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    Abstract- In this paper, a multi-parameter model order 

reduction is applied to the thermal modelling and simulation of 

power electronics modules and air cooling system. Although 

widely employed, simulation tools based on Finite elements (FE) 

or finite difference methods (FDM) result in computationally 

expensive models that hamper the analysis in studies where one or 

more parameters are changed. Model order reduction techniques 

can be applied to reduce the computational complexity. However, 

standard reduction techniques cannot easily consider parameters 

variability and need to be reapplied for each parameter value. The 

paper proposes a multi-parameter order reduction technique 

which can significantly improve the thermal simulation efficiency 

without having a significant impact on the prediction accuracy. 

The method is applied to multi-chip SiC power module mounted 

on a forced air cooled finned heatsink with variable air flow. 

Index Terms— Thermal modelling; Power Electronics; Finite 

difference method (FDM); Multi-Parameter model order 

reduction (MOR); Air cooling. 

 

I.  INTRODUCTION 

 

HE modeling of electro-thermal interactions for reliable 

design and management of power electronic systems is 

becoming increasingly important due to the growing demand 

for higher power density in energy conversion systems [1]. 

Reliability for power electronics has been an important issue 

since the early power electronic applications [2]. It is well 

known that the reliability of power electronic converters is 

significantly affected by operating temperature and thermal 

cycling as several ageing mechanisms and failure modes 

associated with devices and packaging are exponentially 

accelerated by temperature and temperature variations [3]. 

Consequently, the thermal management requirements for 

power converters design and operation are becoming more and 

more demanding [4]-[6]. Heat exchangers are often the largest 

contributors to volume and mass for power converters. 

Optimization of the thermal and heat dissipation design can 

therefore help increase the power density of the converter. 

Accurate thermal analysis modeling tools are, therefore, 

essential in the design optimization of power converters.  

Furthermore, compact thermal model can also be used to 

estimate and monitor component temperatures during real-time 

operation enabling the online health monitoring and prognostic 

of the converter [7].  

Simple compact thermal models based on lumped parameter 

networks such as those based on Cauer or Foster networks are 

commonly used in power electronics design. Despite their 

computational efficiency, lumped parameter models (LPM) are 

of limited use at the design stage as they typically rely on 

empirical calibration, with values that cannot be directly 

correlated with design parameters such as topology of the 

layout, environmental and operating conditions. Cauer and 

Foster LPN are also typically one dimensional and do not 

account for the two-dimensional mutual thermal coupling 

between adjacent devices, although a 2D LPN has recently been 

proposed in [8].  Accurate physical representation of the 

converter topology and environment conditions can be obtained 

with numerical tools such as Finite Elements (FE) and Finite 

Difference (FD) that produce a discretized version of the 

distributed partial differential equations (PDEs) that model the 

heat-transfer [9]. Convective heat transfer problems in heat 

exchangers can be modelled using Computational Fluid 

Dynamics solvers (CFD). The discretization process results in 

very large systems of equations that is computationally very 

expensive hindering the ability to conduct parametric studies.  

In order to reduce the computational complexity caused by 

the simulation of complex distributed dynamical systems, 

model order reduction (MOR) techniques have proposed. MOR 

techniques applied to thermal problems use the discretized 

version of the underlying PDEs generated using either FE or FD 

methods to produce a reduced order model which significantly 

reduce computational complexity, whilst guaranteeing 

reasonably accurate results [10]-[18]. In order to use MOR 

techniques in design studies, it is desirable that the reduced 

order model conserves a dependency on a design parameter, 

e.g. the coolant mass flow rate, without the need to repeat the 

reduction process for each variation in parameters. Parametric 

model order reduction of thermal compact model has been 

introduced in [10]. The paper presents a parametric MOR 

method that conserves parameters and demonstrates its 

application to a case where the boundary conditions 

representing a forced air cooled heatsink are modelled through 

several heat transfer coefficient parameters which are kept in 

the reduced order model. The method, based on multi-moment 

matching and block Arnoldi’s orthogonalization on standard 
Krylov subspaces, is analytically derived. The method is 

illustrated and its benefits demonstrated with reference to a 

power module mounted on a forced air cooled finned heatsink. 

Detailed comparisons with commercial CFD software and 

experimental measurements demonstrate the accuracy and 

computational efficiency of the proposed method. 

 

II. PARAMETRIC MODEL ORDER REDUCTION 
 

The establishment of the thermal model of a power module 

and its cooling assembly requires a mathematical model based 

on geometry which facilitates the optimization of component 

T 



placement, distances, etc. The structure of a typical power 

module of the type analysed in the paper is shown in Fig 1. The 

geometry consists of 9 layers including the semiconductor chip, 

the direct copper bonded (DCB) ceramic substrate a copper 

ground plane, an aluminium heatsink as well as solder joints 

between the chips and substrates and thermal interface material 

between the baseplate and the heatsink. 

 

Fig 1. Cut view of a typical power module 

It is assumed that every surface of the simplified model are 

insulated except that the bottom surface is a convection 

boundary. The temperature distribution 𝑇(𝑥, 𝑦, 𝑧, 𝑡) in a solid 

medium can be obtained by solving the heat conduction PDE: ∇(𝐾∇𝑇) + 𝑄 − 𝐶 𝜕𝑇𝜕𝑡 = 0  (1) 

The 3D PDE (1) can be solved numerically by calculating the 

solution on a discrete mesh. For simplicity, the discretization 

assumes equal spacing in the horizontal (𝑥, 𝑦) plane, while the 

discretization in the vertical z direction is variable, depending 

on the relative thickness of each layer. The thermal conductivity 𝐾(𝑥, 𝑦, 𝑧), the heat source 𝑄(𝑥, 𝑦, 𝑧, 𝑡) and the heat capacity 𝐶(𝑥, 𝑦, 𝑧) are function of the position of each point (𝑥, 𝑦, 𝑧) of 

the discretization, depending on the material property 

associated with the point in position (𝑥, 𝑦, 𝑧). In this way, all 

different material properties of each layer can be taken into 

account. The discretization results in a Multi-Input Multi-

Output (MIMO) system of ordinary differential equations 

(ODE) which can be represented in state space form as: 𝐶�̇� + 𝐾𝑇 = 𝐹 ∙ 𝑄(𝑡) 
 (2) 𝑦 = 𝐸𝑇 ∙ 𝑇 𝐹 ∈ ℝ𝑛×𝑚 and 𝐸 ∈ ℝ𝑛×𝑝 are the input and the output matrix, 

and m and p denote the number of inputs and outputs, 

respectively [12-13]. Depending on the complexity of the 

geometry and the spatial resolution, i.e. the size of the mesh, 

very large dimension of the ODEs system (2) is required. The 

full order model results in a system with a matrix-size of 𝑛 =48595  and the number of inputs is 𝑚 = 12 corresponding to 

12 temperature nodes per MOSFET. The self-heating single-

chip model can also be extended to multi-chip model using the 

concepts of cross heating. 

 

A. Conventional Model Order Reduction  

    MOR is typically achieved by transforming the n-

dimensional system (2) into a system of lower dimensionality r 

but in the same form [12]: 𝐶𝑟�̇� + 𝐾𝑟𝑧 = 𝐹𝑟 ∙ 𝑄(𝑡) 

(3) 𝑦𝑟 = 𝐸𝑟𝑇 ∙ 𝑧 

    where 𝑧 ∈ ℝ𝑟 . The reduction is obtained by projecting the 

original state 𝑇  onto a sub-space of dimension 𝑟 ≪ 𝑛  with a 

linear transformation: 𝑇 = 𝑉 ⋅ 𝑧 + 𝑒𝑟𝑟𝑜𝑟 (4) 

    The transformation is obtained by a projection process based 

on the Padé-type approximation where the reduced-order 

system matrices are obtained as: 𝐶𝑟 = 𝑉𝑇𝐶𝑉,  𝐾𝑟 = 𝑉𝑇𝐾𝑉, 𝐹𝑟 = 𝑉𝑇𝐹, 𝐸𝑟 = 𝑉𝑇𝐸  [13]. The projection matrix 𝑉 is an 

output of an iterative type Arnoldi algorithm projection on a 

Krylov subspace. The method proposed here, based on [14]-

[16], use the idea of moment matching, where moments are 

defined as the coefficients of the  Taylor series expansion of the 

rational transfer function representing (2) in the frequency 

domain. Transforming (2) into the frequency domain result in a 

matrix-valued rational transfer function  𝐺: 𝐶 → 𝐶𝑝×𝑚  given 

by: 𝐺(𝑠) = 𝐸𝑇 ∙ (𝐾 + 𝑠𝐶)−1 ∙ 𝐹, 𝑠 ∈ ℂ     (5) 

    which can be rewritten as:  𝐺(𝑠) = 𝐸𝑇 ∙ (𝐼 − (−𝐾−1𝐶)𝑠)−1 ∙ (𝐾−1𝐹) (6) 

    The block Arnoldi method obtains the information of the 

leading Taylor coefficients of 𝐺(𝑠) . Expanding 𝐺(𝑠) in (6) 

around a point 𝑠0: 

𝐺(𝑠) = ∑ 𝐸 ⋅ 𝑀𝑖∞
𝑖=0 𝑠𝑖 (7) 

Where the moments 𝑀𝑖 are given by: 𝑀𝑖 = [(−(𝑠0𝐶 + 𝐾))−1𝐶]𝑖 ⋅ (𝑠0𝐶 + 𝐾)−1 ⋅ 𝐹 (8) 

    If, for simplicity, 𝑠0 = 0 , then 𝑀𝑖 = (−𝐾−1𝐶)𝑖 ⋅ (𝐾−1𝐹), 
therefore, matching the moments of the reduced order model to 

the first 𝑖 moments of the original system (7) can be obtained 

by selecting the projection matrix 𝑉: 𝑉 =  𝐾𝑟𝑖(𝐴, 𝐵) = 𝑠𝑝𝑎𝑛([𝐵 𝐴𝐵 𝐴2𝐵 … 𝐴𝑁−1𝐵]) (9) 

    𝐾𝑟𝑁(𝐴, 𝐵) is so-called block Krylov subspace, where 𝐴 =−𝐾−1𝐶  and 𝐵 = 𝐾−1𝐹 . 𝑚  columns of the matrix 𝐵 =[𝑏1 𝑏2 … 𝑏𝑚] are starting vectors of the block Krylov subspace 𝐾𝑟𝑁(𝐴, 𝐵). The moment matching based on Krylov subspaces 

is expressed to find a low-dimensional model that matches the 

first moments in the Taylor expansion shown in (8). A reduction 

to a specified order 𝑟 is obtained by selecting a subspace 

spanned by an orthogonal basis formed by the first 𝑟 columns 

of 𝐾𝑖(𝐴, 𝐵) . A numerically stable method to generate 

orthogonal basis vectors of this subspace, based on the Arnoldi 

process, is detailed in the Appendix 1. 

 

B. Parametric Model Order Reduction 

    Similarly to the non-parametric case, ODEs system of the 

form (1) and (2) are considered. In this case, it is assumed that 

the convection boundary layer has a multi-parameter 

dependence on air mass flow. The MIMO system with heat 

transfer coefficients ℎ1ℎ2 … ℎ𝑛 in discretized form is given by: 



𝐶 ∙ �̇� + (𝐾 + ℎ1𝐾1 + ℎ2𝐾2 + ⋯+ ℎ𝑛𝐾𝑛 ) ∙ 𝑇= 𝐹 ∙ 𝑄(𝑡) 

 

 (10) 𝑦 = 𝐸𝑇 ∙ 𝑇   
    Many methods for multi-parametric order reduction have 

been proposed. There are two main strategies based on the 

reduction with multi-moment matching, such as [14-20] or 

reduction without multi-moment matching [21] [22]. In this 

paper, reduction with multi-moment matching is introduced. 

The process is based on the Taylor-series expansion of the 

transfer function 𝐺(𝑠) but, this time, in series of the parameters ℎ1, … , ℎ𝑛 .  The moments of the transfer function are the 

coefficients of this Taylor series expansion. The derivation will 

be based on the assumption that the mixing moments can be 

ignored, as discussed later in this section [23]-[25]. The block 

Arnoldi’s orthogonalization based on standard Krylov 

subspaces for multi-moment matching needs to be applied [12] 

[13]. The multi-parameter model will be derived for a 2-

parameter case for simplicity, but can be easily extended to any 

number of parameters. The MIMO system with two parameters ℎ1 and ℎ2 in discretized form is given by: 𝐶 ∙ �̇� + (𝐾 + ℎ1𝐾1 + ℎ2𝐾2) ∙ 𝑇 = 𝐹 ∙ 𝑄(𝑡)  

 (11) 𝑦 = 𝐸 ∙ 𝑇   
    The Taylor series expansion of the transfer function form of 

(11) is: 𝐺(𝑠) = 𝐸 ∙ (𝐾 + ℎ1𝐾1 + ℎ2𝐾2 + 𝑠𝐶)−1 ∙ 𝐹 = 𝐸[𝐼 − (−(𝐾 + ℎ1𝐾1 + ℎ2𝐾2)−1𝐶𝑠)]−1  ∙ (𝐾 + ℎ1𝐾1 + ℎ2𝐾2)−1𝐹  

= 𝐸 ∑ [−(𝐾+ℎ1𝐾1+ℎ2𝐾2 )−1 𝐶]𝑗 (𝐾+ℎ1𝐾1+ℎ2𝐾2 )−1 𝐹𝑠𝑗∞
𝑖=0  

= 𝐸 ∑𝑀𝑖𝑠𝑖∞
𝑖=0  

 

                                         (12) 

    Where 𝑀𝑖 , 𝑖 = 0,1, …  are the moments of 𝐺(𝑠)  in the 

expansion in series of 𝑠. When 𝑖 = 0; 𝑀0 = (𝐾 + ℎ1𝐾1 + ℎ2𝐾2)−1𝐹  

 (13) = (𝐼 − (−𝐾−1(ℎ1𝐾1 + ℎ2𝐾2)))−1 𝐾−1𝐹 

    When 𝑖 = 1; 𝑀1 = − (𝐾+ℎ1𝐾1+ℎ2𝐾2 )−1 𝐶 (𝐾+ℎ1𝐾1+ℎ2𝐾2 )−1 𝐹 
 

 

 

 (14) 

= −(𝐾 + ℎ1𝐾1 + ℎ2𝐾2)−1𝐶𝑀0 = −(𝐼 − (−𝐾−1(ℎ1𝐾1 + ℎ2𝐾2)))−1 𝐾−1𝐶𝑀0 

    For the 𝑖th moment, 𝑀𝑖 = [−(𝐾+ℎ1𝐾1+ℎ2𝐾2 )−1 𝐶]𝑖 (𝐾+ℎ1𝐾1+ℎ2𝐾2 )−1 𝐹 

 

 

= [−(𝐾+ℎ1𝐾1 + ℎ2𝐾2)−1𝐶]𝑀𝑖−1  

 

 

 (15) 

⋯ = [−(𝐾+ℎ1𝐾1 + ℎ2𝐾2)−1𝐶]𝑖𝑀0 = [−(𝐼 − (−𝐾−1(ℎ1𝐾1 + ℎ2𝐾2)))−1]𝑖 [𝐾−1𝐶]𝑖𝑀0 

    The term 𝑓(ℎ1, ℎ2) = (𝐼 − (−𝐾−1(ℎ1𝐾1 + ℎ2𝐾2)))−1
 

appearing in 𝑀0, 𝑀1, ⋯ ,𝑀𝑗  is an infinitely differentiable 

function in an open neighborhood around  (ℎ1, ℎ2) = (0, 0) , 

therefore it can be expressed using the multi-variable Taylor 

expansion as: 𝑓(ℎ1, ℎ2) = 𝑓(0, 0)  + 11! [𝑓ℎ1(0, 0)ℎ1 + 𝑓ℎ2(0, 0)ℎ2]  

+ 12! [𝑓ℎ1ℎ1(0, 0)ℎ12 + 2𝑓ℎ1ℎ2(0, 0)ℎ1ℎ2 + 𝑓ℎ2ℎ2(0, 0)ℎ22] + ⋯  = 𝐼 − 𝐾−1(𝐾1ℎ1 + 𝐾2ℎ2) + (−𝐾−1(𝐾1ℎ1 + 𝐾2ℎ2))2 + ⋯ = ∑(−𝐾−1(𝐾1ℎ1 + 𝐾2ℎ2))𝑖0  ∞
𝑖0=0  

         

         

(16)   

    Consequently, 𝑀0 in (13) can be written as (17) 𝑀0 = ∑(−𝐾−1(𝐾1ℎ1 + 𝐾2ℎ2))𝑖0𝐾−1𝐹 ∞
𝑖0=0  

  

(17) 

    As mentioned before, a simplification can be achieved if 

mixing moments can be ignored. This is based on the 

assumption that 𝐾1 ∙ 𝐾2 = 0 . For the problem under 

investigation, i.e. the thermal analysis of power modules with 

convective boundary conditions, the parameters series ℎ1 ℎ2 … ℎ𝑛  and submatrices 𝐾1 𝐾2 … 𝐾𝑛  only appear in the 

equations of the states on boundary layer of the baseplate.  

The temperature distribution 𝑇(𝑥, 𝑦, 𝑧) is discretized and stored 

in a square system of dimension of 𝑛 = 𝑛𝑥𝑛𝑦𝑛𝑧. x- and y-axis 

represent the temperature probes on horizontal layers while z-

axis represents the vertical temperature distributions. Thermal 

capacity and conductivity matrices 𝐶, 𝐾, 𝐾1 , 𝐾2… are sparse 
matrices with only few non-zero elements. According to the 

heat transfer equation, the non-zero elements of 𝐾, 𝐾1 and 𝐾2 

are the inverse value of the heat thermal resistances between 

nodes of the discretization. Fig 2 visually illustrates the heat 

conduction matrix on the 𝑛𝑧th layer.  

 

Fig 2. 2-D diagram for analysis of heat transfer matrix on the 𝑛𝑧 𝑡ℎ layer 



    The 2-D illustration shows that the heat transfer matrix is 

divided into two sections. The non-zero elements of  𝐾1  are 

contained in the left (orange) area with heat transfer coefficient ℎ1 and are zero elsewhere and vice versa for 𝐾2. For example, 

for the 𝑛th node, the heat transfer is non zero only between its 

adjacent nodes, which are (𝑛 − 1) th, (𝑛 − 𝑛𝑥) th and (𝑛 −𝑛𝑥𝑛𝑦)th. This means that the non-zero elements of the 𝑛th row 

are only located in the 𝑛 th, (𝑛 − 1)th, (𝑛 − 𝑛𝑥)th and (𝑛 −𝑛𝑥𝑛𝑦) th columns. Consequently, matrix 𝐾1  and 𝐾2  can be 

expresses as shown in (18). 𝐾 = [𝐸𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐸𝑧𝑒𝑟𝑜𝐾 ]  

𝐾1 = [𝐸𝑧𝑒𝑟𝑜𝐾1𝐸ℎ1 ]  

𝐸ℎ1 = [  
  ⋱ ⋮ ⋮ ⋮ ⋮… 𝐸(𝑛−𝑛𝑥𝑛𝑦+1,   𝑛−𝑛𝑥𝑛𝑦+1) 𝐸(𝑛−𝑛𝑥𝑛𝑦+1,   𝑛−𝑛𝑥𝑛𝑦+2) … 0… 𝐸(𝑛−𝑛𝑥𝑛𝑦+2,   𝑛−𝑛𝑥𝑛𝑦+1) 𝐸(𝑛−𝑛𝑥𝑛𝑦+2,   𝑛−𝑛𝑥𝑛𝑦+2) … 0… ⋮ ⋮ ⋱ 0⋯ 0 0 0 0]  

  
 

𝐾2 = [𝐸𝑧𝑒𝑟𝑜𝐾2𝐸ℎ2 ]  

𝐸ℎ2 = [  
  ⋱ ⋮ ⋮ ⋮ ⋮⋯ 0 0 0 0… 0 ⋱ ⋮ ⋮⋯ 0 ⋯ 𝐸(𝑛−1,   𝑛−1) 𝐸(𝑛−1,   𝑛)⋯ 0 … 𝐸(𝑛,   𝑛−1) 𝐸(𝑛,   𝑛) ]  

  
 

 

 

(18) 

    In (18), 𝐾 𝐾1 𝐾2 ∈ ℝ𝑛×𝑛, while 𝐸𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛   𝐸𝑧𝑒𝑟𝑜𝐾1  𝐸𝑧𝑒𝑟𝑜𝐾1  ∈ ℝ(𝑛−𝑛𝑥𝑛𝑦)×𝑛  and  𝐸𝑧𝑒𝑟𝑜𝐾  𝐸ℎ1 𝐸ℎ2 ∈ ℝ(𝑛𝑥𝑛𝑦)×𝑛 . It is evident 

that the locations of non-zero elements in 𝐾1 and 𝐾2, results in 𝐾1 ∙ 𝐾2 = 0. Similar assumption and derivation can be applied 

in the case with more than 2 parameters. The terms containing 

the parameters in (17) can be further simplified using: (ℎ1𝐾1 + ℎ2𝐾2) 𝑖0 ≈ (𝐾1 + 𝐾2) 𝑖0 ℎ1 𝑖0 + ℎ2 𝑖02     𝑖0 = 0,1, …∞ 

    The error in this approximation can be expressed as: 𝐾𝑒 = (ℎ1𝐾1 + ℎ2𝐾2) 𝑖0 − (𝐾1 + 𝐾2) 𝑖0 ℎ1 𝑖0 + ℎ2 𝑖02  
 

 = ℎ1 𝑖0 − ℎ2 𝑖02 (𝐾1 𝑖0 − 𝐾2 𝑖0) 
 

 (19) 

    Where  𝐾𝑒( 𝑖0 = 0) =  0 

 

(20) 

𝐾𝑒( 𝑖0 = 1) =  ℎ1 − ℎ22 (𝐾11 − 𝐾21) ⋯ 

𝐾𝑒( 𝑖0 =  𝑖∞) =  (ℎ1 − ℎ2) (ℎ1𝑖∞−1 + ℎ1𝑖∞−2ℎ2+⋯ℎ1ℎ2𝑖∞−2 + ℎ2𝑖∞−1)2 (𝐾1 𝑖∞ − 𝐾2 𝑖∞) 

    It can then be concluded that the smaller ℎ1 − ℎ2, the smaller 

the error. This can be achieved with a finer discretization of the 

convective heat transfer at the boundary condition: assuming 

there are 𝑛 heat transfer coefficients ℎ1ℎ2 … ℎ𝑛, the error will 

be proportional to (ℎ1 − ℎ2)(ℎ2 − ℎ3) … (ℎ𝑛−1 − ℎ𝑛). With an 

increasing 𝑛, the step difference of adjacent parameters ℎ𝑛−1 −ℎ𝑛  will reach zero, and error 𝐾𝑒  approaches zero 

correspondingly. Based on the above two assumptions, the term 

(17) can be rewritten as: 

When 𝑖 = 0; 

𝑀0 = ∑(−𝐾−1(𝐾1+𝐾2))𝑖0𝐾−1𝐹(ℎ1𝑖0∞
𝑖0 + ℎ2𝑖0)/2 

 

(21) 

     When 𝑖 = 1; 𝑀1 = − (𝐼 − (−𝐾−1(ℎ1𝐾1 + ℎ2𝐾2)))−1 𝐾−1𝐶𝑀0 
 

 

 

 

 

 (22) 

= [−∑(−𝐾−1(𝐾1 + 𝐾2))𝑖1𝐾−1𝐶(ℎ1𝑖1 + ℎ2𝑖1)/2∞
𝑖1 ] 

⋅ [∑(−𝐾−1(𝐾1+𝐾2))𝑖0𝐾−1𝐹(ℎ1𝑖0∞
𝑖0 + ℎ2𝑖0)/2] 

    For the 𝑖th moment, 𝑀𝑖 = [−(𝐾+ℎ1𝐾1 + ℎ2𝐾2)−1𝐶]𝑀𝑖−1  

= [−∑((−𝐾−1(𝐾1+𝐾2))𝑡𝑖𝐾−1𝐶(ℎ1𝑡𝑖 + ℎ2𝑡𝑖)/2)∞
𝑡𝑖 ] ∙ 𝑀𝑖−1 

= [−∑((−𝐾−1(𝐾1+𝐾2))𝑡𝑖𝐾−1𝐶(ℎ1𝑡𝑖 + ℎ2𝑡𝑖)/2)∞
𝑡𝑖 ] 

⋅ [−∑((−𝐾−1(𝐾1+𝐾2))𝑡𝑖−1𝐾−1𝐶(ℎ1𝑡𝑖−1 + ℎ2𝑡𝑖−1)/2)∞
𝑡𝑖−1 ] ∙ 𝑀𝑖−2 

= (−1)𝑖 ∑ ∑ …∞
𝑡𝑖−1=0 ∑ ∑

[  
   
 (−𝐾−1(𝐾1+𝐾2))𝑡𝑖𝐾−1𝐶∙ (−𝐾−1(𝐾1+𝐾2))𝑡𝑖−1𝐾−1𝐶…∙ (−𝐾−1(𝐾1+𝐾2))𝑡1𝐾−1𝐶∙ (−𝐾−1(𝐾1+𝐾2))𝑡0𝐾−1𝐹 ]  

   
 ∞

𝑡0=0
∞

𝑡1=0
∞

𝑡𝑖=0  

∙ (ℎ1𝑡𝑖 + ℎ2𝑡𝑖2 )(ℎ1𝑡𝑖−1 + ℎ2𝑡𝑖−12 )… ∙ (ℎ1𝑡1 + ℎ2𝑡12 )(ℎ1𝑡0 + ℎ2𝑡02 ) 
(23) 

    As demonstrated in (21)-(23), the parameters ℎ1 and ℎ2 are 

separated from the system matrices. Consequently, it is possible 

to make the subspace  𝑠𝑝𝑎𝑛(𝑀0, 𝑀1, 𝑀2, … 𝑀𝑖) independent of 

the parameters. The first moment 𝑀0 can then be expressed as 

the Krylov subspace:  



𝑠𝑝𝑎𝑛𝑐𝑜𝑙{𝑉0} = 𝐾𝑟𝑖0(−𝐾−1(𝐾1 + 𝐾2), 𝐾−1𝐹)  (24) 

    Similar methods can be applied in the multi-parameter 

system with more than two parameters in (10) as (25). 𝑠𝑝𝑎𝑛𝑐𝑜𝑙{𝑉0} = 𝐾𝑟𝑖0(−𝐾−1(𝐾1 + 𝐾2 + ⋯+ 𝐾𝑛), 𝐾−1𝐹)    

(25) 

    The generation of orthogonal basis vectors of this subspace, 

based on the Arnoldi process, is reported in the Appendix II. 

The proposed MOR procedure can be summarized in the 

following steps: 

1. The heat transfer eq. (1) is discretized using Finite 

Difference (or FE) methods into a set of parametric ODE of 

order N (10) dependent on the parameters ℎ1,…ℎ𝑛 

2. The first 𝑘 moments 𝑀𝑘, 𝑖 = 0, … , 𝑘  of the Taylor 

series of the transfer function are calculated using (21)-(23) 

which are, by definition, Krylov subspaces as in (24) 

3. The Arnoldi method (Appendix) is applied to generate 

a numerically stable, orthogonal basis sets for the Krylov 

subspaces, resulting in the projection matrix 𝑉  of dimension 𝑟 ≪ 𝑁 

4. The original system (2) of order 𝑁 is now reduced to 

(3) of order 𝑟 , where the dependence on the parameters is 

conserved in the system matrices 𝐶𝑟, 𝐾𝑟 , 𝐹𝑟 

 

III. THERMAL MODELLING OF AIR COOLING SYSTEM 
 

Given the difficulty of modelling a complex cooling system 

such as a parallel plate heatsink with variable flow rates, it is 

common to replace the cooling system with an equivalent 

convective boundary condition. This can be either a single 

constant heat transfer coefficient, or a variable heat transfer 

coefficient changing along the axis, if the length and/or pressure 

drop along the heatsink is significant. An analytical model, 

based on [26] and [27], is presented here to derive an equivalent 

convective boundary condition for modeling a parallel plate 

heatsink. With reference to a standard parallel plate heatsink 

where 𝑠 and 𝑡 are the fin spacing and fin thickness of heat sink 

respectively, 𝑐 is fin height, 𝑏 is heat sink width and 𝑛 is the 

number of heat sink channels, the heat transfer ℎ  can be 

expressed as: ℎ(𝑧∗) = 𝑁𝑢√𝐴(𝑧∗) × 𝜆𝑎𝑖𝑟𝑑ℎ   with 𝑑ℎ = 2𝑠𝑐𝑠 + 𝑐  and 𝑠 = 𝑏 − (𝑛 + 1)𝑡𝑛  

 

 

 

    (26) 

    Where the dimensionless thermal duct length or axial 

position is given by: 𝑧∗ = 𝜇𝑧�̇�𝑃𝑟 (27) 

    𝜇 is the dynamic viscosity of air, 𝑧 is the axial position in the  

heatsink channel, �̇�  is mass flow rate of air, 𝜆𝑎𝑖𝑟  is thermal 

conductivity of air, and 𝑃𝑟  is Prandtl number of  air with an 

approximated value of 0.71. Based on the transfer between 

actual and dimensionless thermal duct length, an analytical 

model for the local Nusselt number (𝑁𝑢√𝐴) with different axial 

position can be established [27] for the heat sink model, as 

follows: 𝑁𝑢√𝐴(𝑧∗) = [(𝐶4𝑓(𝑃𝑟)√𝑧∗ )𝑚 + ({{𝐶1(𝑓𝑅𝑒√𝐴8√𝜋𝜖𝛾)}5 
 

 

 

 (28) +{𝐶2𝐶3(𝑓𝑅𝑒√𝐴𝑧∗ )13}5𝑚5 ] 1𝑚 

    Where m is the model blending parameter and other 

parameters of (28) are provided in [28].  

The analytical model is solved for UWF (uniform wall flux) and 

UWT (uniform wall temperature) boundary conditions [26]. 

The heat sink material is aluminium and due to the high thermal 

conductivity, the presented investigation assumes UWT. For 

UWT boundary conditions, the function 𝑓(𝑃𝑟) is provided by  𝑓(𝑃𝑟) = 0.564
[1 + (1.664𝑃𝑟16)92]29 

 

 

      (29) 

The friction factor-Reynolds number product in (28) is given by 𝑓 𝑅𝑒√𝐴 = 12√𝜖(1 + 𝜖) [1 − 192𝜖𝜋5 tanh ( 𝜋2𝜖)]  

 (30) 

where 𝜖 is heat sink channel aspect ratio and  𝜖 = fin thicknesschannel space 
 

      (31) 

IV. THERMAL MODEL EXPERIMENT AND SIMULATION 

RESULTS 

    Experimental validation of the proposed MOR technique is 

presented in this section with reference to a configuration, with 

one power module and two power resistors acting as heat 

sources. Both the two resistors and power module are mounted 

on the heatsink via thermal pad (Kerafol KERATHERM 

Thermal Pad 6.5W/mK Gap Fill) to ensure good heat transfer. 

A. Power Module 

The power module used in this work is a Silicon Carbide 

(SiC) MOSFET-based half-bridge. Based on innovative wire-

bond free planar interconnect technology [29]-[30], the module 

has been designed and manufactured by Siemens AG,  within 

the Horizon2020 European Project - Integrated, Intelligent 

Modular Power Electronic Converter (I2MPECT) [31],  to 

provide a power electronic building block (PEBB) for a 99% 

efficient 3-phase power converter with a power-to-weight ratio 

of 10 kW/kg. This means that for output power of 45 kW, 

maximum three-phase power loss of 450 W (150 W per 

phase/leg) is the allowable limit. Fig 3 shows CAD drawings of 

the half-bridge wire-bondless power module. Twelve 

MOSFETs are pressure silver sintered onto the substrate copper 

base plate.  The power module contains 12 SiC MOSFETs 

(CPM2-1200-0025B). The module substrate is a DCB (direct 

copper bonding) substrate. The module is primary cooled via 

the baseplate, which is designed to be mounted to an air cooled 

heatsink via a thermal interface material. 



 
Fig 3. CAD drawings  of single I2MPECT power module  

B. Force-Air Cooling System 

The heatsink used in these experiments is a typical hollow-

fin heatsink (Fischerelectronik) with an integrated axial fan, as 

shown in Fig 4.  

  
(a) (b) 

Fig 4. Hollow-fin cooling aggregates. (a) The prototype of heatsink; 
 (b) Cross-section layout of heatsink  

The outlet air temperature of heat sink needs be limited in 55-

65℃  with an inlet air temperature of 40℃ . The fluid heat 

transfer equation is expressed in (32)  ∆𝑄 = 𝑐𝑚∆𝑇 (32) 

Where ∆𝑄 is the heat flowing into the heat sink to increase the 

air temperature by  ∆𝑇 while 𝑐 and 𝑚 are the specific heat and 

mass flow rate of air. With a maximum three-phase power loss 

of 450 W, inlet air flow with an approximate range of 1m/s to 

2m/s is suitable for the system cooling.  Applying the analytical 

model in (26)-(28), the resulting heat transfer coefficient as 

function of the axial distance from the inlet for the heatsink is 

shown in Fig 5 for three different values of air mass flow from 

1m/s to 2m/s. The analytical model has been validated against 

detailed simulation using CFD software Ansys Icepak as shown 

in Fig. 6.  

   

Fig 5. Heat transfer coefficient along the axial direction of the air flow  

Fig 6. Comparison of temperature along the axial direction with the 

analytical model and detailed CFD analysis 

 

D. Experimental Setup and Simulation Results 

    Fig 7 shows the experimental setup used to evaluate the 

proposed models. There are four thermocouples installed, 

positioned in the airflow at the inlet, outlet and in between the 

modules, allowing the air temperature to be monitored. 

Additionally, a Fibre optic temperature measurement probe is 

positioned in direct contact with one of the MOSFET die to 

measure its temperature directly and provide a reference for 

comparison with the analytical model predictions.  

 

(a) 

 

(b) 

Fig 7. Experimental layout. (a) Thermal model design; (b) General view of 
experimental components. 

    The influence of convective boundary condition in 

experiment is shown in Fig 8. The convective boundary 

condition is affected by the air flow rate. Based on the same 

input power and experiment layout, the steady state temperature 



captured by thermal camera can shows the effect of the change 

of the air flow rate on convective boundary condition. With an 

increasing air flow rate from 1m/s to 1.5m/s, the maximum 

temperature of the power module in steady state reduces from 

98℃ to 82℃. 

(a) (b) 

Fig 8. Steady-State temperature from thermal camera. (a)1m/s for peak 

current of 70A; (b)1.5m/s for peak current of 70A; 

The proposed MOR method is applied to the system. Fig 9 

illustrates surface temperature responses of the 11-th MOSFET 

in Fig 3 calculated by MOR and compared to transient results 

obtained with experiment and commercial FE software 

ANSYS. As can be seen in Fig. 10, the agreement between the 

proposed reduced order methods and experiment is good, 

especially in steady state conditions, while in transient 

condition an error of less than 10% is noted. 

The discretization employed in the full order model results in a 

system with 48595 nodes, while the reduced order has 12 states 

corresponding to 12 temperature nodes per MOSFET. On the 

same computer and with the same mesh size, ANSYS takes 

over 500 minutes while the reduced-order simulation only takes 

about 5 seconds. 

  

(a) 

 
(b) 

 
(c) 

 
(d) 

Fig 9. Comparison between experimental data and estimated values. 

(a)1m/s for peak current of 90A; (b)Log plot of (a); (c)1.5m/s for peak 
current of 90A; (d) Log plot of (c). 

 
Fig 10. Transient error of MOR compared with experiment. 

In Fig 11, a more complex boundary condition is introduced to 

test the accuracy of the parametric MOR analytical model. In 

this test the air-flow velocity and the DC current are variable 

following the profiles shown in Fig 11(a). A good accuracy is 

demonstrated for the reduced order model.  

(a)  



(b)  
Fig 11. Comparison between experimental data and estimated values with 

time-varied DC current and transient air flow rate. (a) Module current and 

transient air flow rate; (b) Transient thermal response from experiment and 
MOR model. 

 

V. CONCLUSION 
 

In this paper, a novel multi-parameter order reduction is 

developed and applied to a power module with forced-air-

cooling systems. The multi-moment matching technique is used 

to preserve in the reduced order a number of parameters, 

making calculations in variable operating conditions 

significantly more efficient. An example of a power module 

cooling system with different mass air flow rates is reported and 

experimental data proves the accuracy of this reduced-order 

analytical model. A significant increase in computational 

efficiency is demonstrated resulting in faster calculation time 

and memory requirements. The method can have applications 

at both the design stage and during operation of power 

conversion systems. Optimization of layout in power 

electronics modules and converters design might require many 

iterations using different values of parameters e.g. of materials 

or cooling conditions. With the proposed parametric MOR such 

applications can be greatly simplified as the reduced order 

model conserves dependency on parameters which can be 

simply modified at each iteration without requiring additional 

computations. Thanks to its low computational complexity, the 

resulting reduced order model can also be used in real-time 

applications as an observer for temperature estimation of power 

devices during converter operation.  

 
 

APPENDIX. I 
ARNOLDI’S ORTHOGONALIZATION 

Algorism                                            Description     𝑣𝑖 = 𝐵𝑖/‖𝐵𝑖‖  Start computation of  𝑣𝑖+1    𝑓𝑜𝑟 𝑗 = 1,… , 𝑗𝑚𝑎𝑥 − 1  One matrix multiplication       𝑡 = 𝐴𝑣𝑖  𝑡 is in the space 𝐾𝑗+1       ℎ𝑖𝑗 = 𝑣𝑖𝑇𝑡  ℎ𝑖𝑗𝑣𝑖= projection of t on 𝑣𝑖       𝑡 = 𝑡 − ℎ𝑖𝑗𝑣𝑖  Subtract that projection        𝑒𝑛𝑑  t is orthogonal to 𝑣1, … , 𝑣𝑗         ℎ𝑗+1,𝑗 = ‖𝑡‖  Compute the length of t        𝑣𝑗+1 = 𝑡/ℎ𝑗+1,𝑗  Normalize t to ‖𝑣𝑗+1‖=1 𝑒𝑛𝑑   𝑣1, … , 𝑣𝑗𝑚𝑎𝑥 are orthonormal 
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