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Abstract

The original singularity theorems of Penrose and Hawking were proved 

for matter obeying the null energy condition or strong energy condition, 

respectively. Various authors have proved versions of these results under 

weakened hypotheses, by considering the Riccati inequality obtained from 

Raychaudhuri’s equation. Here, we give a different derivation that avoids the 

Raychaudhuri equation  but instead makes use of index form methods. We 

show how our results improve over existing methods and how they can be 

applied to hypotheses inspired by quantum energy inequalities. In this last 

case, we make quantitative estimates of the initial conditions required for our 

singularity theorems to apply.

Keywords: general relativity, singularity theorems, energy conditions, 

quantum inequalities

1. Introduction

A central question in gravitational physics is to determine conditions under which singu-

larities arise either as the endpoint of gravitational collapse or at the origin of an expanding 

universe. Initial efforts to answer this question were restricted to spacetimes with high sym-

metry or simple matter models. A major breakthrough occurred with the proof of general 

singularity theorems by Penrose [39] and Hawking [28] in the mid-1960’s. There, for the first 

time, it was proved that a singularity is inevitable if the spacetime and matter obey a series 

of general assumptions. It is striking that these revolutionary theorems were proven about 5 

years before the identification of the first black hole candidate [4, 47] and within months of the 

cosmic microwave background (CMB) discovery [40] (the link with singularity theorems was 
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discussed in [29]). Today, though observation now provides direct images of a black hole [11] 

and detailed CMB measurements [2], the question of whether singularities exist in our physi-

cal universe remains open. Of course it is impossible to observationally detect singularities 

and a full theoretical answer requires a consistent theory of quantum gravity. In the absence 

of such a theory, semiclassical gravity provides the most accurate current model of the uni-

verse. It is therefore important to seek improved versions of singularity theorems that take into 

account the properties of quantised matter in order to shed light in the necessary conditions 

that lead to singular spacetimes in a semiclassical approximation.

In the context of singularity theorems a spacetime is defined as singular if it contains at 

least one causal geodesic that is inextendible and incomplete to the future (or past). That is, 

it cannot be extended arbitrarily far to the future as an affinely parameterised geodesic. This 

situation need not be associated with a curvature singularity. The basic ingredients of the 

singularity theorems may be grouped under three headings [42]: causality assumptions on the 

spacetime, energy conditions on its matter content, and an initial condition at some surface 

S. The causality assumptions are used to show that a future-geodesically complete spacetime 

must contain a future-complete geodesic that emerges normally from S and has no focal points 

to S. The precise definition of a focal point will be recalled below in section 2; for the moment 

it is enough to think of it as a point where nearby geodesics emanating normally from S focus 

(to a good approximation). On the other hand, the energy conditions and the initial condition 

are used to show that every future-complete geodesic emerging normally from S must contain 

at least one focal point. It follows that no spacetime obeying the causality, energy condition 

and initial conditions can be future-geodesically complete1.

This paper is concerned with the link between energy conditions and focal points. The 

standard approach, as presented in [28, 30, 35, 39, 42, 45, 48] for example, links the existence 

of focal points to the behaviour of certain geodesic congruences leaving S; a focal point exists 

if the expansion of the congruence diverges at finite affine parameter. The energy conditions are 

then used in conjunction with Raychaudhuri’s equation to prove that such a divergence occurs, 

provided that the congurence is initially converging. Here, the energy conditions employed 

are typically the null energy condition (NEC), that TµνUµUν � 0 for all null Uµ at all points 

in spacetime, or the strong energy condition (SEC), that TµνUµUν − T/(n − 2) � 0 for all 

timelike unit vectors Uµ at all points of spacetime, where n is the spacetime dimension. In 

this paper we will always incorporate the cosmological constant into the stress–energy tensor. 

Then Einstein’s equations directly connect the strong and NECs on the stress–energy tensor 

with the geometric conditions of timelike and null convergence.

There are good reasons to seek generalisations of these results with weaker conditions 

on the matter. At the microscale, for example, it is known that matter described by quantum 

fields cannot obey any pointwise energy conditions [10]. Meanwhile, on the macroscale, the 

SEC fails in the current era of our universe, due to the dominant effect of dark energy. Several 

authors have considered generalisations of the singularity theorems in this direction, starting 

from work of Tipler [43, 44] (see also [7]) in which various averaged energy conditions are 

employed in place of the pointwise versions. Examples include [5, 41, 46] and [6, 15]. Most 

of these references involve the analysis of a Riccati inequality

Dθ

dt
� RµνUµUν −

θ2

n − r
 (1)

1 There are also singularity theorems, such as the Hawking–Penrose theorem [31] that turn on the existence of a pair 

of conjugate points along a geodesic, but which we will not consider here.
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derived from the Raychaudhuri equation, using results such as those of [26]. Here θ is the 

expansion of the geodesic congruence with velocity field Uµ and r  =  1 (resp., r  =  2) for time-

like (resp., null) geodesic congruences; our geometric conventions are stated at the end of this 

section. Similar techniques may be used to establish generalised versions of other results in 

mathematical relativity, e.g. the area theorem [34].

In this paper, we will point out a more direct method for obtaining such results, which 

avoids the use of the Raychaudhuri equation and Riccati inequalities. Instead it is based on 

the study of the index form, which arises as the the second variational derivative of the length 

functional about a geodesic. Our treatment has been influenced by O’Neill’s discussion of the 

standard singularity theorems [37]. Actually, index form methods were used by Chicone and 

Ehrlich [7] to prove the existence of conjugate points along complete geodesics, using the 

averaged null energy condition (ANEC) or the comparable condition for the SEC, but this 

seems to be the only occasion on which index forms have been used to establish singularity 

theorems under weakened conditions. Our treatment will make a much wider use of these 

techniques, and will prove results for local energy averages that are analogous to, but improve 

upon and are simpler to prove than, the results of [6, 15].

There are two basic advantages to this approach. The first is that it works well with weak-

ened integral energy conditions, more easily satisfied by classical and quantum fields. The 

second is that it gives an estimate of the proper time or affine parameter where the focal point 

is formed. That means we can estimate the location of the singularity, as well as the minimum 

contraction required to guarantee its existence.

The averaged energy conditions we will study include some that are inspired by known 

quantum energy inequalities (QEIs) satisfied by quantum fields (which, as mentioned, cannot 

satisfy pointwise energy conditions in general). QEIs were first introduced by Ford [24] and 

have since been established in a number of quantum field theory models in flat and curved 

spacetimes (see [13] for a recent review). Often such inequalities take the general form
∫

γ

〈ρ〉ωf (τ)2dτ � −|||f |||
2
, (2)

for f  a smooth compactly supported real-valued function. Here ρ  is the renormalized energy 

density or similar quantity along a timelike curve γ , ω  is a Hadamard state, and |||f |||
2
 is a 

finite positive linear combination of squared L2-norms of f  and its derivatives; thus |||·||| is 

dominated by a Sobolev norm.

It has been long known [14] that the quantized minimally coupled scalar field admits a 

bound of this form with |||f |||
2
= (16π2)−1‖f ′′‖2 for averaging along a timelike geodesic 

in four-dimensional Minkowski space. QEIs established for this field in curved spacetimes, 

e.g. [12, 21] can be rewritten in this form. For example, [33] computed the QEI of [21] by 

perturbative methods, writing the bound in terms of L2-norms of derivatives of the averaging 

function and constants that depend on the upper bound of the curvature. The non-minimally 

coupled scalar field obeys (state-dependent) QEI bounds [16, 19] that could potentially also 

be brought into the same form. Similar remarks apply to other fields for which QEIs have been 

found—see [13] for references.

This paper is organized as follows. In section 2 we present an overview of index form meth-

ods and derive the basic results leading to the proofs of the original Hawking and Penrose sin-

gularity theorems. In section 3 we show how the same method can be used to prove singularity 

theorems with weakened energy conditions. As an example we discuss conditions involving 

exponentially damped integrals of the stress tensor components for the timelike and null cases. 

In section 4 we present the main result of the paper which is the derivation of singularity 

C J Fewster and E-A Kontou Class. Quantum Grav. 37 (2020) 065010



4

theorems with energy conditions inspired by QEIs, see equation (2). Approximations for the 

required initial conditions for geodesic incompleteness in different cases are derived. In sec-

tion 5 we apply the results of section 4 in the case of the classical non-minimally coupled 

Einstein–Klein–Gordon theory to show how our results can provide quantitative estimates. 

Finally we conclude in section 6 with a summary and discussion of future work. For simplicity 

and as a proof of principle, we have concerned ourselves solely with singularity theorems for 

globally hyperbolic spacetimes. This also fits well with the fact that QEIs are typically derived 

under the assumption of globally hyperbolicity, and the stability of this condition under small 

metric perturbations gives some confidence in the relevance of our results for semi-classical 

gravity. It would also be interesting to apply our methods to singularity theorems that do not 

assume global hyperbolicity (see, e.g. the discussion and references in [35, section 6.6]).

Conventions. Unless otherwise stated, we consider a general spacetime dimension n  >  2 and 

adopt units in which G  =  c  =  1. We employ [−,−,−] conventions in the Misner, Thorne and 

Wheeler classification [36]. That is, the metric signature is (+,−,−, . . . ), the Riemann tensor 

is defined as R
µ

λην v
ν = (∇λ∇η −∇η∇λ)v

µ, and the Einstein equation is Gµν = −8πTµν. 

The d’Alembertian is written �g = gµν∇µ∇ν. A consequence of our conventions is that time-

like and null convergence conditions take the form RµνUµUν � 0 for timelike or null vectors 

Uµ respectively.

2. Index form methods and focal points

Here we present the basic theorems concerning the existence of focal points along timelike 

and null geodesics, in terms of index forms. At the end of each subsection we discuss how 

these theorems can be used to prove the Hawking and Penrose singularity theorems. Much of 

this section is closely related to chapters 10 and 14 of [37]. On a point of notation, differentia-

tion with respect to a time parameter will be denoted with a dot, while differentiation with 

respect to an affine parameter on null geodesic is indicated with a prime.

2.1. Focal points along timelike geodesics

Let (M, gµν) be a smooth Lorentzian spacetime, and let S be a smooth spacelike hypersurface 

in M. If γ : [0, τ ] → M  is a smooth timelike curve, its length (i.e. the total proper time along 

γ) is

L[γ] =

∫ τ

0

|γ̇(t)| dt, |V| :=
√

gµνVµVν . (3)

Let q ∈ I+(S) be fixed; then γ  is a critical point of the length functional among unit-speed 

timelike curves joining S to q if and only if it is an affine geodesic issuing normally from S. 

In more detail, γ  is a geodesic of this type if and only if dL[γs]/ds|s=0 = 0 for every smooth 

1-parameter family of curves γs : [0, τ ] → M , s ∈ (−δ, δ) obeying

γ0 = γ, γs(0) ∈ S, γs(τ) = q (4)

for all s ∈ (−δ, δ). Introducing some terminology, the partial derivatives of γs(t) (in an arbi-

trary system of coordinates) with respect to t and s determine the longitudinal and transverse 

vector fields Uµ = ∂γs(t)
µ/∂t , Vµ = ∂γs(t)

µ/∂s, obeying

∇UVµ = ∇VUµ, (5)

C J Fewster and E-A Kontou Class. Quantum Grav. 37 (2020) 065010
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an identity which holds for any smooth 1-parameter family of curves. In particular, the restric-

tions of Uµ and Vµ to γ  yield the velocity vector Uµ|γ(t) = γ̇µ(t) and variation vector field 

Vµ|γ(t) = dγs(t)
µ/ds|s=0.

The above discussion may be generalised to piecewise smooth curves, with the result that 

γ  is a critical point of L among unit-speed piecewise smooth curves if and only if it is an 

unbroken timelike geodesic in its proper time parametrisation. The variation field arising from 

a piecewise smooth variation of γ  is continuous and piecewise smooth, while the velocity field 

may have discontinuities (see [3, section 10.1] for further background on piecewise smooth 

variations).

Now suppose that γ  is an affine geodesic emanating normally from S. A point p  on γ  is a 

focal point to S along γ  if there is a nontrivial variation of γ , among affine geodesics issuing 

normally from S, with a variation field that vanishes at p . The corresponding variation vector 

field therefore obeys the equation of geodesic deviation

D2Vµ

dt2
+ R

µ
ναβUνUαVβ = 0, (6)

i.e. Vµ is a Jacobi field. The other conditions on the variation imply that

Vµ|p = 0, VµUµ|γ(0) = 0, KµνVµVν |γ(0) = Vµ∇UVµ|γ(0), (7)

where Kµν = ∇µξν is the extrinsic curvature tensor of S and ξµ is the normalised longitudinal 

vector field of this variation (in particular Uµ|γ = ξµ|γ). In fact, the first two conditions in 

equation (7), combined with equation (6), imply that UµVµ vanishes identically along γ .

The existence of focal points along γ  is closely related to the question of whether γ  is a 

local maximum of the length functional, among constant speed curves joining S to q (not nec-

essarily geodesics). The analysis starts from a formula for the second derivative of the length 

functional for a variation γs of γ  in which each γs is a piecewise smooth constant speed curve2 

joining S to q and γ0 has unit speed:

d2

ds2
L[γs]

∣

∣

∣

∣

s=0

= I[V] :=

∫ τ

0

(

DVµ

dt

DVµ

dt
− RµναβUµVνVαUβ

)

dt + KµνVµVν |γ(0). (8)

The quantity I[V] is called the index form; it is usually presented in a polarised form as a bilin-

ear form in two vector fields, but we will not need to do that here.

Owing to the conditions placed on γs, we have

VµUµ|γ(0) = 0, Vµ|γ(τ) = 0, Uµ

DVµ

dt
≡ 0, (9)

where the first two conditions reflect the boundary conditions that γs(0) ∈ S, γs(τ) = q, while 

the third is due to the restriction to constant speed curves. (To see this, note that

Uµ∇UVµ = Uµ∇VUµ =
1

2
∇V(U

µUµ) =
1

2τ

d

ds
L[γs]

2

∣

∣

∣

∣

s=0

= 0 (10)

using constant speed parametrisation and the fact that γ0 is geodesic.) As γ  is an affine geo-

desic, these conditions imply that UµVµ
≡ 0. If V is smooth, integrating by parts in (8) and 

rearranging gives

I[V] = −

∫ τ

0

Vµ

(

D2Vµ

dt2
+ R

µ
ναβUνUαVβ

)

dt + Vµ∇UVµ|γ(τ) + (KµνVµVν − Vµ∇UVµ)|γ(0),

 (11)

2 The speed |γ̇s(t)| may vary with s, but not t.

C J Fewster and E-A Kontou Class. Quantum Grav. 37 (2020) 065010
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and it is clear from equations (6) and (7) that I[V] = 0 if γ(τ) is a focal point to S along γ  and 

Vµ is the corresponding Jacobi field (which necessarily satisfies the conditions (9)). In this 

situation the index form is not negative definite, so either the second derivative test is incon-

clusive or γ  is not a local maximum of L. Table 1 summarises a more detailed relationship 

between the index form and focal points presented in theorem 10.34 in [37]. From these logi-

cal relationships, it may be seen that the first two implications may be replaced by ‘if and only 

if’ statements. For if I[V] < 0 for all Vµ then neither of the second or third conclusions holds, 

and therefore neither of the hypotheses on these lines can hold. Therefore there is no focal 

point in (0, τ ] and so the first implication admits a converse. Similarly, if the second conclu-

sion holds then neither of the first or third can and we deduce that there must be a focal point 

in (0, τ), so the implication on the second line also admits its converse. In particular, we have:

Proposition 2.1. There exists a focal point γ(r) to S along γ  for r ∈ (0, τ ] (resp., r ∈ (0, τ)) 
if and only if I[V] � 0 (resp., I[V] > 0) for some piecewise smooth Vµ obeying (9). Conse-

quently: if γ  is length-maximising, then there is no focal point in (0, τ); if γ  is not length-

maximising, then there is a focal point in (0, τ ]; if there is a focal point in (0, τ), then γ  is not 

length-maximising; if there is no focal point in (0, τ ] then γ  is length-maximising.

Next, suppose vµ is a unit spacelike vector tangent to S at γ(0), extended along γ  by paral-

lel transport. Then, any continuous piecewise smooth function f  obeying f (0) = 1, f (τ) = 0 

determines a continuous piecewise smooth variation field obeying (9) by

Vµ = f v
µ. (12)

Noting that DVµ/dt = ḟ v
µ, which is spacelike, we have

I[V] =

∫ τ

0

(

−ḟ 2 − f 2RµναβUµ
v
ν
v
αUβ

)

dt + Kµνv
µ

v
ν |γ(0). (13)

But now consider an orthonormal basis eµ (µ = 0, . . . , n − 1) for the tangent space to S at γ(0), 
in which e

µ
0 = Uµ, and apply the preceding argument to each element ei (i = 1, . . . , n − 1), 

keeping the same scalar function f . Summing, we find

n−1
∑

i=1

I[ fei] = −

∫ τ

0

(

(n − 1)ḟ 2 + f 2RµνUµUν
)

dt − K|γ(0), (14)

where we have used the fact that UµUνKµν = 0, so that the extrinsic curvature 

K = gµνKµν = −
∑

i K(ei, ei). If there is no focal point in (0, τ ] (resp., (0, τ)) then each term 

on the left-hand side is negative (resp., nonpositive) for all f  obeying the boundary conditions 

f (0) = 1, f (τ) = 0. Conversely, if the right-hand side is nonnegative (resp., positive) for 

some such f , then the same must be true of at least one of the terms on the left, and it follows 

that there is a focal point in (0, τ ] (resp., (0, τ)). In other words, we have sufficient conditions 

for the presence of a focal point in (0, τ) or (0, τ ] (and consequently some necessary condi-

tions for their absence).

Table 1. Summary of theorem 10.34 in [37]. Here ‘for some/all Vµ’ is to be interpreted 
as ‘for some/all piecewise smooth Vµ obeying the conditions (9)’.

� ∃ focal point in (0, τ ] =⇒ I[V] < 0 for all Vµ

∃ focal point in (0, τ) =⇒ I[V] > 0 for some Vµ

Only focal point in (0, τ ] is τ =⇒ I[V] � 0 for all Vµ, and 

I[V] = 0 for some Vµ

C J Fewster and E-A Kontou Class. Quantum Grav. 37 (2020) 065010
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Proposition 2.2. Let γ : [0, τ ] → M  be a unit-speed timelike geodesic emanating normal-

ly from a smooth spacelike hypersurface S. If there exists a continuous, piecewise smooth f  on 

[0, τ ] obeying f (0) = 1, f (τ) = 0 and
∫

τ

0

(

(n − 1)ḟ 2 + f 2RµνUµUν

)

dt � −K|γ(0), (15)

then there is a focal point to S along γ . If the inequality (15) holds with a strict inequality then 

the focal point lies before γ(τ).

This result may be used to deduce the existence of focal points, without using the 

Raychaudhuri equation [37, proposition 10.37]. Recall that the timelike convergence condi-

tion asserts that RµνUµUν � 0 for all timelike Uµ, which is equivalent to the SEC for solu-

tions to the Einstein equations3.

Corollary 2.3. If K|γ(0) < 0, τ � (n − 1)/|K|γ(0)| , and the Ricci tensor obeys the timelike 

convergence criterion, then there is a focal point to S along γ , i.e. by proper time τ  at the lat-

est. If τ > (n − 1)/|K|γ(0)| the focal point occurs before time τ .

Proof. Apply proposition 2.2 using the function f (t) = 1 − t/τ , noting that the left-hand 

side of (15) is less than or equal to (n − 1)/τ which is less than or equal to −K|γ(0) by as-

sumption. This gives the first stated result; the second is a trivial modification. □ 

At this point it is helpful to explain the relationship between the index form method and the 

traditional approaches based on the Raychaudhuri equation. One way to determine whether the 

condition given in proposition 2.2 holds is to solve the variational problem of minimising the 

right-hand side of equation (15), treated as a functional J[f ], over smooth f  obeying f (0) = 1, 

f (τ) = 0. Considering variations f + ǫg where g is smooth and obeys g(0) = g(τ) = 0, one 

finds easily that

J[ f + ǫg] = J[ f ] + 2ǫ

∫ τ

0

(

−(n − 1)f̈ + fρ
)

g dt + ǫ
2J[g], (16)

where we now write ρ(t) = RµνUµUν |γ(t). There is at most one stationary point, namely the 

solution to

−(n − 1)f̈ + fρ = 0, f (0) = 1, f (τ) = 0, (17)

if it exists (which it does unless there is a solution to the same equation with f (0) = f (τ) = 0). 

For this solution, one finds J[ f ] = (n − 1)ḟ (0) using an integration by parts4. Therefore a suf-

ficient condition for (15) to hold is that the solution to (17) has ḟ (0) � −K|γ(0)/(n − 1).

Assuming that f  is nonvanishing in (0, τ), we may now set θ = (n − 1)ḟ/f  and note that the 

Euler–Lagrange equation (17) may be rewritten as the Riccati equation

θ̇ = −
θ2

n − 1
+ ρ, θ(0) = (n − 1)ḟ (0), (18)

with θ → −∞ as t → τ−. (If f  has an interior zero then we repeat the reasoning on the interval 

between t  =  0 and the first zero.) We see that a sufficient condition for the existence of a focal 

3 Recall that the cosmological constant has been incorporated into the stress–energy tensor.
4 This stationary point is the global minimum of J provided that J[g] � 0 for all smooth g obeying Dirichlet bound-

ary conditions, which can be analysed as an eigenvalue problem. However we will not need to do this.

C J Fewster and E-A Kontou Class. Quantum Grav. 37 (2020) 065010
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point along γ  is that the above Riccati equation fails to have a solution beyond [0, τ ] for initial 

data with θ(0) � −K|γ(0).

By contrast, now consider the (irrotational) congruence of unit speed timelike geodesics 

emanating normally from the S with velocity field Uµ. The Raychaudhuri equation for the 

expansion θ = ∇µUµ gives

Dθ

dt
= RµνUµUν − 2σ2 −

θ2

n − 1
, θ|γ(0) = K|γ(0), (19)

along any geodesic in the congruence, where σ is the shear scalar, and so θ obeys the differ-

ential inequality

Dθ

dt
� RµνUµUν −

θ2

n − 1
, θ|γ(0) = K|γ(0). (20)

Therefore the Raychaudhuri equation leads to a similar analysis to that arising from the index 

form methods, though with the slight complication of working with a differential inequality 

rather than a differential equation. More significantly, in the index form approach one need 

not pass to differential equations at all, but instead try to satisfy (15) by judicious choice of 

trial functions f . This is exactly what was done in the proof of corollary 2.3 and will be our 

approach in the rest of this paper.

To complete this section, we now recall one of the simplest links between the presence of 

focal points and timelike geodesic incompleteness. The following result draws on [27] and 

[37, theorem 14.55A].

Proposition 2.4. Let S be a smooth spacelike Cauchy surface in M. (a) If S is compact and 

every future-complete timelike geodesic emanating normally from S contains a focal point 

then M is future timelike geodesically incomplete. (b) If every future-directed timelike geo-

desic emanating normally from S without focal points has length (strictly) less than τ∗ then 

every future-directed timelike curve emanating from S has length (strictly) less than τ∗; con-

sequently M is future timelike geodesically incomplete.

Proof. 

 (a)  Assume that M is future timelike geodesic complete. As discussed in the proof of [15, 

theorem 5.1], based on results of [27], the hypotheses imply the existence of an S-ray; 

namely, a future inextendible unit-speed timelike geodesic γ  emanating (necessarily 

normally) from S and which is length-maximising between S and each of its points. 

Accordingly γ  contains no focal points to S, but as it is future-complete by assumption 

we obtain a contradiction.

 (b)  By [37, lemma 14.29 & theorem 14.44], every q ∈ D+(S) \ S  is connected to S by a 

timelike length-maximising geodesic, which necessarily emanates normally from S and 

has no focal points before q. By hypothesis, this geodesic has length (strictly) less than τ∗.

Now consider any unit-speed future-directed timelike curve γ : [0, τ ] → M  with γ(0) ∈ S, 

assuming for a contradiction that τ > τ∗ (or τ � τ∗). But γ(τ) is also joined to S by a length-

maximising geodesic of length τ ′ (strictly) less than τ∗, so we deduce τ∗ � τ ′ � τ > τ∗ (or 

τ∗ > τ ′ � τ � τ∗) thus obtaining a contradiction. In particular, every inextendible future-di-

rected timelike geodesic emanating from S has finite length and is therefore incomplete. □ 

Combining corollary 2.3 and proposition 2.4 yields one of Hawking’s singularity theorems 

[28].
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Corollary 2.5. If supS K < 0 on S (in particular, if S is compact and K  <  0) and the time-

like convergence condition holds, then M is future-timelike geodesically incomplete.

The central idea of this paper is that results similar to corollary 2.3, proposition 2.4 and 

corollary 2.5 may be proved under weaker assumptions on the Ricci tensor, by replacing the 

linear function f  in the proof of corollary 2.3 by a suitable alternative. This will be described 

in sections 3 and 4 below. Before that, we describe how the above theory can be adapted to 

null geodesics, again following [37].

2.2. Focal points along null geodesics

Let γ : [0, ℓ] → M  be a piecewise smooth curve. Then the integral

E[γ] =
1

2

∫ ℓ

0

g(γ′(λ), γ′(λ))dλ, (21)

is called the energy or action integral, and is the natural quantity to consider in the variational 

theory of null geodesics because, unlike the situation for L, E[γs] varies smoothly in s for 

any piecewise smooth variation of γ , regardless of the causal nature of γs. Let P be a smooth 

semi-Riemannian submanifold of M, q ∈ M \ P and Ω(P, q) the manifold of all piecewise 

smooth curve segments from P to q. Then the critical points of E among curves in Ω(P, q) are 

geodesics emanating normally from P, and the second derivative of E in a smooth variation γs 

of such a geodesic γ = γ0 is [37, proposition 10.39]

∂2E[γs]

∂s2

∣

∣

∣

∣

s=0

=

∫ ℓ

0

[

(∇UVµ)(∇UVµ)− RµναβUµVνVαUβ
]

dλ+ (Uµ∇VVµ)

∣

∣

∣

∣

ℓ

0

,

 (22)

where Uµ = γ′(λ) and Vµ|γ(λ) = dγs(λ)
µ/ds|s=0, and we assume that γ  is affinely parame-

trised. The right-hand side of (22) is, by definition, the Hessian H[V] of E at critical points; it 

may also be written

H[V] =

∫ ℓ

0

(

DVµ

dλ

DVµ

dλ
− RµναβUµVνVαUβ

)

dλ− UµIIµ(V , V)

∣

∣

∣

∣

γ(0)

,

 (23)

where II is the shape tensor or second fundamental form, defined so that IIµ(V , W) is the pro-

jection of ∇VWµ onto the subspace of vectors normal to P, for vector fields V , W  tangential 

to P. The following result is proved as proposition 10.41 of [37].

Proposition 2.6. Let P be a spacelike submanifold of M. If there are no focal points of P 

along a normal null geodesic γ ∈ Ω(P, q), then H[V] is positive semidefinite when restricted 

to piecewise smooth Vµ obeying UµVµ
≡ 0. If H[V] = 0 for some such Vµ, then Vµ is tangent 

to γ .

Now let γ : [0, ℓ] → M  be a null geodesic affinely parametrized by λ and P a spacelike 

(n − 2)-dimensional submanifold of M. Let ei (i = 1, . . . , n − 2) be an orthonormal basis at 

Tγ(0)(P). We parallel transport these vectors along γ  to get Ei (i = 1, . . . , n − 2). Let f  be a 

smooth function with f (0) = 1 and f (ℓ) = 0. Then

H[ fEi] =

∫ ℓ

0

(

−f ′2 − f 2RµναβUµEν
i Eα

i Uβ
)

dλ− UµIIµ(Ei, Ei)

∣

∣

∣

∣

γ(0)

. (24)
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Now sum over all i = 1, . . . , n − 2, noting that gνα = U(νWα) −
∑n−2

i=1 Eν
i Eα

i  for a suitably 

chosen null vector W, to obtain

n−2
∑

i=1

H[ fEi] = −

∫ ℓ

0

(

(n − 2) f ′2 − f 2RµνUµUν
)

dλ− (n − 2)UµHµ|γ(0),

 (25)

where

Hµ =
1

n − 2

n−2
∑

i=1

IIµ(Ei, Ei) (26)

is the mean normal curvature vector field of P.

This calculation may be used in conjunction with proposition 2.6 to give a sufficient con-

dition for the existence of a focal point along γ , just as in the derivation of proposition 2.2. 

As there is no unique natural parametrisation of a null geodesic, it is convenient to state the 

result in an invariant form, regarding γ  as an unparametrised 1-dimensional submanifold of 

M. The notation dγµ denotes the line element 1-form on γ , giving the tangent vector dγµ/dλ 

with respect to any coordinate λ on γ , while dγµ
+ is the pseudo-1-form which is equal to dγµ 

with respect to coordinates parametrising γ  as a future-directed curve. Expressions such as the 

right-hand side of (25) may be written in invariant form by regarding f (λ) as the coordinate 

expression of a density f  of weight − 1
2
 on γ . Note that the combination f 2dγ+ then defines a 

vector field along γ , given in coordinates by f (λ)2dγµ/dλ, provided that dγµ/dλ is future-

pointing. It should be borne in mind that, while a density does not have invariant values at 

individual points, the sign of the density is invariantly defined; likewise, it makes sense to say 

that the density vanishes or is nonvanishing at a given point. In this notation, the result we have 

proved may be stated as follows.

Proposition 2.7. Let P be a spacelike submanifold of M of co-dimension 2 and let γ  be a 

null geodesic joining p ∈ P to q ∈ J+(P). If there exists a smooth (− 1
2
)-density f  on γ  which 

is nonvanishing at p  but vanishes at q and so that
∫

γ

(

(n − 2)(∇dγ f )2 + f 2Ric(dγ, dγ)
)

� −(n − 2)g( f 2dγ+, H)|p, (27)

then there is a focal point to P along γ; if the inequality holds strictly, then the focal point is 

located before q.

Note that |∇dγ f | is a 1
2
-density on γ , while Ric(dγ, dγ) is a 2-density. Accordingly, each 

term in the integrand of (27) is a density; similarly, f 2dγµ
+ is a vector field along γ . Written 

more explicitly, if γ  is parametrised by a coordinate λ ∈ [0, ℓ], inequality (27) is

∫ ℓ

0

(

(n − 2) f ′(λ)2 + f (λ)2RµνUµUν
)

dλ � −(n − 2) f (0)2UµHµ|p, (28)

assuming Uµ = dγµ/dλ is future-directed.

Proposition 2.7 may be used to prove the following corollary (see [37, proposition 10.43]). 

Recall that P is said to be future-converging if Hµ is past-pointing timelike everywhere on P. 

In this situation we may write Hµ = HĤµ where H  <  0 and Ĥµ is a future-pointing timelike 

unit vector. For any future-pointing timelike unit vector Vµ at p , we also write LV(γ) for the 

length of γ  with respect to an affine parameter in which Vµdγµ/dλ = 1 at p . We refer to LV(γ) 
as the V-length of γ .
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Corollary 2.8. With P and γ  as in proposition 2.7, suppose additionally that P is future-

converging and the null convergence condition Ric(dγ, dγ) � 0 holds everywhere along γ . If 

LĤ(γ) � 1/|H| then there is a focal point to P along γ .

Proof. Choose an affine coordinate λ on γ , so that p = γ(0) and Ĥµdγµ/dλ = 1. Then 

q = γ(ℓ), with ℓ = LĤ(γ). In these coordinates define f (λ) = 1 − λ/ℓ; then the right-hand 

side of (27) is −(n − 2)H , while the left-hand side is less than or equal to (n − 2)/ℓ, and the 

result follows by proposition 2.7. □ 

As in section 2.1, inequality (27) may be connected to a Riccati equation related to the 

Raychaudhuri equation for a null geodesic congruence.

Now we can connect the formation of focal points with future null geodesic incomplete-

ness in the following way, drawing on the formulations in [15, 37].

Proposition 2.9. Suppose that: (i) M is globally hyperbolic with non-compact Cauchy hy-

persurfaces; (ii) P is a compact achronal smooth spacelike submanifold of M of co-dimension 

2; and (iii) every future-complete null geodesic emanating normally from P contains a focal 

point to P. Then M is future null geodesically incomplete. If (iii) is replaced by: (iii)′ P is future 

converging and every future-directed null geodesic emanating normally from P with Ĥ-length 

at least ℓ contains a focal point to P, then there is an inextendible null geodesic emanating 

normally from P with Ĥ-length less than ℓ.

Proof. As described in the proofs of theorem 5.2 in [15] (see also the comparable part of 

[37, theorem 14.61]) conditions (i) and (ii) imply that E+(P) := J+(P) \ I+(P) is equal to 

the boundary ∂J+(P) and is noncompact and closed. These properties were used to show that 

there is an inextendible affinely parametrised null geodesic γ : [0, a) → M issuing normal-

ly from P and contained entirely in ∂J+(P) for some a ∈ (0,∞]. Furthermore, γ  can con-

tain no focal points to P, because the portion of γ  beyond any focal point would lie in I+ (P)  

[35, theorem 6.16(a)]5 and hence outside E+ (P). Assumption (iii) then entails that γ  is not future-

complete and the result is proved. Alternatively, (iii)
′

 implies immediately that LĤ(γ) < ℓ. □ 

The last two results combine to yield the Penrose singularity theorem [39].

Corollary 2.10. If, in addition to the assumptions (i) and (ii) of proposition 2.9, P is future-

converging and the null convergence condition holds, then M is future null geodesically in-

complete.

Proof. Corollary 2.8 implies assumption (iii) of proposition 2.9. □ 

3. Exponential damping

The main goal of this paper is to show how the index form methods described in proposi-

tions 2.2 and 2.7 can be used to prove singularity theorems with weaker energy conditions 

than the SEC or NEC, using much simpler arguments than those used in existing literature. 

Instead of controlling the (non)existence of solutions to the Raychaudhuri equation, the main 

method used here is to replace the linear functions used in the proof of corollaries 2.3 and 

2.8 by functions that are adapted to the weakened energy conditions under consideration. 

Our first examples concern exponentially damped half-line averages of the timelike and null 

5 The argument given in [37, proposition 10.48] is not quite complete.
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conv ergence conditions (corresponding to the SEC and NEC respectively), providing similar 

overall results to those derived in [15] but with much greater ease.

Starting with timelike geodesics, the following result generalises corollaries 2.3 and 2.5 by 

weakening the timelike convergence condition. It may be compared with lemma 3.1 in [15] 

combined with theorem 5.1 of the same reference (modified as described in remark (1) follow-

ing its proof). Our argument here represents a considerable simplification.

Theorem 3.1. Suppose γ : [0,∞) → M is a future-directed unit-speed timelike geodesic 

emanating normally from a smooth spacelike hypersurface S. If the inequality

c

2
+ lim inf

τ→+∞

∫

τ

0

(1 − t/τ)2e−2ct/(n−1)RµνUµUν dt < −K|γ(0) (29)

holds for some c � 0, then there is a focal point to S along γ .

If S is additionally a compact Cauchy surface and (29) holds along every future-complete 

timelike unit-speed geodesic emanating normally from S (the value of c may vary) then M is 

future timelike geodesically incomplete.

Proof. Define F(τ) to be the integral in equation (29). Then there exists ǫ > 0 and a se-

quence τn → ∞ for which

F(τn) < −
c

2
− K|γ(0) − ǫ. (30)

Now define

fτ (t) = (1 − t/τ)e−ct/(n−1) (31)

and note that

lim
τ→+∞

∫ τ

0

(n − 1)ḟτ (t)
2 dt =

c

2
. (32)

Then from equation (30) for τ = τn with n sufficiently large we have
∫ τ

0

(

(n − 1)ḟτ (t)
2 + fτ (t)

2RµνUµUν
)

dt <
c

2
+ ǫ−

c

2
− K|γ(0) − ǫ = −K|γ(0)

 (33)

and therefore there is a focal point before proper time τ  by proposition 2.2. The second part 

of the Theorem follows immediately from proposition 2.4(a). □ 

The analogue for null geodesics is:

Theorem 3.2. Assume that P is a future convergent achronal smooth spacelike codimen-

sion-2 submanifold of M. Suppose γ : [0,∞) → M is an affinely parametrised null geodesic 

issuing normally from P, with Ĥµdγµ/dλ = 1 for λ = 0. If the inequality

c

2
+ lim inf

ℓ→+∞

∫ ℓ

0

(1 − λ/ℓ)2e−2cλ/(n−2)RµνUµUνdλ < −(n − 2)H (34)

holds for some c � 0, then there is a focal point to S along γ .

If, additionally, M has a non-compact Cauchy surface, P is compact, and (34) holds along 

every future-complete null geodesic emanating normally from P, parametrised as described 

above (the value of c may vary) then M is future null geodesically incomplete.
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The proof is exactly analogous to the timelike case, but making use of the function 

fℓ(λ) = (1 − λ/ℓ) e−cλ/(n−2) and propositions 2.7 and 2.9 in place of propositions 2.2 and 

2.4(a).

4. QEI inspired hypotheses

In this section we replace the classical energy conditions with QEI-inspired hypotheses that 

can be obeyed by quantum fields. The main goal is to specify the required initial contraction 

that leads to geodesic incompleteness.

We will study two scenarios: in the first we suppose that the timelike or null convergence 

condition is satisfied for a small segment of the geodesic; in the second, we impose conditions 

on the timelike- or null-contracted Ricci tensor at small negative values of proper time or the 

affine parameter respectively. Its worth noting that [15] also utilises the same information as 

in our second scenario to prove singularity theorems.

Our method makes use of trial functions related to incomplete Beta functions, which we 

now define. For each m ∈ N, let p m be the unique polynomial of degree 2m  −  1 with the 

properties p m(0)  =  0, p m(1)  =  0, p
(k)
m (0) = p

(k)
m (1) = 0 for 1 � k � m − 1, given explicitly by

pm(x) =
1

B(m, m)

∫ x

0

ym−1(1 − y)m−1 dy, (35)

where B is the Beta function. This polynomial is the regularised incomplete Beta function, 

denoted p m(x)  =  I(m, m; x) (the notation Ix(m, m) is more common but less convenient for us) 

[9, section 8.17]. In appendix it is shown how the squares of the L2 norms of p m, p′

m and p
(m)
m  

on [0, 1] may be computed in closed form with the results

‖pm‖
2 = Am, ‖p′m‖

2 = Bm, ‖p(m)
m ‖2 = Cm, (36)

where

Am =
1

2
−

(2m)!4

4(4m)!m!4
, Bm =

(2m − 2)!2(2m − 1)!2

(4m − 3)!(m − 1)!4
, Cm =

(2m − 2)!(2m − 1)!

(m − 1)!2
. (37)

The first few relevant values are tabulated in table 2. Note that Am  <  1/2 for all m and also that 

0 � pm(x) � 1 for x ∈ [0, 1].

4.1. Timelike geodesics

Instead of the timelike convergence condition, we assume that any deviations from timelike 

convergence along geodesics satisfy estimates of the form
∫

I

f (t)2RµνUµUν |γ(t) dt � |||f |||
2

:= Qm(γ)‖f (m)‖2 + Q0(γ)‖f‖2, (38)

Table 2. The first few values of the constants Am, Bm and Cm.

m 1 2 3 4

Am 1/3 13/35 181/462 521/1287

Bm 1 6/5 10/7 700/429

Cm 1 12 720 100 800
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for some m ∈ N and all smooth real-valued f  supported in the interior of the compact interval 

I ⊂ R, where γ : I → M  is a unit-speed timelike geodesic, Qm(γ) > 0 and Q0(γ) � 0 are con-

stants (independent of f , but allowed to depend on γ) of appropriate dimensions and ‖ · ‖ denotes 

the standard norm of L2(I). By a well known result [1, corollary 6.31], |||·||| is actually a norm 

on C∞

0 (int I) which is equivalent to the standard Sobolev norm ‖f‖m := (
∑m

r=0 ‖f (r)‖2)1/2 

and therefore induces the same topology. Estimates of this type might arise in solutions to the 

Einstein equations with matter, due to properties of the matter field, such as QEIs or related 

constraints, see e.g. [6, 17, 18].

Then, assuming that RµνUµUν |γ(t) is continuous on I, a simple approximation argument 

shows that the same bound (38) holds for all f  in the Sobolev space Wm
0 (I), which is the 

closure of C∞

0 (int I) in the norm |||·|||. Each such function f  is m  −  1 times continuously dif-

ferentiable on I, with a distributional m’th derivative that may be identified with an element of 

L2(I), and obeys the generalised Dirichlet conditions f (k)|∂I = 0 for 0 � k � m − 1; see e.g. 

[1, theorem 4.12(III)]. As I is compact, L2(I) ⊂ L1(I) so f (m−1) is the indefinite integral of an 

element of L1(I), and is therefore absolutely continuous.

Let S be a compact smooth spacelike Cauchy surface in M with extrinsic curvature K. 

Suppose that γ : [0, τ ] → M  is a unit speed, future-directed, timelike geodesic emanating nor-

mally from S and write ρ(t) = RµνUµUν |γ(t). By proposition 2.2, γ  contains a focal point to 

S if there is a piecewise smooth f  on [0, τ ] with f (0) = 1 and f (τ) = 0, such that

J[ f ] � −K|γ(0), (39)

where

J[ f ] =

∫ τ

0

(

(n − 1)ḟ (t)2 + f (t)2
ρ(t)

)

dt. (40)

Our aim is to estimate J[f ] for specific functions f  defined below, using (38) to control the 

contribution of ρ . The problem to be faced is that no function with f (0) = 1 can belong to 

Wm
0 ([0, τ ]); we address this by applying (38) to a ‘rounded off’ function and making further 

assumptions on ρ  near t  =  0 to estimate the error incurred. The rounding off could be per-

formed in many ways. We now turn to the two scenarios mentioned above, beginning with the 

situation in which timelike convergence holds for small positive values of τ .

4.1.1. Scenario 1. Suppose that ρ(t) = RµνUµUν |γ(t) is a smooth function on [0, τ ] that is 

initially negative, ρ � ρ0 � 0 on [0, τ0] for some 0 < τ0 < τ. That is, timelike convergence 

(equivalent to the SEC) holds initially, with strict inequality if ρ0 < 0.

Defining a piecewise smooth function on [0, τ ] by

f (t) =

{

1 t ∈ [0, τ0)

I(m, m; (τ − t)/(τ − τ0)) t ∈ [τ0, τ ],
 (41)

we note that f (0) = 1, f (τ) = 0. We will prove the following:

Lemma 4.1. For the function f  given by (41) and ρ  satisfying (38) on [0, τ ] we have

J[ f ] � ν∗ := (1 − Am)ρ0τ0 +
Qm(γ)Cm

τ
2m−1
0

+ Q0(γ)Amτ +
(n − 1)Bm

τ − τ0

+
Qm(γ)Cm

(τ − τ0)2m−1
. (42)

Consequently, if −K|γ(0) � ν∗ then γ  contains a focal point to S.

C J Fewster and E-A Kontou Class. Quantum Grav. 37 (2020) 065010



15

Proof. The consequences are immediate by proposition 2.2, so it is enough to establish the 

estimate on J[f ]. Defining a piecewise smooth function on [0, τ ] by

ϕ(t) =

{

I(m, m; t/τ0) t ∈ [0, τ0)

1 t ∈ [τ0, τ ],
 (43)

we note that fϕ is m  −  1 times continuously differentiable, with (ϕf )(m) existing and con-

tinuous everywhere except t = τ0, where it has a finite jump discontinuity. Therefore 

ϕf ∈ Wm
0 ([0, τ ]), and writing f 2 = (ϕf )2 + (1 − ϕ2) f 2 = (ϕf )2 + 1 − ϕ2, we have

∫

τ

0

f (t)2
ρ(t) dt �

∫

τ0

0

(1 − ϕ(t)2)ρ(t) dt + Qm(γ)‖(ϕf )(m)‖2 + Q0(γ)‖ϕf‖2

� ρ0

∫

τ0

0

(1 − ϕ(t)2) dt + Qm(γ)‖(ϕf )(m)‖2 + Q0(γ)‖ϕf‖2

 (44)

using (38), along with the assumption ρ � ρ0 on [0, τ0]. Now ϕf  is equal to ϕ on [0, τ0] and f  on 

[τ0, τ ], and the L2-norms of derivatives of (ϕf ) decompose accordingly. Indeed, using suitably 

rescaled versions of (36) (see (A.6)),

‖ϕf‖2 = Amτ0 + Am(τ − τ0) = Amτ , ‖(ϕf )(m)‖2 =
Cm

τ 2m−1
0

+
Cm

(τ − τ0)2m−1
.

 (45)

Thus, we have
∫ τ

0

f (t)2
ρ(t) dt � ρ0τ0(1 − Am) +

Qm(γ)Cm

τ
2m−1
0

+
Qm(γ)Cm

(τ − τ0)2m−1
+ Q0(γ)Amτ

 (46)

and since ‖f ′‖2 = Bm/(τ − τ0), the estimate on J[f ] is complete. □ 

Now using propositions 2.2 and 2.4 the following theorem is immediate.

Theorem 4.2. Let (M, g) be a smooth globally hyperbolic spacetime of dimension n  >  2 

and let S be a smooth compact spacelike Cauchy surface in M. Suppose that, for some τ > 0, 

there is an integer m � 1 and constants Qm and Q0 so that:

 (i)  the Ricci tensor obeys (38) along every unit-speed future-directed timelike geodesic γ  of 

length τ  emanating normally from S, with Qm(γ) � Qm, Q0(γ) � Q0; 

 (ii)  there exists ρ0 � 0 and τ0 ∈ (0, τ) so that along every such geodesic, Rµν γ̇
µγ̇ν |γ(t) � ρ0 

for t ∈ [0, τ0]; 
 (iii)  the initial extrinsic curvature of S satisfies

−K � min

{

(n − 1)

τ0

, ν∗

}

 (47)

  everywhere on S, where ν∗ is given by (42), but with Qk(γ) replaced by Qk. (Recall that ν∗ 

depends on τ .)

Then no future-directed timelike curve emanating from S has length greater than τ  and M is 

future timelike geodesically incomplete.
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We conclude this section with two remarks. First, since a focal point in [0, τ ′], for τ ′ < τ  

certainly implies the existence of a focal point in [0, τ ], we can replace ν∗ by

ν∗∗ := (1 − Am)ρ0τ0 +
QmCm

τ
2m−1
0

+ min
τ ′∈(τ0,τ ]

(

Q0Amτ
′ +

(n − 1)Bm

τ ′ − τ0

+
QmCm

(τ ′ − τ0)2m−1

)

in the statement of lemma 4.1 and theorem 4.2 if we wish. Similarly, If γ : [0,∞) → M 

is future complete and −K|γ(0) is greater than or equal to the minimum value of ν∗ over 

τ ∈ (τ0,∞) then γ  contains a focal point to S.

Second, if (n − 1)/τ0 � ν∗ on S then our result simply reduces to the original Hawking sin-

gularity theorem, and no future-directed timelike curve emanating from S has length greater 

than τ0, as in proposition 2.4 and corollary 2.5). Therefore it is important to show that there are 

situations in which ν∗ < (n − 1)/τ0, so that our result represents a nontrivial improvement.

For this purpose, it is convenient to write τ = (1 + µBm)τ0  for µ > 0, whereupon we may 

discard the term containing ρ0 in the definition of ν∗ to give

ν∗ �
QmCm

τ 2m−1
0

+ Q0Amτ0 +
n − 1

µτ0

+ Q0AmBmτ0µ+
QmCm

(Bmτ0)2m−1µ2m−1
. (48)

Clearly ν∗ � (n − 1)/τ0 if µ � 1, so we restrict to the case µ > 1 and use 1/µ2m−1 < 1/µ, 

obtaining

ν∗τ0 � E + Fµ+
G

µ
, (49)

where

E =
QmCm

τ
2(m−1)
0

+ AmQ0τ
2
0 , F = AmBmQ0τ

2
0 , G = n − 1 +

QmCm

B2m−1
m τ

2(m−1)
0

.

 (50)

As the right-hand side of (49) takes its minimum at µ =
√

G/F, it follows that

ν∗τ0 �

{

E + 2
√

FG F � G

E + F + G G < F
 (51)

(the second case is uninteresting because G  >  n  −  1). Accordingly, the conditions

F � G and E + 2
√

FG < n − 1 (52)

imply ν∗τ0 < n − 1 (evidently this can only be satisfied if F < (n − 1)/4). In particular, it 

holds if Q0τ
2
0 ≪ 1 and Qm/τ

2(m−1)
0 ≪ 1, in which case the optimising value of µ is much 

larger than unity,

µ ∼

√

n − 1

AmBmQ0τ 2
0

 (53)

leading to the prediction of a focal point within a timescale

τ ∼

√

(n − 1)Bm

AmQ0

, (54)

with initial extrinsic curvature obeying

−K|γ(0) > ν∗ ∼
n − 1

τ0

√

4AmBmQ0τ
2
0

n − 1
≪

n − 1

τ0

 (55)
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(assuming that E and F are of comparable order, so that E ≪
√

F). Importantly, this level 

of extrinsic curvature is not sufficient to guarantee a focal point within time τ0, the period in 

which we have assumed timelike convergence to hold. In this regime, we also have

ν∗ ∼

2(n − 1)Bm

τ
, (56)

which is of the same order of magnitude as the initial contraction that would be needed to 

guarantee a focal point in (0, τ ] assuming timelike convergence (see corollary 2.3). Therefore 

our result provides a Hawking-type singularity theorem with weakened energy conditions, but 

without drastically increased contraction.

4.1.2. Scenario 2. Let us now drop the assumption that timelike convergence holds for small 

positive times along geodesics leaving S. Starting with a single unit-speed timelike geodesic 

γ : [0, τ ] → M , with γ(0) ∈ S, extend γ  backwards in time, still as a unit-speed timelike geo-

desic, to obtain γ : [−τ0, τ ] → M . We assume that (38) holds on the extended geodesic, for all 

f ∈ Wm
0 ([−τ0, τ ]) obeying generalised Dirichlet boundary conditions at t = −τ0, τ .

As in Scenario 1, we aim to estimate J[f ] for a piecewise smooth function f  on [0, τ ] obeying 

f (0) = 1, f (τ) = 0, namely

f (t) =

{

I(m, m; (τ ′ − t)/τ ′) t ∈ [0, τ ′]

0 t ∈ [τ ′, τ ],
 (57)

where the free parameter τ ′ ∈ [0, τ ]. Defining

L̂1(τ
′) =

Qm(γ)Cm

(τ ′)2m−1
+

(n − 1)Bm

τ ′
+ AmQ0(γ)τ

′

 (58)

and

L̂2(τ
′

0) =
Qm(γ)Cm

(τ ′0)
2m−1

+ Am(Q0(γ)− ρmin)τ
′

0, (59)

and also

L1(τ) = min
τ ′∈(0,τ ]

L̂1(τ
′), L2(τ0) = min

τ
′

0
∈(0,τ0]

L̂2(τ
′

0), (60)

we prove:

Lemma 4.3. For the function f  given by (57), and ρ  satisfying (38) on [−τ0, τ ] we have

J[ f ] � L̂1(τ
′) + L2(τ0). (61)

Consequently, if −K|γ(0) � L1(τ) + L2(τ0) then there is a focal point to S along γ  in the 

proper time interval [0, τ ].

Proof. We have

J[ f ] =
(n − 1)Bm

τ ′
+

∫ τ ′

0

f 2RµνUµUν dt. (62)

To estimate the integral, we first extend the domain of f  to create a function f̃ ∈ Wm
0 ([−τ0, τ ]) 

that agrees with f  on [0, τ ] and is given by
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f̃ (t) =

{

0 t ∈ [−τ0,−τ
′

0]

I(m, m;−t/τ ′0) t ∈ [−τ ′0, 0),
 (63)

on [−τ0, 0), where τ ′0 ∈ (0, τ0] is arbitrary. We then estimate

∫

τ
′

0

f 2RµνUµUν dt =

∫

τ

−τ0

f̃ 2RµνUµUν dt −

∫ 0

−τ
′

0

f̃ 2RµνUµUν dt (64)

� Qm(γ)‖f̃ (m)‖2 + Q0(γ)‖f̃‖2 − ρmin

∫ 0

−τ ′

0

f̃ 2 dt (65)

where the norms are those of L2(−τ0, τ) and the constants Qk(γ) refer to the extended geo-

desic, while ρmin = min[−τ0,0] ρ. The right-hand side may be evaluated by using our results 

on incomplete Beta functions, giving an overall upper bound

J[ f ] � L̂1(τ
′) + L̂2(τ

′

0) (66)

and the first part of result follows on using the freedom to optimise over τ ′0. The second is 

proved using proposition 2.2, and optimising over τ ′ ∈ (0, τ ]. □ 

The minimum used to define L2 may be found explicitly, giving

L2(τ0) =
2mQm(γ)

2m − 1
((Q0(γ)− ρmin)Am)

1−1/(2m)((2m − 1)Cm)
1/(2m) (67)

for Q0(γ)− ρmin > (2m − 1)Qm(γ)Cm/(Amτ
2m
0 ), and

L2(τ0) =
Qm(γ)Cm

(τ0)2m−1
+ Am(Q0(γ)− ρmin)τ0 (68)

otherwise. A closed form expression for L1(τ) is not possible for general m. However, one 

may note that L̂1 has a single minimum in (0,∞) and no other critical points. As the only posi-

tive contribution to L̂′

1 arises from the last term, it follows that if Q0τ
2 � (n − 1)Bm/Am then 

the gradient at τ  is negative and L1(τ) = L̂1(τ).
By analogy with theorem 4.2 we now have:

Theorem 4.4. Let (M, g) be a smooth globally hyperbolic spacetime of dimension n  >  2 

and let S be a smooth compact spacelike Cauchy surface in M. Suppose that, for some τ , τ0 > 0 

there is an integer m � 1 and constants Qm and Q0 so that

 (i)  every unit-speed future-directed timelike geodesic of length τ  emanating normally from 

S can be extended as an affine geodesic to γ : [−τ0, τ ] → M  with γ(0) ∈ S, along which 

the Ricci tensor obeys (38) with Qm(γ) � Qm, Q0(γ) � Q0; 

 (ii)  there exists a finite lower bound ρmin so that Rµν γ̇
µγ̇ν |γ(t) � ρmin for every such geo-

desic and all t ∈ [−τ0, 0] (we emphasise that ρmin is uniform in γ); 

 (iii)  the extrinsic curvature of S satisfies

−K � L1(τ) + L2(τ0) (69)

  everywhere on S, where the functions Li are given by (58)–(60), with Qk(γ) replaced by 

Qk (k = 0, m).

Then no future-directed timelike curve emanating from S has length greater than τ  and M is 

future timelike geodesically incomplete.
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Under the assumption of timelike convergence, the conclusions of this result hold provided 

the initial contraction satisfies −K � (n − 1)/τ  on S (corollary 2.3 and proposition 2.4). It is 

important to note that there are circumstances in which the contraction required by theorem 

4.4 is of a similar order.

For example, suppose that ρmin � 0 and the following conditions hold

Q0τ
2
≪ Bm/Am, τ0 ≪ τ �

τ 2m−1
0

QmCm

. (70)

Then certainly Q0τ
2 � Bm/Am, so L1(τ) = L̂1(τ) as noted above. As QmCm/τ

2(m−1) �

(τ0/τ)
2(m−1)

≪ 1 (for m  >  1) we find that L1(τ) = L̂(τ) ∼ (n − 1)Bm/τ . In the case m  =  1 

the assumptions imply Q1 ≪ 1 and hence Q1C1/τ ≪ (n − 1)/τ , giving the same conclusion 

for L1(τ) as before. Turning to L2, the requirement that ρmin � 0 implies

L2(τ0) � L̂2(τ0) �
QmCm

(τ0)2m−1
+ AmQ0τ0. (71)

Under our assumptions, the second term is small relative to Bm/τ , while the first is � 1/τ . 

Overall,

L1(τ) + L2(τ0) �
(n − 1)Bm + 1

τ
, (72)

which is of comparable order to (n − 1)/τ at least for small values of m. Thus the contraction 

required by theorem 4.4 is comparable to (n − 1)/τ.

A feature of theorem 4.4 is that increasing ρmin—the extent to which timelike convergence 

fails at small negative times—decreases the required initial contraction. This is because the 

QEI type constraints require that a period in which timelike convergence fails is followed 

shortly by a period in which timelike convergence is satisfied even more strongly. This is 

analogous to the quantum interest effect [6, 15, 22, 25]. If ρmin � 0 then theorem 4.4 typically 

overestimates the required contraction and scenario 1 should be used instead.

4.2. Null geodesics

Let γ  be any null geodesic in M. Using the same invariant notation as in proposition 2.7, we 

suppose that the Ricci tensor obeys
∫

γ

f 2Ric(dγ, dγ) � |||f |||
2

:= Qm(γ; w)‖w1−m∇m
dγ f‖2 + Q0(γ; w)‖wf‖2,

 (73)

for every smooth compactly supported (− 1
2
)-density f  on γ , and every choice of smooth posi-

tive density w on γ , so that Qk(γ;λw) = λ2(k−1)Qk(γ; w) for any λ > 0. Here ‖ · ‖ is the intrin-

sic L2-norm on 1
2
-densities defined on γ , and appropriate powers of the density w are inserted 

to ensure that the arguments of these norms have the correct weight as densities. It is assumed 

that Qm(γ; w) > 0 and Q0(γ; w) � 0.

Now let P be a future converging achronal spacelike submanifold of M of co-dimension 

2 with mean normal curvature vector field Hµ. Suppose that γ  is a future-directed null geo-

desic emanating normally from P. Extending Ĥµ by parallel transport along γ , we define 

a density w = Ĥµdγµ
+/dλ. Next choose an affine coordinate λ on γ , so that p = γ(0) and 

Ĥµdγµ/dλ = 1. Then w  =  1, q = γ(ℓ), with ℓ = LĤ(γ) and equation (73) becomes
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∫ ℓ

0

f (λ)2RµνUµUµdλ � Qm(γ)‖f (m)‖2 + Q0(γ)‖f‖2. (74)

Writing ρ(λ) = RµνUµUν |γ(λ), and by proposition 2.7, there is a focal point to P along γ  if 

there is a piecewise smooth f  on [0, ℓ] with f (0) = 1 and f (ℓ) = 0, such that

J[ f ] � −(n − 2)H|γ(0), (75)

where

J[ f ] =

∫ ℓ

0

(

(n − 2) f ′(λ)2 + f (λ)2
ρ(λ)

)

dλ. (76)

The two scenarios following are analogous to the ones in section 4.1. In the first, we will 

suppose that the NEC is satisfied at small positive values of λ while in the second, we impose 

conditions on ρ  at small negative values of λ.

4.2.1. Scenario 1. Suppose that initially the NEC is satisfied, and so let ρ(λ) = RµνUµUν |γ(λ) 
be a smooth function on [0, ℓ] that is initially negative, ρ � ρ0 � 0 on [0, ℓ0] for some 0 < ℓ0 < ℓ.

Defining f : [0, ℓ] → R by (41) with ℓ instead of τ  and ℓ0 instead of τ0, we can estimate 

J[f ] following the exact steps of the proof of lemma 4.1. The following lemma is immediate 

using proposition 2.7.

Lemma 4.5. For ρ  satisfying (74) on [0, ℓ] we have

J[ f ] � ν∗ := (1 − Am)ρ0ℓ0 +
QmCm

ℓ2m−1
0

+ Q0Amℓ+
(n − 2)Bm

ℓ− ℓ0

+
QmCm

(ℓ− ℓ0)2m−1
.

 (77)

Consequently, if −(n − 2)H|γ(0) � ν∗ then γ  contains a focal point to P.

There is an obvious adaptation of this result to future-complete null geodesics by minimis-

ing over ℓ ∈ (ℓ0,∞). Using propositions 2.7 and 2.9 the following theorem is immediate.

Theorem 4.6. Let M be globally hyperbolic with non-compact Cauchy hypersurfaces and 

let P be a compact achronal future converging spacelike submanifold of M of co-dimension 2 

with mean normal curvature vector Hµ = HĤµ where Ĥµ is a future-pointing timelike unit 

vector. Suppose that for some ℓ > 0 there is an integer m � 1 and constants Qm and Q0 so 

that:

 (i)  the Ricci tensor obeys (73) along every future-directed null geodesic γ  of Ĥ-length ℓ 

emanating normally from P, with Qm(γ) � Qm, Q0(γ) � Q0; 

 (ii)  there exists ρ0 � 0 and ℓ0 ∈ (0, ℓ) so that along every such geodesic γ , the inequality 

Ric(γ′, γ′) � ρ0g(dγ, Ĥ)2 holds along the initial portion of γ  with Ĥ-length ℓ0; 

 (iii)  the mean normal curvature of P satisfies

−(n − 2)H � min

{

n − 2

ℓ0

, ν∗

}

 (78)

  everywhere on P, where ν∗ is given by (77) and depends on ℓ.

Then there is an inextendible future-directed null geodesic emanating from P with Ĥ-length 

less than ℓ. In particular, M is future null geodesically incomplete.
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Similarly to the timelike version if (n − 2)/ℓ0 � ν∗ on P our result reduces to the original 

Penrose singularity theorem as in proposition 2.9. So we can examine situations in which 

(n − 2)/ℓ0 � ν∗ following the exact similar analysis as in section 4.1.1 but again with with λ 

instead of t, ℓ instead of τ , ℓ0 instead of τ0 and equation (74) instead of (38).

Then for Q0ℓ
2
0 ≪ 1 and Qm/ℓ

2(m−1)
0 ≪ 1 there is a focal point before parameter

ℓ ∼

√

(n − 2)Bm

AmQ0

, (79)

if the magnitude of the mean curvature vector of P satisfies

−(n − 2)H > ν∗ ∼
√

4AmBmQ0(n − 2) ∼
2Bm(n − 2)

ℓ
. (80)

Again, this is of the same order as the mean curvature needed to guarantee a focal point if the 

null convergence condition held (corollary 2.8).

4.2.2. Scenario 2. In Scenario 2 we drop the assumption that the NEC holds. We instead 

extend the previously defined γ  to negative values of λ to get γ : [−ℓ0, ℓ] → M. Next we 

assume that equation (74) holds on the extended geodesic, for all f ∈ Wm
0 ([−ℓ0, ℓ]) obeying 

generalised Dirichlet boundary conditions at λ = −ℓ0, ℓ.

Similarly to the timelike case we want to estimate J[f ] and we can follow the same analysis 

with λ, ℓ and ℓ0 instead of t, τ  and τ0. Set

L̂1(ℓ
′) =

Qm(γ)Cm

(ℓ′)2m−1
+

(n − 2)Bm

ℓ′
+ AmQ0(γ)ℓ

′

 (81)

and

L̂2(ℓ
′

0) =
Qm(γ)Cm

(ℓ′0)
2m−1

+ Am(Q0(γ)− ρmin)ℓ
′

0, (82)

and also

L1(ℓ) = min
ℓ′∈(0,ℓ]

L̂1(ℓ
′), L2(ℓ0) = min

ℓ′
0
∈(0,ℓ0]

L̂2(ℓ
′

0). (83)

Then the proof of the following lemma is analogous to the one for lemma 4.3 where equa-

tion (74) is used instead of (38), and finally using proposition 2.7, optimising over ℓ′ ∈ (0, ℓ].

Lemma 4.7. For ρ  satisfying (74) on [−ℓ0, ℓ] we have

J[ f ] � L̂1(ℓ
′) + L2(ℓ0). (84)

Consequently, if −(n − 2)H � L1(ℓ) + L2(ℓ0) then there is a focal point to P along γ  in [0, ℓ].

More explicitly, we have

L2(ℓ0) =
2mQm(γ)

2m − 1
((Q0(γ)− ρmin)Am)

1−1/(2m)((2m − 1)Cm)
1/(2m) (85)

for Q0(γ)− ρmin > (2m − 1)Qm(γ)Cm/(Amℓ
2m
0 ), and
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L2(ℓ0) =
Qm(γ)Cm

(ℓ0)2m−1
+ Am(Q0(γ)− ρmin)ℓ0 (86)

otherwise. Our main result in this scenario is:

Theorem 4.8. Let M be globally hyperbolic with non-compact Cauchy hypersurfaces and 

let P be a compact achronal future converging spacelike submanifold of M of co-dimension 

2 with mean normal curvature vector Hµ. Suppose that for some ℓ, ℓ0 > 0 there is an integer 

m � 1 and constants Qm and Q0 so that:

 (i)  every future-directed null geodesic of Ĥ-length ℓ emanating normally from P may be 

extended to the past, to give a geodesic γ  with LĤ(γ) = ℓ+ ℓ0 so that the Ricci tensor 

obeys (73) along γ  with Qm(γ) � Qm, Q0(γ) � Q0; 

 (ii)  there exists a finite lower bound ρmin so that Ric(dγ, dγ) � ρming(Ĥ, dγ)2 on the portion 

of each such geodesic γ  to the past of P (we emphasise that ρmin is uniform in γ); 

 (iii)  the mean normal curvature of P satisfies

−(n − 2)H � L1(ℓ) + L2(ℓ0), (87)

  where the functions Li are given by (81)–(83), with Qk(γ) replaced by Qk (k = 0, m).

Then there is an inextendible future-directed null geodesic emanating from P with Ĥ-length 

less than ℓ. In particular, M is future null geodesically incomplete.

Similarly to the timelike case it is important to note that there are circumstances in which 

the mean normal curvature required by theorem 4.8 is of the same order as that in corollary 2.8.

Suppose that ρmin � 0 and the following conditions hold

Q0ℓ
2
≪ Bm/Am, ℓ0 ≪ ℓ �

ℓ
2m−1
0

QmCm

. (88)

Then Q0ℓ
2 � Bm/Am, so L1(ℓ) = L̂1(ℓ). Similar to the timelike case L1(ℓ) = L̂(ℓ) ∼ (n − 2)Bm/ℓ.

Turning to L2 we have

L2(ℓ0) � L̂2(ℓ0) �
QmCm

(ℓ0)2m−1
+ AmQ0ℓ0, (89)

and overall

L1(ℓ) + L2(ℓ0) �
(n − 2)Bm + 1

ℓ
, (90)

which is of comparable order to (n − 2)/ℓ at least for small values of m.

If ρmin � 0 then theorem 4.8 typically overestimates the required H and scenario 1 should 

be used.

5. Applications to the Einstein–Klein–Gordon theory

In this section  we apply the results of section  4 to the non-minimally coupled classical 

Einstein–Klein–Gordon theory. The classical non-minimally coupled scalar field is a famous 

example that violates both the SEC and the NEC, thus lying outside the scope of the original 

singularity theorems. Singularity theorems with weakened energy conditions were proven 

for the null case in [15] and for the timelike case in [6]. Here we calculate the required initial 
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contraction for singularity formation using the method described in previous sections  and 

compare our results with [15] and [6]. This will help illustrate the application of our method 

and its advantages compared to methods using the Raychaudhuri equation.

Let (M, g,φ) be a solution to the Einstein–Klein–Gordon equation  in n  >  2 spacetime 

dimensions, i.e. Gµν = −8πTµν, where the right-hand side is the stress–energy tensor

Tµν = (∇µφ)(∇νφ) +
1

2
gµν(λ

−2φ2
− (∇φ)2) + ξ(gµν�g −∇µ∇ν − Gµν)φ

2,

 (91)

for the nonminimally coupled scalar field φ obeying the equation

(�+ λ−2 + ξR)φ = 0, (92)

where λ is a fixed characteristic wavelength and ξ the coupling constant. We suppose that 

ξ ∈ [0, ξc] where ξc =
1
4
(n − 2)/(n − 1) is the value for conformal coupling.

5.1. The timelike case

Consider first the timelike case. Assume that the scalar field magnitude admits global bounds 

on a timelike geodesic γ  parametrized by proper time τ

|φ| � φmax � (8πξ)1/2, |∇γ̇φ| � φ′

max. (93)

Then, on γ , and following theorem 3 and corollary 1 of [6], we have that
∫

γ

Rµν γ̇
µγ̇ν f (τ)2dτ � Q(‖ḟ‖2 + Q̃2‖f‖2), (94)

for any real valued function f  of compact support, with constants Q and Q̃ given by

Q =
32πξφ2

max

1 − 8πξφ2
max

, Q̃2 =
(1 − 2ξ)λ−2

4ξ(n − 2)
+

(

8πξφmaxφ
′

max

1 − 8πξφ2
max

)2

. (95)

Equation (94) is of the form of equation (38) with m  =  1, Q1  =  Q and Q0 = QQ̃2. To estimate 

the values of these constants we first reinsert the units and restore the constants G and c

Q =
32πξGφ2

max/c4

1 − 8πξGφ2
max/c4

, Q̃2 =
(1 − 2ξ)λ−2c2

4ξ(n − 2)
+

(

8πξGφmaxφ
′

max/c4

1 − 8πξGφ2
max/c4

)2

.

 

(96)

It is interesting to estimate these values in a situation where λ is the reduced Compton 

wavelength of an elementary particle, making appropriate choices for φmax and φ′

max. In [6] 

the value of φmax was estimated by considering a quantized scalar field in Minkowski space-

time of dimension n, in a thermal state of temperature T < Tλ, where Tλ = c�/(λk) is the 

reduced Compton temperature of the particle and k is Boltzmann’s constant. The temper-

ature Tλ defines a scale beyond which the model cannot be trusted. With these considerations 

φ2
max ∼ 〈:φ2:〉T  and

Q ∼ (ℓPl/λ)
n−2(T/Tλ)

(n−2)/2K(n−2)/2(Tλ/T), (97)

as was shown in [6] (in that reference the mass was used instead of the reduced Compton 

length). Here Kν is a modified Bessel function of the second kind and ℓPl is the Planck length.

From equation (96) the second term of Q̃2 is proportional to Q2(φ′

max/φmax)
2. On dimen-

sional grounds the ratio φ′

max/φmax is proportional to c/λ. For λ taken as the Compton length of 
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elementary particles Q ≪ 1, as will be seen shortly. Therefore the first term of Q̃2 is expected 

to be much larger than the second and so Q̃ ∼ c/λ.

In order to give a quantitative, and partly heuristic, illustration of our results, we consider 

the following toy model. Suppose the universe were described by a Einstein–Klein–Gordon 

model, in which the characteristic length scale of the scalar is the reduced Compton wave-

length of a pion. Given an expansion rate of the universe, and other conditions, drawn from 

actual cosmological data, would one be able to conclude that the universe is necessarily past 

timelike geodesically incomplete? To do this we must consider the time-reverse of the analy-

sis presented above, so the question is whether the extrinsic curvature of surfaces of constant 

cosmic time—the Hubble parameter—is sufficiently positive; that is, whether the expansion 

rate is sufficiently large. We bear in mind that the SEC is violated in our actual universe, due 

to the dominant effect of dark energy, with the ratio of pressure to energy density being very 

close to  −1. This motivates two different calculations: (a) using parameters drawn from an 

era in which the SEC did hold, as an instance of Scenario 1, and (b) using parameters corre-

sponding to the present time, and assuming that the SEC will continue to fail for some time 

τ0 into the future, as a (time-reversed version of) Scenario 2. We will show in each case that, 

using the pion as the matter model, the expansion rate of the actual universe would be suf-

ficient to conclude past geodesic incompleteness. In fact, there is a caveat to these results, 

because the values of parameters Q0 and Q1 were derived on the basis that the temperature 

scale T is not exceeded. This means that what the heuristic argument actually shows is that, 

on timescales within the age of our actual universe, the toy model universe must display either 

past geodesic timelike incompleteness on a timescale of the age of our actual universe, or 

locations where the temperature scales exceed T. For brevity, we will describe either of these 

occurrences as a singularity.

First, we consider Scenario 1, in which the SEC is satisfied for time τ0. For a neutral 

pion in n  =  4 dimensions with mass 135 MeV/c2, we have ℓPl/λ = 1.11 × 10−20 and 

Tλ = 1.56 × 1012 K. (All calculations are made to higher precision but reported to 3S.F.; 

however it is really the orders of magnitude that are of interest.) Taking T = 10−2Tλ (corre-

sponding to the temperature of our universe about 1 s after the big bang) gives an estimate of 

Q ∼ 5.66 × 10−87. Then Q1 = Q ≪ 1 and Q0 ∼ Q(c/λ)2 = 2.39 × 10−39 s−2. Thus if τ0 is 

of the order of the reduced Compton time (4.87 × 10−24 s), we have Q0τ
2
0 ∼ Q ≪ 1. In that 

case the initial contraction is given by equation (55) with the units restored

ν∗ ∼ λ−1c
√

12A1B1Q ∼ 3.09 × 10−20 s−1. (98)

The maximum allowed temperature for this case is T = 1.56 × 1010 K , while the timescale on 

which the singularity occurs is given by equation (54) as

τ ∼ λc−1

√

3B1

A1

Q−1/2 ∼ 1.94 × 1020 s, (99)

or about 6.15 × 1012 years.

For comparison, in our actual universe, and assuming the ΛCDM model, the SEC was most 

recently obeyed at time t1 when

ΩΛ(t1) =
Ωb(t1)

2
+Ωr(t1). (100)

Here Ωx = ρx/ρcrit, ρcrit is the critical energy density, Λ corresponds to dark energy, m to mat-

ter (baryonic and cold dark matter) and r to radiation. Using the different evolution of each 

energy density component we find that the redshift when the SEC was last satisfied z1 is given 

by the solution of
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ΩΛ0
−

Ωm0

2
(z1 + 1)3 − Ωr0

(z1 + 1)4 = 0, (101)

where Ωx0 are the respective quantities today. From the most recent results published by the 

PLANCK collaboration [2] we have that ΩΛ0
= 0.6889 ± 0.0056 and Ωm0

= 0.311 ± 0.002 

which gives a redshift of z1  =  0.642 for when the SEC was last obeyed. From the first 

Friedmann equation we have

H2(t1)

H2
0

= ΩΛ0
+Ωr0

(z1 + 1)4
+Ωm0

(z1 + 1)3, (102)

where H(t) is the Hubble parameter and H0 its value today. Again from the PLANCK collabora-

tion [2] we get that H0 = (2.184 ± 0.016)× 10−18 s−1. That gives H(t1) = 3.14 × 10−18 s−1 

at the time when the SEC was last obeyed. This exceeds the minimum threshold (98) by 

two orders of magnitude, so the toy model universe would necessarily have a past singular-

ity, using these parameters. Partly because the threshold is exceeded by such a margin, the 

estimated timescale (99) for the location of the singularity is accordingly rather pessimistic. 

Nonetheless, it is remarkable that it is within two orders of magnitude of the age of the uni-

verse at the relevant time.

If the characteristic scale is replaced by the reduced Compton wavelength of more mas-

sive particles, the same calculations produce higher expansion thresholds beyond which a 

singularity is inevitable. For a proton, with mass 938 MeV/c2, and a maximum temperature 

T = 1.09 × 1011 K , the threshold is 1.50 × 10−18 s−1, which is still marginally exceeded by 

the measured value. The timescale for the singularity is now 1.27 × 1011 years. On the other 

hand, for a Higgs particle, with mass 125 GeV/c2 and with T = 1.44 × 1013 K  (the temper-

ature of the Universe at age 10−4 s), the threshold is ν∗ = 2.68 × 10−14 s−1. This threshold is 

larger than the observed Hubble parameter by 4 orders of magnitude, so our results would be 

inconclusive in that case. These illustrations are intended purely to show that the results we 

have obtained are quantitative and capable of producing plausible cosmological results in the 

toy models for the thresholds beyond which a singularity is inevitable, and the timescales on 

which they occur.

Moving to Scenario 2 where the requirement that the SEC holds is dropped, we are tak-

ing into account the behaviour of ρ  just after the time τ = 0 at which the Hubble parameter 

is measured (recall that we are using time-reversed versions of our earlier results). Here we 

assume that the SEC is violated for the time interval [0, τ0], and ρmin > 0 which as we men-

tioned is compatible with current cosmological observations.

First we observe that for the pion Q
−1/2

0 ∼ 6.49 × 1011 years is large in comparison to the 

lifetime of the universe. Then Q0τ
2
≪ B1/A1 for focal points occurring within a timescale τ  

of the order of ten times the age of the universe. As Q1 is so small, there is a large range of 

possible choices of τ0 so that τ0 ≪ τ < τ0/(Q1C1) and so that SEC fails for times in [0, τ0], 
from 10−68 s up to 10−2τ , say.

Given these assumptions the approximation of equation (72) is reasonable, and our results 

show that a singularity is inevitable within about 10 times the age of the universe, for Hubble 

parameter

H(0) >
3B1 + 1

τ
∼ 10−18 s−1, (103)

which on the order of the current values from PLANCK (2.184 ± 0.016)× 10−18 s−1 [2].

If the characteristic scale is based on the proton mass, Q0τ
2 ∼ 0.1 if τ  is the age of the 

universe; however the minimum threshold on H(0) is now ∼ 10−17 s−1, so the measured 
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value would not be sufficient to conclude the existence of a singularity. For the Higgs field, 

Q
−1/2

0 ∼ 2.36 × 106 years and the approximation Q0τ
2
≪ 1 is only valid for τ  less than 

10−4 times the age of the universe, requiring therefore approximately 104 times the measured 

Hubble parameter to infer that a singularity is inevitable in our toy model.

These results give similar orders of magnitude for the required initial extrinsic curvature to 

those computed in [6] obtained with different methods (and phrasing the conditions for future 

timelike geodesic incompleteness). An advantage of the current method is that it can specify 

the timescale on which the focal points appear.

5.2. The null case

Now we turn to the null case. For any solution to the Einstein–Klein–Gordon equation  in 

which the field magnitude obeys a global bound |φ| � φmax < (8πξ)1/2, it was shown in [15] 

that

∫

γ

f 2Ric(dγ, dγ) � 16πξφ2
max

∫

γ

(

∇dγ

f
√

1 − 8πξφ2

)2

, (104)

for all smooth compactly supported (− 1
2
)-densities f  on γ , where we have written the expres-

sion derived in [15] invariantly and adapted it to our sign conventions. Given any positive 

density w on γ  this implies
∫

γ

f 2Ric(dγ, dγ) � Q(‖∇dγ f‖2 + Q̃(γ; w)2‖wf‖2), (105)

where

Q =
32πξφ2

max

1 − 8πξφ2
max

, Q̃(γ; w) =
8πξφmax

1 − 8πξφ2
max

sup
γ

|∇dγφ|

w
. (106)

Equation (105) is of the form of equation (73) with m  =  1, Q1(γ; w) = Q and Q0(γ; w) =  

QQ̃(γ; w)2. Note that Q1 in this case is independent of both γ  and w, while Q0(γ; w) is inde-

pendent of any specific parametrisation of γ .

As described in section 2.2 we fix the affine parametrization and w in the following way: 

define P to be a future converging achronal spacelike submanifold of M of co-dimension 2 and 

let γ  be a future-directed null geodesic emanating normally from P. Extending Ĥµ by parallel 

transport along γ  and choosing an affine coordinate λ, so that p = γ(0) and Ĥµdγµ/dλ = 1, 

we have w  =  1 and q = γ(ℓ), with ℓ = LĤ(γ) .
Then equation (105) becomes

∫

γ

f 2(λ)RµνUµUνdλ � Q(γ)
(

‖f ′‖2 + Q̃2(γ)‖f‖2
)

, (107)

and

Q̃(γ) =
8πξφmax

1 − 8πξφ2
max

sup
γ

|φ′(λ)|. (108)

Now we want to estimate Q and Q̃. We consider a massless field and, as in the timelike case, 

we work in a hybrid model: a quantized scalar field in a thermal state of temperature T. In the 

massless scalar field case the Wick square of a KMS state with temperature T is
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〈:φ2:〉T =
Tn−2

2n−2π(n−1)/2

Γ(n − 2)

Γ( n−2
2
)
ζ(n − 2), (109)

where ζ is the Riemann zeta function. Similarly, if Uµ is any null vector with U0  =  1 then

〈:(Uµ∇µφ)(U
ν∇νφ):〉T =

Tn

3 · 2n−4π(n−1)/2

Γ(n)

Γ( n−1
2
)
ζ(n). (110)

For φ2
max ∼ 〈:φ2:〉T , φ′2

max ∼ 〈:(Uµ∇µφ)(U
ν∇νφ):〉T  and restoring the units we have

Q ∼ (T/Tpl)
n−2, and Q̃ ∼ Q

kT

�
, (111)

where Tpl is the Planck temperature.

Let us consider Scenario 1. For n  =  4, and a temperature T ∼ 107K which is of the order 

of a newly formed neutron star [38] we have Q1 = Q ∼ 10−50
≪ 1 and Q0 ∼ 10−114 s−2. We 

can consider ℓ0 as a measurement in light seconds of distance along null rays, measured by 

an observer at rest on the hypersurface P. Then assuming it is much larger than 10−57 light 

seconds, we have Q0ℓ
2
0 ≪ 1.

The required magnitude of of the mean curvature vector of P to form a focal point is given 

by equation (80) with the units restored

−H ∼
kT

2�

√

8A1B1Q3 ∼ 10−57 s−1. (112)

The contraction in [15] was found to be

−H > Q̃
√

Q(Q + (n − 2)) + QK coth (Kℓ0), (113)

where we have corrected some factors of 2. Using the previous values of Q and Q̃ and assum-

ing that the second term which depends on the history of the solution does not get too large we 

get −H > (kT/�)Q3/2
√

2 ∼ 10−57 s−1 which agrees with our estimate.

The required mean normal curvature for this toy model is extremely small, scarcely more 

restrictive than being a trapped surface. Of course a model of a massless scalar should not 

be taken seriously as a model of astrophysical black hole formation which involves multiple 

species of interacting particles. However, it shows that a model where the NEC is be violated 

can still lead to geodesic incompleteness with very weak restrictions on the initial conditions.

6. Conclusion

In this work we derived singularity theorems with weakened energy conditions inspired by 

QEIs, using index form methods. Compared to previous derivations that make use of the 

Raychaudhuri equation, our results provide simpler estimates of the required initial extrinsic 

curvature that leads to geodesic incompleteness. More importantly, in some cases, they give an 

estimate of the maximum proper time (in the timelike case), and affine parameter (in the null 

case) where the singularity is formed.

The next step is to prove theorems with energy conditions derived directly from proven 

QEIs. In the timelike case the relevant QEI is the quantum strong energy inequality (QSEI) 

bounding the weighted renormalized effective energy density TµνUµUν − T/(n − 2), the 

quantity appearing in the SEC. Such a QSEI was derived by the authors in a recent publica-

tion [16] for the non-minimally coupled scalar field.
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The null case presents greater challenges since no QEI along individual null rays is pos-

sible in four-dimensions [20]. To overcome this, a promising approach is the technique of 

transverse smearing, averaging over a pencil of neighbouring null rays a few Planck lengths 

thick. Transverse smearing has been successfully used for the derivation of the ANEC  

[23, 32]. However such versions of transversely smeared ANEC cannot be directly used in 

singularity theorems and new arguments are necessary.

If we are interested in utilising QEI bounds, we must consider that singularity theorems 

require bounds on the Ricci tensor rather than the stress–energy tensor. In the classical case, 

these are connected by the Einstein equation. In the quantum case and in the absence of a full 

theory of quantum gravity, a semiclassical approach could be employed. The semiclassical 

Einstein equation

Gµν = −8π〈Tµν〉ω , (114)

connects the expectation value of the renormalized stress–energy tensor with the classi-

cal Einstein tensor Gµν . This semiclassical approach to proving singularity theorems with 

hypotheses obeyed by quantum fields will be discussed elsewhere [17].
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Appendix. Calculations involving incomplete Beta functions

In this appendix ‖ · ‖ will denote the standard L2-norm on the unit interval [0, 1], except in 

(A.6). For m ∈ N, we require values for the L2-norms ‖pm‖, ‖p′

m‖ and ‖p
(m)
m ‖ of the regularised 

incomplete Beta function

pm(t) := I(m, m; t) =

∫ t

0

gm−1(s) ds, (A.1)

where

gm(t) = Nmtm(1 − t)m, Nm = B(m + 1, m + 1)−1 =
(2m + 1)!

m!2
. (A.2)

Noting that g
(k)
m (0) = g

(k)
m (1) = 0 for 0 � k � m − 1, p m is a non-decreasing polynomial of 

degree 2m  −  1 obeying

pm(0) = 0, pm(1) = 1, p(k)
m (0) = p(k)

m (1) = 0 (1 � k � m − 1).

Starting with ‖pm‖
2, direct calculation gives the values A1  =  1/3, A2  =  13/35, A3  =  181/462, 

A4  =  521/1287 stated in the text. The general closed form expression,

‖pm‖
2 = Am :=

1

2
− (2m)!4

4(4m)!m!4
, (A.3)

will be derived elsewhere, along with various other exact formulae for integrals of prod-

ucts of incomplete beta functions [8]. It follows from (A.3) that ‖pm‖
2
∈ [1/3, 1/2), with 

‖pm‖
2
→ 1/2 as m → ∞.
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Next, as p′

m = gm−1, we find immediately that

‖p′

m‖
2 = Bm :=

B(2m − 1, 2m − 1)

B(m, m)2
∼

√

2m

π

 (A.4)

as m → ∞. We record the values B1  =  1, B2  =  6/5, B3  =  10/7, B4  =  700/429.

It is not clear whether ‖p
(k)
m ‖2 can in general be expressed in a simple closed form but 

perhaps surprisingly, ‖p
(m)
m ‖2  can. To do this, note first that ‖p

(m)
m ‖2 = ‖g

(m−1)
m−1 ‖2. Using the 

boundary conditions noted above, we can integrate by parts m times to find

‖g(m)
m ‖2 = (−1)m

∫ 1

0

g(2m)
m (t)gm(t) dt = Nm(2m)! =

(2m)!(2m + 1)!

m!2
∼ e−1(4m/e)2m−1.

Here we have used the fact that g(2m)(t) = (−1)m(2m)! as is clear from the definition (A.2). 

Thus

‖p(m)
m ‖2 = Cm :=

(2m − 2)!(2m − 1)!

(m − 1)!2
. (A.5)

We record the values C1  =  1, C2  =  12, C3  =  720, C4 = 100 800.

Now consider an interval [0, τ ]. Now writing Pm(t) = fm(t/τ), we have P
(k)
m (0) = 0 

(0 � k � m − 1), Pm(τ) = 1, P(k)(τ) = 0 (1 � k � m − 1), and clearly

‖P(k)
m ‖2 =

‖p
(k)
m ‖2

τ 2k−1
, (A.6)

where the norm on the left-hand side is now taken on [0, τ ].
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