately model growth of rats aged around 6−20 weeks. In
total, the model was fitted to 34 control group data sets
comprising weekly observations of body weight and food
consumption rate. Modeled body weight was within 1 standard
deviation of the observed mean at all time points in 30 out of
34 cases and at >90% of time points in 32 out of 34 cases. The
deviations were most pronounced in two data sets. For the
female control group in the 28 day toxicity study of
fenpropidin, the modeled body weight was lower than the
observed mean by more than one standard deviation at week
one only. As a result, only 75% of the modeled weights were
within one standard deviation. For the male control group in
the 90 day toxicity study of azoxystrobin, the modeled body
weight was lower than the mean by more than one standard
deviation in weeks two and four. This resulted in only 84.6% of
the modeled weights being within one standard deviation of
the observed mean. For every data set, all predictions of body
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weight in the control group were within 10% of the mean at all

time points.
Toxicodynamics. With the growth and toxicokinetic

parameter values fixed, the toxicodynamic parameters, NEC

and CT, were fitted to selected data as described in the

Methods section. Predictions were interpolated to other

treatments in the 90 day studies and extrapolated to 28 day

and 2 year studies.

In terms of body weight ≥75% of predictions were within 1
standard deviation of observed means for 28 out of the 34
study groups. In terms of effect on body weight, ≥ 75% of
predictions were within 1 standard deviation of observed
means for 30 out of the 34 study groups. A summary of results
is shown in Table 2. For female rats administered
thiamethoxam or fludioxonil, TD parameters were fitted to a
single treatment group. This was because, in studies of both
compounds, body weight reductions beyond those predicted

Table 2. Toxicodynamic Parameters Used to Model the Effects of Each Compound on Male and Female Ratsa

aThe percentage of predictions (in terms of absolute body weight and effect on body weight relative to the control group at each time point) within
one standard deviation of the observed mean, are shown. Percentages ≥75% are highlighted in green, those of ≥50% and <75% are shown in blue
while those <50% are highlighted in orange. Those marked with a “*” were fitted to only one treatment group. pMoA: best fitting physiological
Mode of Action.

Figure 4. Graph showing growth modeled based on feeding rate only (lines) and observed body weights (circles) of male rats. The control group
and those dosed with 20 000 mg × kg(diet)

−1
fludioxonil are shown. The proportional breakdown of the observed reduction in body weight of

treated rats vs controls at the end of testing is represented in a bar chart.

Chemical Research in Toxicology Article

DOI: 10.1021/acs.chemrestox.9b00294
Chem. Res. Toxicol. 2019, 32, 2281−2294

2287



based on feeding rate were only evident in the top dose group.
In the case of thiamethoxam, significant body weight
reductions were only observed in females dosed with 10 000

mg/kg(diet) of thiamethoxam over 28 days. Females adminis-
tered fludioxonil in their diet did show significant body weight
reductions. However, these were predicted entirely based on

Figure 5. Bar charts showing the proportion of observed weight reductions relative to the control group attributed to reduced feeding rate and/or
toxic stress by the growth model. All treatments in which a weight reduction was evident at the end of the analyzed period are included. X-axis
labels denote the observation date and dietary dose, in some cases treatments were duplicated between studies. No bar is displayed where there was
no reduction in weight. Note that bars are the same size regardless of the magnitude of the observed effect.
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reduced feeding rate in all but one treatment, those dosed with
20 000 mg/kg(diet) over 90 days. The consequence was that
while the NEC was consistent with data from several
treatments, CT was determined using data from only one
treatment. However, since toxicant ingestion rate was dynamic,
CT was fitted to a range of internal concentrations even within
one treatment.
Model predictions were also used to investigate the extent to

which reductions in body weight could be attributed to
reduced feeding or direct toxic action. This was done by
comparing experimental data to model simulations in which no
stress was applied, producing growth curves predicted based
solely on feeding rate. Comparisons between expected body
weight modeled with actual feeding rates and observed body
weight were conducted separately for every treatment group.
The observed and predicted body weights in each treatment
were converted to proportions of the control body weight
(observed and predicted respectively) at each time point. The
proportion of any observed body weight reductions (relative to
controls) that were predicted based on feeding rate alone could
then be calculated. The remainder was attributed to toxic
action. If body weight predicted based purely on actual feeding
data was below that observed at a given time point, then any
observed weight reduction (relative to controls) was attributed
entirely to reduced feeding rate. Likewise, if body weight
predicted based on actual feeding rate in a given treatment
group was higher than controls, then any observed weight
reduction was attributed entirely to toxic action. An example of
this process is shown in Figure 4; selected results for all
compounds are shown in Figure 5.
For azoxystrobin, prosulfuron, thiamethoxam, and fludiox-

onil there appeared to be a pattern across the sexes, with
reduced growth being driven more by feeding rate in females
and by toxicity in males (Figure 5). This was most evident in
the case of fludioxonil, which was associated with significant
body weight reductions in both sexes. While reductions in male
body weight were attributed largely to toxicity, the reductions
observed in females were predicted based entirely on reduced
feeding rate in all but the highest dose group across two
studies. A similar pattern was seen for thiamethoxam. Once
again toxic effects were only predicted to impact upon female
bodyweight in the highest dose group. In this case, however,
reductions in female body weight were not observed in most
treatments as feeding rate was not affected either.

■ DISCUSSION

Predicting Growth Under Chemical Stress. Raw data
from chronic toxicity studies were used to test DEBtox
predictions of sublethal toxic effects in mammals. Weekly
measurements of body weight and food consumption as well as
precisely measured dietary concentration provide good quality
data with which to calibrate models. As the regulatory
framework requires several such studies, abundant data are
available to test predictions.6,13−15 As has been noted
previously, the way science is generally funded means that
corroboration studies are rarely conducted in academia or
published in the scientific journals as they are not considered
novel.60

Our findings showed good agreement between predictions
and data. With minimal model fitting, observed effects on body
weight were predicted reliably (≥75% of predictions accurate
to within one standard deviation of the observed mean in all
studies for which data were available) in males and females for

four of the six chemicals modeled. This suggests TK
predictions were at least proportional to actual internal
concentration over time and that the “linear past threshold”
TD model (Figure 2) is based on reasonable assumptions.

Feeding Rate vs Toxicant Ingestion. An obstacle when
analyzing the effects of dietary toxicant exposure is that the
ingested dose depends as much on the feeding rate of the study
animals as it does on the concentration in the diet. While a
high feeding rate will have a positive effect on growth, the
corresponding toxicant ingestion will place stress on growth
parameters. Understanding of this trade-off is important61 as
ingestion is considered the primary exposure route for
terrestrial mammals to pesticides in the field37,62 although it
is argued that other routes should receive greater attention.63

In the modeling approach used here, both the scaled feeding
rate and the pesticide ingestion rate were calculated as dynamic
model inputs, directly from the data. This allowed model
predictions to separate the competing effects of feeding rate
and toxic action on growth. For example, male rats given 2500
mg/kg(diet) thiamethoxam grew larger than those given 1250
mg/kg(diet). This result was correctly predicted by the model as
the higher feeding rate of the 2500 mg/kg(diet) group partially
counteracted the chemical stress.
Model predictions can therefore provide new insight into the

observed data by comparing data to model simulations in
which no stress is applied. Such predictions only require the
calibrated growth model and data on feeding rate. Thus, even if
toxic effects cannot be reliably predicted, growth model
predictions can indicate the degree to which observed
reductions in body weight were driven by toxicity or reduced
feeding relative to controls. Such information is valuable for
assessing the risk that a chemical poses to terrestrial mammals
in the field. If strong avoidance is observed, then this may
increase or decrease the risk posed depending on whether
animals would have a choice of food items in the field
scenario.61,62

For several compounds there appeared to be a pattern across
the sexes, with reduced growth being driven more by feeding
rate in females but by toxicity in males. This pattern was
strongest for fludioxonil and thiamethoxam and in both cases
was reflected by a large difference in the values assigned to the
NEC for each sex. This would suggest that while females
exhibit a higher tolerance for these compounds, at least with
respect to growth, they show stronger feeding avoidance. Such
inconsistency in the toxicodynamic parameters of males and
females may seem surprising however, large differences
between reference doses for each sex have long been
documented in rats.64 Moreover, the results were unequivocal
with respect to thiamethoxam, as females were unaffected at
several dose levels which affected males. In several cases,
differences have been noted in the sensitivity of the liver and
kidneys to toxicity,64,65 possibly related to variable enzyme
production between the sexes.66 The liver and kidneys were
identified as the target organs of these pesticides in mammals
so these results would appear consistent with previous findings
(Syngenta, unpublished). Given that such differences in
chemical sensitivity can occur between the sexes it should
not be surprising either that the models suggested different
modes of action for several of the compounds in males and
females (Table 2). Mode of action in DEBtox refers to abstract
processes rather than specific chemical pathways so, this simply
implies that the effects on the growth curve differed between
the sexes.44
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Model Limitations. A fundamental limitation to any
model of a complex system is the trade-off between realism and
simplicity. As user friendliness is a significant consideration for
regulatory use,25 DEBkiss was selected as the simplest possible
approach to investigate how raw lab data should be utilized to
parametrize and calibrate models with data from dietary
toxicity studies. Another reason for prioritising simplicity was
so that potential issues could be clearly identified at this early
stage for future models to develop, with scope for further
elaboration if necessary. Several such issues were highlighted
by our results which are discussed in this section.
While our results demonstrate that DEBtox is a useful

framework, predictions of growth under chemical stress were
not reliable in all cases. The effects of fenpropidin and
acibenzolar-S-methyl were predicted accurately in several
treatments, but overall model accuracy was lower than for
the other chemicals. When considering in vivo effects, any
observed deviations from predictions are unlikely to result
from measurement error, more often, individual variability is
the cause. This represents a hurdle to predictive modeling,
even for genetically similar laboratory strains kept in controlled
conditions. Indeed, individual variability in growth is still
evident in studies using genetically identical springtail
(Folsomia candida) clones kept individually and provided
unlimited food.67 As such, we cannot know for sure how
treated animals would have grown had they been in the control
group but must assume constant growth parameters across
treatments. Consequently, models provide predictions of mean
body weight over time under specified conditions but do not
include uncertainty or variability.
Another consequence of individual variability is that it can

be difficult to identify the underlying causes of model
inaccuracy. For example, several treatment groups of female
rats fed lower dietary doses of acibenzolar-S-methyl grew larger
than controls despite feeding at a lower rate. This is clearly a
result the model would not predict and could simply be the
result of variability in average growth parameters between
treatment groups. Alternatively, this could be interpreted as
evidence of hormesis, the phenomenon by which lower doses
of a chemical have the opposite effect of higher doses on a
given end point. If this were the case, then the stress function
rather than the growth parameters would require alteration,
but we cannot be sure which. In a few treatments the opposite
issue arose when the animals fed at a relatively high rate but
did not grow as expected. Since feeding rate was calculated
based on actual body size rather than predicted size, modeled
growth continued at a higher than observed rate. For these
treatments, model predictions far exceeded observed growth.
This issue could be somewhat resolved by calculating feeding
rate relative to the predicted body size over time. However, it is
likely that variability in growth parameters also played a role.
Furthermore, growth is not the only modeled property

subject to individual variability. Tolerance to a toxicant68 or
the rates at which it is taken up and eliminated37 may be highly
variable among individuals in a population. Intertreatment
differences in any one or more of these properties could result
in observed effects not being uniformly correlated with internal
concentration and are therefore difficult to predict without
further knowledge. This was evident for mandipropamid;
results were not reported as the data were not suitable to test
model predictions. In the 90 day study, males in the highest
dose group grew larger than those at a lower dose despite
feeding at roughly the same rate. Females meanwhile grew

larger than predicted based on their feeding rate in all dose
groups. The highest dose groups in the 28 day study were
terminated early due to unacceptable reductions to feeding
rate, while reduced growth was not observed in the 2 year
study so toxicodynamic predictions could not possibly be
validated.
Poor model accuracy (<50% predictions accurate to within

one standard deviation) only occurred when predicting the
effects of 28 day dietary exposure. This is not entirely
surprising as there are several factors making these data sets
more challenging to model. In 28 day studies sample size was
lowest, with only 5 individuals per sex and only four time
points observed so naturally, individual and temporal
variability would be expected to have a larger impact.
Moreover, in the early weeks of dietary studies feeding rate
can be highly variable between treatments and over time, as
animals react behaviorally to a novel ingredient added to their
diet. In all 3 data sets for which predictions were poor, body
weight predictions in the highest dose groups were
substantially lower than observed. The default value of k
could play a role here. A low k value would stop growth when
it could still occur, though this would be almost entirely
compensated for in the fitting of other growth parameters.
Inclusion of a reproduction buffer could also delay the need to
metabolize structure,26 but using up the buffer would still
correspond to a reduction in overall body weight. Moreover,
starvation was only predicted to occur in the early weeks of
testing, around the onset of puberty,54 so any buffer amassed
would be almost negligible. It is quite possible that the dual
stresses of reduced feeding and toxicity elicit compensatory
physiological or behavioral responses not predicted by the
model. Reduced body temperature has been documented as a
response to starvation in rats69 meanwhile chemical stress has
been shown to induce reductions in body temperature and
activity.70 Such responses would likely correspond to a
reduction in the maintenance rate JvM, and should be
considered in future models of physical and chemical stress.
Individual variability was also evident in the toxicokinetics

data. Individual responses varied with regard to the toxicant
concentration reached in the blood and the speed with which it
was absorbed and eliminated. The low sample size of three
individuals per treatment meant that mean observations for
each time point, to which the models were fitted, could be
heavily influenced by variability on either axis. As an example,
even if three individuals exhibited a single peak with very little
variability in Cmax, the average data could show a double peak if
just one individual peaked later than the other two. Moreover,
both peaks would likely be lower than the Cmax of any
individual. Even simple quantitative assessment of model fits,
such as whether model predictions were in the observed range
for toxicokinetic statistics such as Cmax, Tmax or area under the
curve, were therefore problematic. Besides, which of these
statistics would be more relevant for predicting the internal
concentration resulting from prolonged dietary exposure is
debatable and none of them they are used by TK−TD models
to predict effects. Nevertheless, TK model predictions provide
plausible estimates of internal concentration resulting from the
recorded time varied ingestion rates, with parameter values
fitted to the best available data. It is likely that the predictions
are at least proportional to the true values and therefore form a
credible basis for the fitting of TD parameters.
While it is not possible to separate variability in TD and

growth parameters, future model iterations could incorporate
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stochasticity in growth parameters by utilizing the wealth of
control data available from studies on R. norvegicus.67 This
would also be possible for TK parameters although low sample
size would present a challenge.
Implications for DEB Theory. In this study, precise food

consumption data were available, rather than simply food
availability. This allowed the mean surface area specific feeding
rate to be calculated on a weekly basis for each treatment in a
study, before being scaled as a proportion of the maximum
value in each data set. Consequently, the growth parameters
were fitted to controls in each data set to account for variability
in feeding rate within and between studies. Previously, it has
been assumed that the scaled feeding rate, f, is equal to 1 when
food is available ad libitum.27 For certain purposes this is a
reasonable and necessary assumption. When modeling growth
in the field for example, detailed data are unlikely to be
available and so feeding rate must be estimated as a fraction of
ad libitum feeding in laboratory studies. However, this was not
satisfactory in this study as variability in feeding rate over time
and between treatments was an important driver of effects.
Moreover, several treatment groups fed at a higher rate than
controls, so it was important not to assume the maximum value
of f as the default.
Growth ceases at the ultimate weight, W∞, as this is the

point at which the maximum assimilation rate can only match
the maintenance requirements of the organism.26 Assuming f =
1 means that W∞ is equal to the theoretical maximum weight,
Wm, when food is available ad libitum (see Table 1). However,
a marked trend in the data was that, even with unrestricted
access to food, feeding rate relative to surface area declined as
the animals grew. This presents a clear issue in that it places an
additional limit on the assimilation rate and ensures that the
growth curve reaches a plateau before Wm is reached. In many
cases, by week 13−14 of observation, the value of f was well
below the maximum and so the theoretical Wm based on fitted
parameter values was unrealistically high.
Recent DEBtox studies of toxic effects on rainbow trout have

also sought to account for variability in f, however this has
focused on differences between study groups rather than
within treatment changes over time.23,24 Much effort has gone
into deriving standard DEB parameters for species of
interest.21,53,54 However, lifetime variation in f must be
considered for these to be compatible with time varied feeding
data rather than the constant food density. For laboratory
strains of R.norvegicus this could certainly be addressed; due to
their extensive use in regulatory testing there exists a vast
database of growth and food consumption in control
conditions. If the relationship between feeding rate and body
size were described mathematically, then this could be utilized
for scaling observed feeding rate such that the maximum
feeding rate decreases with size and the resulting value of f
remains roughly constant over the lifetime.
Although longer term data were available, predictions of

toxic effects on body weight were not reported beyond around
12−14 weeks of dietary exposure for the two year studies.
Beyond this point the intervals between body weight and food
consumption observations increased. Since observed feeding
rate was used as a model input, this reduction in data
resolution would be expected to adversely affect predictions.
There were also more fundamental reasons behind this cutoff.
While sigmoidal curves such as the Von Bertalanffy growth
model (to which DEBkiss simplifies26) can approximate the
growth curve of rats, there are distinct stages where observed

growth deviates from such a model. It has previously been
reported that the Gompertz function−also sigmoid−matches
data closely when fitted to the first 70−105 days of rat growth
but that longer term predictions are problematic.71 When fitted
to the full two years of control data the DEBkiss curve also
showed systematic errors. For both males and female rats,
predicted body weight was lower than observed for roughly the
first three months, higher than observed until around month
14 and then lower than observed for the final 10 months.
A possible explanation is that k (the allocation to soma and

reproduction), does not remain constant throughout the rat’s
lifespan. A logical suggestion is that a greater proportion of
energy may be allocated to growth earlier in life with more
energy used for sexual maturation during puberty. Indeed, it
has been postulated that k may change in humans at puberty.20

It is also likely that reserve dynamics become more important
in adult rats, as continued ad libitum food availability allows
animals to develop significant reserve stores after structural
growth has ceased. The full DEB model which, unlike DEBkiss,
models reserve as well as structure may therefore be better able
to address this issue.
Another issue with long-term predictions is that there is

insufficient knowledge regarding recovery after inhibition of
growth in rats. By default, after a stressor is removed, modeled
body weight may theoretically reach Wm if feeding rate is high
enough. On the basis of our analysis, this assumption appeared
sound for rats up to around 23 weeks of age. Model predictions
agreed well with data in cases where 90 day studies included 4
weeks of recovery for the highest dose group. However,
skeletal growth is known to stop in rats at around 26 weeks of
age, the underlying processes are complex but appear to be
related to age rather than size.72 Logically, if growth has been
suppressed up to a critical age then a full recovery, relative to
controls, will not be possible as growth will cease before W∞,
let alone Wm, can be reached. We hypothesize that this occurs
because, beyond a certain age, available energy is allocated to
processes other than growth, such as maturation and
reproduction. This would correspond to a reduction in the
parameter k, resulting in a reduced growth rate and, crucially, a
lower W∞, for animals that had experienced stress.20,26

Realistic constraint of recovery is essential for long-term
predictions to be of use. Otherwise, to match observed data,
TD parameters must continually stress growth even when it is
no longer possible, and so exaggerate the toxicity of a chemical.
Recovery may be limited as a function of the (structural)
weight reached by a critical age. However, determining rules by
which to accurately decrease the value of k thereafter would
likely require significant experimental work. Removing a given
stressor at different time points may identify the age at which a
full recovery becomes impossible. However, subsequent
experiments would still be required to examine how potential
for recovery is affected by the level of stress as well as the
duration. This is discussed in greater detail in the SI. Such
experimental work was beyond the scope of this study and, in
any case, for regulatory purposes such long-term predictions
are of limited relevance. As pesticides are not applied at
constant rates for years at a time, a 21-day exposure scenario is
used in ecological risk assessment to determine risk to animals
in the field,62 well below the 12−14 weeks of exposure
modeled in this study.
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■ CONCLUSIONS

This study shows that DEBtox modeling with DEBkiss can
provide an effective and simple to use tool for predicting toxic
effects on growth in rats. We show how time varying model
inputs for feeding rate and pesticide ingestion rate can be
calculated directly from data generated in standard chronic
toxicity studies, providing additional insight into data by
indicating to what extent body weight is impacted by feeding
rate or toxic effects over time.
We also identify several difficulties which future models

should aim to overcome. Individual variability presents a
significant obstacle to assessing model accuracy. Our models
simulate toxicokinetics, toxicodynamics, and growth, all of
which may be subject to variability. In most cases, predictions
were accurate to within one standard deviation of the observed
mean and so provide useful estimates of the mean but not
exact projections including variability.
Our findings support DEB theory as an effective basis for

predictions of sublethal toxic effects in mammals. However,
some issues became apparent regarding its compatibility with
chronic toxicity data. Given the extensive use of R. norvegicus in
laboratory testing and the resulting wealth of control data,
these complications can be addressed. Further analysis of
lifetime variation in feeding rate and energy allocation to the
soma may improve model accuracy and realistically constrain
recovery. Such adjustments would broaden the range of
applications for which DEBtox may be used.
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