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We extend previous work on quantum stress tensor operators which have been averaged over finite time

intervals to include averaging over finite regions of space as well. The space and time averaging can be

viewed as describing a measurement process for a stress tensor component, such as the energy density of a

quantized field in its vacuum state. Although spatial averaging reduces the probability of large

vacuum fluctuations compared to time averaging alone, we find that the probability distribution decreases

more slowly than exponentially as the magnitude of the measured energy density increases. This implies

that vacuum fluctuations can sometimes dominate over thermal fluctuations and potentially have

observable effects.
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I. INTRODUCTION

Although the vacuum state of a quantum field theory is

an eigenstate of the Hamiltonian, the integral of the energy

density over all space, it is not an eigenstate of the local

energy density or of other components of the stress tensor.

This implies the existence of vacuum fluctuations of the

energy density and other quadratic operators. For these

fluctuations to be finite, and hence physically meaningful,

these operators must be averaged over a finite spacetime

region. We can view the averaging process as representing

the outcome of a measurement of the operator. The energy

density at a single spacetime point is not measurable, and

hence not meaningful. However, the spacetime average is

meaningful and will have finite fluctuations described by a

probability distribution.

The study of the probability distributions for quantum

stress tensors was begun in Ref. [1] for conformal field

theory (CFT) in two spacetime dimensions and continued

in Refs. [2,3] for the free massless scalar and the free

electromagnetic quantum fields in flat four-dimensional

spacetime. Further results on two-dimensional CFT appear

in [4,5]. Let x denote a dimensionless measure of the

averaged stress tensor component T. If τ is a measure of the

size of the sampling region, then in units where ℏ ¼ c ¼ 1,

we may take x ¼ τdT, where d is the dimension of the

spacetime. Let PðxÞ denote a probability distribution so that
PðxÞdx is the probability in a measurement of finding an

outcome in the interval ½x; xþ dx�. There are two key

features of PðxÞ for a quadratic operator, such as the energy
density, which have emerged in the papers just cited:

(i) There is a negative lower bound on the region where

PðxÞ ≠ 0 if T ≥ 0 at the classical level, and (ii) PðxÞ can
fall more slowly than exponentially, leading to an enhanced

probability for large positive fluctuations relative to thermal

fluctuations. By contrast, the probability distribution for the

spacetime average of a linear operator, such as the electric

field, is a Gaussian function.

If T is a non-negative quantity in classical physics, such

as the energy density, its quantization typically admits

quantum states for which its expectation value is below the

vacuum value. In particular, if the vacuum expectation

value vanishes, there exist states for which its expectation

value is negative, hTi < 0, so regions where the mean

energy density is negative become possible. At least in

some models, these regions are constrained by quantum

inequalities of the form hτdTi ≥ −x0, where x0 > 0 is a

dimensionless number of the order of or somewhat less

than unity. These models include the free massless and

massive scalar fields, the electromagnetic and Dirac fields

and a wide class of conformal field theories in two

dimensions. For a recent review see [6]. If the quantum
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inequality gives the optimal lower bound on expectation

values, then PðxÞ ¼ 0 if x < −x0. This means that −x0 is

the lowest eigenvalue of the averaged operator T and is

hence both the lower bound on expectation values and the

smallest possible outcome of a measurement in any state. In

particular a negative lower bound is expected for the

probability distribution for any quadratic operator repre-

senting a classically non-negative quantity in (massive or

massless) free quantum field theories.

For the energy density (at least for the averages con-

sidered to date) the tail of PðxÞ for x ≫ 1 was found to fall

as an exponential in two spacetime dimensions [1,4] but

more slowly in four dimensions [2,3]. Specifically, PðxÞ ∼
c0x

be−ax
c

for some constants c0, b, a, c, of which c is the

most crucial. For stress tensor operators averaged in time

with a Lorentzian function, it was found in Ref. [2] that

c ¼ 1=3. This implies that the distribution is highly skewed

and so fluctuations which are several orders of magnitude

larger than the standard deviation can have a non-negligible

probability of occurring. This is a result which would not be

possible in random processes where measurements at

different moments in time are uncorrelated, in which case

the central limit theorem would give a Gaussian probability

distribution. By contrast our results reflect the highly

correlated nature of quantum vacuum fluctuations.

Although a Lorentzian function of time is a useful

model, it suffers from the defect that it describes a

measurement which began in the infinite past and is only

completed in the infinite future. A more realistic descrip-

tion involves smooth (infinitely differentiable) functions

which have compact support, that is, are zero outside of a

finite interval. The probability distributions for quantum

stress tensors measured in a finite interval with such

functions were studied in Ref. [3]. A class of compactly

supported functions was treated, whose Fourier transforms

fall as e−γjωj
α

, where 0 < α < 1 and γ > 0, as jωj → ∞. It

was argued that such functions could arise in physical

situations, as illustrated by a simple electrical circuit whose

switch on corresponds to α ¼ 1=2. For this class of

functions, it was shown that the tail of the probability

distribution now decays with c ¼ α=3. Thus if, for exam-

ple, a measurement of the energy density in the vacuum

state of the electromagnetic field is described by the α ¼
1=2 function, then the probability of finding a very large

energy density associated with x ≫ 1 will be roughly

proportional to e−ax
1=6

. The same asymptotic form with a

slightly different value of the constant a was found for the

massless, minimally coupled scalar field.

The previous results on stress tensor probability dis-

tributions [1–3] were obtained either from a moment-

generating function [1] or by asymptotic calculation of

high moments [2,3]. In four dimensions, the moments

approach suffers from the ambiguity that the moments do

not necessarily uniquely determine PðxÞ. In the case of a

probability distribution with support on a half line, as is the

case for stress tensors, the Stieltjes moment theorem [7]

guarantees that PðxÞ is uniquely determined by the

moments of the operator provided that the n moment

grows no faster than ð2nÞ!Dn as n → ∞, for some constant

D. However, the moments of stress tensor operators

averaged with the compactly supported functions of time

discussed in Ref. [3] grow as ð3n=αÞ!. The noncompactly

supported Lorentzian function used in Ref. [2] formally

corresponds to the α ¼ 1 case and leads to moments with

ð3nÞ! growth. In all of these cases, PðxÞ might not be

uniquely determined from the moments. In general, when

the moments grow too rapidly to ensure uniqueness, there

can be several distinct choices for PðxÞ which all produce

the same moments and differ from one another by an

oscillatory function of x. Even if PðxÞ is not uniquely

determined, its integrals over a finite interval tend to

cancel the oscillations and can give a reliable estimate of

the probability of a result in this interval. For example,

in some applications one is interested in the probability

of a fluctuation which exceeds a given threshold and is

given by the complementary cumulative distribution

P>ðxÞ ¼
R

∞
x PðyÞdy, and it is possible to extract bounds

on this function from the moment sequence in some cases,

even if the moment sequence does not determine the

probability distribution uniquely [2].

There is also an independent approach to finding PðxÞ
which does not use the moments, which is direct diago-

nalization of the averaged operator T by a Bogoliubov

transformation to find its eigenvalues and eigenstates. The

probability of finding a given eigenvalue in a measurement

on the original vacuum state is then the squared overlap of

the eigenstate with the vacuum. In practice, this approach

must be performed numerically on a system with a finite

number of degrees of freedom. This was done in Ref. [8]

for a massless scalar field in a spherical cavity including

about 100 modes for time sampling associated with several

values of α. The results are in reasonable agreement with

those found for the tail of PðxÞ in Refs. [2,3]. This lends

support to the conclusion in the latter references that

fluctuations several orders of magnitude larger than the

typical fluctuation can have a non-negligible probability of

occurrence.

Such large fluctuations may have potentially observable

effects. For example, the role of large radiation pressure

fluctuations in enhancing the barrier penetration by charged

particles was treated in Ref. [9], where it was argued that

these fluctuations have the potential in some circumstances

to increase the barrier penetration rate by several orders of

magnitude compared to the rate predicted by the usual

quantum tunneling process. It was further suggested that

this effect may have already been observed in the nuclear

fusion of heavy ions with heavy nuclei. By contrast, the

vacuum fluctuations of the linear electric field, which obey

a Gaussian probability distribution, cause only a modest

increase in penetration rates [10,11]. Quantum stress tensor
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fluctuations are also of interest in gravity theory, as they can

drive passive fluctuations of the gravitational field, which is

a variety of quantum gravity effect. Stress tensor fluctua-

tions in the early Universe could play a role in the creation

of primordial density perturbations [12,13] or tensor

perturbations [14]. The references just cited all deal with

integrals of the stress tensor correlation function, and hence

the variance of the stress tensor fluctuations. It will be of

interest to study the probability of large fluctuations in

these and other gravitational applications. One possible

application is to the effects of vacuum fluctuations on

the small-scale causal structure of spacetime. In two-

dimensional models, it has been found that large positive

fluctuations can cause focusing of geodesics and closure of

light cones on small scales [15,16].

Most of the previous work on the probability of quantum

stress tensors fluctuations was restricted to operators

averaged in time at one spatial point. The purpose of

the present paper is to extend this treatment to include the

effects of averaging in space as well. The outline of the

paper is as follows: In Sec. II, we discuss stress tensor

probability distributions in two spacetime dimensions,

particularly in conformal field theory where exact results

are possible. Space and time averaging of stress tensor

operators in four-dimensional Minkowski spacetime is

developed in Sec. III, and the sampling functions needed

for this averaging are discussed. An iteration procedure for

the calculation of the moments of the averaged operators is

introduced. This procedure is analyzed in detail in Sec. IV.

It is argued that if the spatial averaging scale is smaller than

the temporal scale, then the lower moments are sensitive

only to the time averaging, but the high moments will also

depend upon spatial averaging. The implications of these

results for the rate of growth of the moments is treated in

Sec. V. It is found that the initial growth rate can be the

ð3n=αÞ! behavior found in Ref. [3] with time averaging

alone. However, for larger n, there is a transition to a

somewhat lower growth rate of ðn=αÞ!. This suggests that
the criterion due to Stieltjes holds for 1=2 ≤ α < 1,

implying that the moments uniquely determine the prob-

ability distribution among those that vanish on a half line.

The implications of these results for the tail of the

probability distribution are discussed in Sec. VI, where

it is shown that the asymptotic form of PðxÞ now falls more

rapidly than in the worldline case, but still more slowly than

an exponential function. This reflects that fact that spatial

averaging somewhat reduces the probability of large

fluctuations, but this probability remains high enough to

have important physical effects. The latter point is dis-

cussed in more detail in the final section, Sec. VII, where

the key results of the paper are summarized and discussed.

Appendix A contains an explicit construction of specific

forms of the temporal and spatial sampling functions.

Appendix B discusses some results on the asymptotic

forms of integrals which are used in Sec. V.

Units in which ℏ ¼ c ¼ 1 are used throughout the paper.

II. EXACT RESULTS IN TWO-DIMENSIONAL

CONFORMAL FIELD THEORY

Two-dimensional CFT provides an interesting example,

in which the relative effects of time and space averaging

can be determined in detail. Recall that the energy density

of a CFT in 1þ 1 dimensions splits into mutually commut-

ing left- and right-moving components

T00ðt; xÞ ¼ TRðuÞ þ TLðvÞ; ð1Þ

where we assume flat spacetime and let u ¼ t − x,
v ¼ tþ x. Any spacetime average of the energy density

can be written in terms of these components as

Z

dxdtT00ðt; xÞfðt; xÞ

¼
Z

dvTLðvÞFLðvÞ þ
Z

duTRðuÞFRðuÞ; ð2Þ

where

FLðvÞ ¼
1

2

Z

∞

−∞

duf

�

uþ v

2
;
v − u

2

�

;

FRðuÞ ¼
1

2

Z

∞

−∞

dvf

�

uþ v

2
;
v − u

2

�

:

Here, the leading factor of 1=2 is a Jacobian determinant.

Now let PL be the probability density function for

measurements of TL, averaged against FL, in the vacuum

state, i.e.,

Z

ω2

ω1

dωPLðωÞ ¼ ProbðTLðFLÞ ∈ ½ω1;ω2�Þ; ð3Þ

and write PR and P for the analogous probability density

functions of TR (averaged against FR) and T00 (averaged

against f). As TL and TR commute, the probability

distributions are independent and the combined probability

distribution is obtained as their convolution:

PðλÞ ¼
Z

∞

−∞

dλ0PLðλ − λ0ÞPRðλ0Þ: ð4Þ

The probability distribution of these components of the

energy tensor can be determined—at least in principle—

either by a moment-generating function method [1] or by

conformal welding techniques [4]. The latter method can be

applied to the cases of the vacuum and certain other special

states, including thermal equilibrium states and also highest

weight states [4]. Each method rests on the solution to

certain subsidiary problems and closed form results are
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only available in particular cases [1,4,5], though the

method of [4] is also amenable to numerical treatment.

Here, we draw attention to a special case where the

probability distribution can be determined in closed form

for different spatial and temporal averaging scales. Let

fðt; xÞ ¼ ð2πlτÞ−1e−ð1=2Þðt2=τ2þx2=l2Þ; ð5Þ

that is, a product of Gaussians in space and time, normal-

ized to have unit integral over spacetime, in which l and τ

determine the spatial and temporal averaging scales. In this

case, a simple calculation gives

FLðuÞ ¼
e−u

2=ð2σ2Þ
ffiffiffiffiffiffiffiffiffiffi

2πσ2
p ; ð6Þ

which is also a normalized Gaussian with characteristic

width σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2 þ τ2

p
. It is easily seen that FRðvÞ ¼ FLðvÞ.

For any unitary positive energy CFT, the probability dis-

tribution of TLðFLÞ in the vacuum state is known in a closed

form [1] (see [4,5] for some other closed form expressions)

and is given by the shifted Gamma distribution

PLðωÞ¼ϑðωþω0Þ
ð2πσ2Þc=24
Γðc=24Þ ðωþω0Þc=24−1e−2πσ

2ðωþω0Þ;

ð7Þ

where c is the central charge of the CFT [e.g., c ¼ 1 for a

massless scalar field],ω0 ¼ c=ð48πσ2Þ and ϑ is a Heaviside

function. As PL and PR are identical, the overall probability

distribution is the convolution ofPL with itself and is again a

shifted Gamma distribution:

PðωÞ¼ϑðωþ2ω0Þ
ð2πσ2Þc=12
Γðc=12Þ ðωþ2ω0Þc=12−1e−2πσ

2ðωþ2ω0Þ:

ð8Þ

To see this, it is easiest to proceed from the moment-

generating function

MLðμÞ ¼
Z

∞

−∞

dμPLðωÞeμω ¼
�

e−μ=ð2πσ
2Þ

1 − μ=ð2πσ2Þ

�c=24

ð9Þ

for PL (defined for μ < 2πσ2) and note that the moment-

generating function for P must be

MðμÞ ¼ MLðμÞ2 ¼
�

e−μ=ð2πσ
2Þ

1 − μ=ð2πσ2Þ

�c=12

: ð10Þ

Therefore the probability density function forP is just that of

PL but with c replaced by 2c throughout.

We may read off a sharp quantum inequality bound on

the averaged energy density from (8), namely

Z

dtdxhT00ðt; xÞiψfðt; xÞ ≥ −
c

24πðl2 þ τ2Þ ð11Þ

for any physically reasonable state ψ . This inequality may

also be obtained as a special case of a general quantum

inequality bound proved by different methods in [17], in

which a precise specification of the relevant states may be

found. It is interesting to compare this bound with the

worldline bound

1

τ
ffiffiffiffiffiffi

2π
p

Z

dte−t
2=ð2τ2ÞhT00ðt; xÞiψ ≥ −

c

24πτ2
ð12Þ

obtained in [1,17] for Gaussian smearing on timescale τ. If

one attempted to derive a spacetime bound by simply

averaging all these bounds in x with the appropriate

Gaussian weight, one would obtain a (nonsharp) bound

Z

dtdxhT00ðt; xÞiψfðt; xÞ ≥ −
c

24πτ2
: ð13Þ

As one might expect, the sharp bound (11) improves on this

for all l > 0 and becomes progressively tighter as l

increases. In the limit l → ∞, we see that the sharp lower

bound in (11) vanishes, which is to be expected as the

Hamiltonian is a positive operator. Similarly, the proba-

bility distribution (8) converges to the delta distribution

δðωÞ in this limit, reflecting the fact that vacuum measure-

ments of the Hamiltonian result in 0 with probability 1.

Our main interest, however, is in the effect of the spatial

averaging on the moments and the probability distribution

for finite spatial averaging scales. Inspecting the moment-

generating function (10), it is clear that the nth moment

scales with the characteristic scale σ as

M
ðτ;lÞ
n ¼

�

τ2

σ2

�

n

M
ðτ;0Þ
n ¼ ð1þ ðl=τÞ2Þ−nMðτ;0Þ

n : ð14Þ

For nðl=τÞ2 ≪ 1, the moments are little changed from

those obtained by pure worldline smearing. This is a special

case of a more general effect whereby a worldline result can

be obtained as a limit of a small spatial averaging scale,

which will be discussed in Sec. VI B. At higher n, of
course, the effects of the spatial averaging become appar-

ent. Likewise, for a range of values ω slightly greater than

zero, the probability distribution of ρ is well approximated

by its values for l ¼ 0 (with τ fixed), but as ω increases, the

two distributions depart from one another, with the l > 0

distribution decaying exponentially faster. An illustrative

plot appears in Fig. 1. Note, however, that the probability of

finding a negative measurement outcome is given in terms

of the lower incomplete Γ function as

ProbðT00ðFÞ ≤ 0Þ ¼ γðc=12; c=12Þ
Γðc=12Þ ; ð15Þ
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which is independent of l and τ and depends only on the

central charge c (provided we maintain Gaussian sam-

pling). Some results for non-Gaussian worldline sampling

can be found in Refs. [4,5].

Extrapolating from these results, we may expect that, for

general quantum field theories, spatial averaging reduces

the magnitude of the quantum inequality bound and also

causes the positive tail of the probability distribution to

decay more rapidly. Nonetheless, we may also expect that,

for sufficiently low moments or for a range of smaller

values in the probability distribution, one may neglect the

effect of spatial averaging on scales small in relation to

the temporal averaging. Nonetheless, not all features of the

CFT might be expected to generalize. In particular, here the

spacetime averaged probability distribution is of the same

functional form as the worldline averaged case, but with

different parameters. As we will see, this is a special feature

of conformal fields and is not true in general.

III. MOMENTS WITH SPATIAL AVERAGING

A. Averaged operators and their moments

Let T ðx; tÞ be a quadratic normal ordered bosonic

operator in four-dimensional flat spacetime, such as a

stress tensor component for a free scalar or electromagnetic

field. We consider a space and time average of this operator

defined by

T ¼
Z

∞

−∞

dtfðtÞ
Z

d3xgðxÞT ðx; tÞ; ð16Þ

where fðtÞ and gðxÞ are compactly supported functions of

time and of space, respectively. They are assumed to be

non-negative and satisfy

Z

∞

−∞

dtfðtÞ ¼ 1 ð17Þ

and

Z

d3xgðxÞ ¼ 1: ð18Þ

Note that the averaging process breaks Lorentz sym-

metry. This is to be expected, as the averaging describes a

measurement made in a specific spacetime region and in a

selected frame of reference. The space and time averaged

operator may be expanded in terms of annihilation and

creation operators in the form

T ¼
X

ij

ðAija
†
i aj þ Bijaiaj þ B�

ija
†
i a

†
jÞ; ð19Þ

where ½ai; a†j � ¼ δij1, A is Hermitian and B is symmetric.

The moments of T are defined as the vacuum expectation

values of powers of T:

μn ¼ hTni: ð20Þ

The various moments can be expressed as polynomials in

the matrices, Aij and Bij. The second moment, for example,

is given by

μ2 ¼ 2TrB†B ¼ 2
X

jl

jBjlj2: ð21Þ

The primary example which we investigate in this paper

is T ¼ ∶ _φ2∶, the squared time derivative of a massless

scalar field. We may write a mode expansion for _φ as

_φðt; xÞ ¼
X

k

ffiffiffiffiffiffi

ω

2V

r

ðakeiðk·x−ωtÞ þ a†ke
−iðk·x−ωtÞÞ; ð22Þ

where ω ¼ jkj and V is a quantization volume with periodic

boundary conditions, which fixes the summation lattice

for k.

Let the Fourier transforms of the sampling functions be

defined by

f̂ðωÞ ¼
Z

∞

−∞

dte−iωtfðtÞ ð23Þ

and

ĝðkÞ ¼
Z

d3xeik·xgðxÞ: ð24Þ

Equations (17) and (18) imply that f̂ð0Þ ¼ ĝð0Þ ¼ 1. Here

we assume that the sampling functions, and hence their

Fourier transforms, are even, real functions. The matrices

Aij and Bij which appear in T and hence in the expressions

FIG. 1. The probability density PðωÞ plotted for central charge

c ¼ 1 with averaging along a worldline (left-hand curve, red) and

for spacetime averaging with the same temporal sampling scale τ

and l ¼ 2τ (right-hand curve, blue). The latter is displaced to the

right and decays more rapidly. The vertical asymptotes occur at

the quantum inequality bound in each case.
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for its moments may be expressed in terms of f̂ and ĝ. For

the case of T ¼ ∶ _φ2∶, we have

Ajl ¼
ffiffiffiffiffiffiffiffiffiffiffi

ωjωl

p

V
f̂ðωj − ωlÞĝðkj − klÞ ð25Þ

and

Bjl ¼
ffiffiffiffiffiffiffiffiffiffiffi

ωjωl

p

2V
f̂ðωj þ ωlÞĝðkj þ klÞ; ð26Þ

both of which are real and symmetric.

We can now understand why time averaging is essential

in four spacetime dimensions. The time average contributes

a factor of f̂2ðωj þ ωlÞ to μ2 which renders the sum over

all modes in Eq. (21) finite. If we had averaged only in

space, then μ2 would just contain a factor of ĝ2ðkj þ klÞ
and receive a divergent contribution from the region where

kj ¼ −kl, that is, from modes with antiparallel wave

vectors.

In Ref. [3], it was argued that there is a dominant

contribution to μn, which is

Mn ¼ 4
X

j1���jn
Bj1j2

Aj2j3
Aj3j4

…Ajn−1jn
Bjnj1

: ð27Þ

This contribution contains the maximum number of factors

of Ajl, which tend to be larger that the corresponding Bjl,

because of the minus sign in the f̂ðωj − ωlÞ factor, which
allows it to be larger on average than the f̂ðωj þ ωlÞ factor
in Bjl. We will assume Mn continues to be the dominant

contribution when spatial averaging is included. If f̂ and ĝ
are non-negative, all of the omitted terms are non-negative,

so Mn is always a lower bound on the exact moment. The

construction of non-negative f̂ and ĝ is discussed in Ref. [3]
and in Sec. III B.

We now give the generalization of the discussion in

Sec. III A of Ref. [3] to the case with spatial and temporal

averaging. Use Eqs. (25) and (26) to write

Mn ¼ Cn

Z

∞

0

d3k1…d3knω1…ωnf̂ðω1 þ ω2Þ

× ĝðk1 þ k2Þf̂ðω2 − ω3Þĝðk2 − k3Þ…
× f̂ðωn−1 − ωnÞĝðkn−1 − knÞf̂ðωn þ ω1Þĝðkn þ k1Þ;

ð28Þ

where

Cn ¼
1

ð2πÞ3n ; ð29Þ

and we have taken the V → ∞ limit. In the case that

n ¼ 2m is even, we can write the above expression as

M2m ¼ C2m

Z

d3kd3qkq½Gm−1ðk; qÞ�2; ð30Þ

where k ¼ jkj, q ¼ jqj, and we define

Gm−1ðk1; kmþ1Þ ¼
Z

d3k2…d3kmω2…ωmf̂ðω1 þ ω2Þ

× ĝðk1 þ k2Þf̂ðω2 − ω3Þĝðk2 − k3Þ…
× f̂ðωm − ωmþ1Þĝðkm − kmþ1Þ: ð31Þ

These functions satisfy a recurrence relation

Gmþ1ðk; qÞ ¼
Z

d3llf̂ðq − lÞĝðq − lÞGmðk;lÞ ð32Þ

for m ≥ 0, where

G0ðk; qÞ ¼ f̂ðqþ kÞĝðqþ kÞ: ð33Þ

B. Compactly supported averaging functions

In this paper, we assume that both fðtÞ and gðxÞ are

functions with compact support and hence describe mea-

surements made in both a finite time interval and a finite

spatial region. This implies that their Fourier transforms

f̂ðωÞ and ĝðkÞ decay more slowly than exponentially for

large values of their arguments. Starting with f, we assume

that its support has characteristic width τ (in a specific

example given below, this will be the length of the support)

and that its Fourier transform behaves asymptotically as

f̂ðωÞ ∼ Cfe
−jωτjα ; jωj → ∞; ð34Þ

for some constants 0 < α < 1 and Cf > 0, the latter of

which is fixed by the requirement that f has unit integral,

i.e., f̂ð0Þ ¼ 1. It is further assumed that f is even and non-

negative and that the same is true of f̂. A class of functions

with these properties was constructed and discussed in

detail in Sec. II of Ref. [3].

Turning to g, we require similar properties and, addi-

tionally, spherical symmetry. Functions of this type may be

constructed as follows. Start with a non-negative even and

smooth function of compact support, h, with support of

characteristic width l (in an example below, this will be

half the width of the support) and Fourier transform

obeying

ĥðωÞ ∼ Che
−ηjωljλ ; jωj → ∞; ð35Þ

for some constants η > 0, 0 < λ < 1 and Ch > 0. We also

assume that ĥðωÞ has a maximum at ω ¼ 0 and is mono-

tone decreasing on the positive half line, so that ĥ0ðωÞ ≤ 0

and ĥ00ð0Þ < 0. Setting
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gðxÞ ¼ hðjxj=lÞ
2πl3jĥ00ð0Þj

; ð36Þ

we then have

ĝðkÞ ¼ −
2

kl3jĥ00ð0Þj
d

dk

Z

∞

0

dr cosðkrÞhðr=lÞ ¼ ĥ0ðklÞ
klĥ00ð0Þ

:

ð37Þ

Using L’Hôpital’s rule and the fact that ĥ0ð0Þ ¼ 0 it is easily

seen that ĝð0Þ ¼ 1, so g has unit integral over 3-space. Note
also that ĝðkÞ ≥ 0 for all k. Furthermore, we may deduce

ĝðkÞ ∼ Cg

e−ϵk
λ

k2−λ
as k → ∞; ð38Þ

where

ϵ ¼ ηsλ; Cg ¼
λϵCh

jĥ00ð0Þj
: ð39Þ

Here we define s ¼ l=τ as the ratio of the spatial and

temporal sampling widths. We will henceforth adopt units

of time in which τ ¼ 1, so s ¼ l, unless otherwise noted. In

this situation, ϵ1=λ measures the ratio of spatial and

temporal sampling scales if η is of order one.

A specific example for the case α ¼ λ ¼ 1
2
may be based

on results in [3], where a non-negative smooth and even

function L was constructed, with support ½−1; 1�, unit

integral, and non-negative Fourier transform obeying

L̂ðωÞ ∼ CLe
−

ffiffiffiffiffiffi

2jωj
p

as jωj → ∞; ð40Þ

where the numerical value of CL ¼ 2.9324 to five signifi-

cant figures. See in particular Figs. 4 and 5 of Ref. [3].

Setting

fðtÞ ¼ 2

τ
Lð2t=τÞ; hðrÞ ¼ Lðr=sÞ; ð41Þ

then f has support ½−τ=2; τ=2�, while g is supported in a ball
of radius s. Noting that f̂ðωÞ¼L̂ðωτ=2Þ and ĥðωÞ¼sL̂ðωsÞ,
the transforms of f and g have asymptotic behavior:

f̂ðωÞ ∼ Cfe
−

ffiffiffiffiffiffi

jωτj
p

as jωj → ∞; ð42Þ

where Cf ¼ CL, and

ĝðkÞ ∼ Cg

e−ϵ
ffiffi

k
p

k3=2
as k → ∞; ð43Þ

where ϵ ¼
ffiffiffiffiffi

2s
p

and Cg has numerical value

Cg ¼
27.18

s3=2
: ð44Þ

The construction of some specific approximate forms for

f̂ðωÞ and ĝðkÞ is described in more detail in Appendix A.

IV. ANALYSIS OF THE ITERATION PROCEDURE

A. Heuristic treatment

Any smooth compactly supported function has a Fourier

transform that decays faster than any inverse power.

Therefore the integrals in Eq. (32) are dominated by

contributions from certain regions of the integration domain.

Proceeding somewhat heuristically for the moment, the

factor of f̂ restricts the effective integration region to a shell

of typical radius∼q and thickness ρf̂ ∝ 1=τ, while the factor

of ĝ restricts the effective integration region to a ball centered
at q and of radius ρĝ ∝ 1=s. Overall, the integration will be

dominated by contributions arising from the intersection of

the ball and shell, as illustrated by Fig. 2.

If q is small in relation to the ball radius ρĝ, the shell is

contained within the ball so the integration therefore

qqqqqqqqqqq

0

qqqqqqqqq

000000000

FIG. 2. The ball and shell geometry, indicating the regime where q is larger than the ball radius, in which the effects of spatial

averaging are seen (left-hand figure), and the regime where q is smaller than the ball radius and spatial averaging is less significant

(right-hand figure).
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extends over the whole of the shell, which has a volume

∼q2ρf̂. Therefore one expects, roughly, that

Gmþ1ðk; qÞ ∼ Cq3Gmðk; qÞ ð45Þ

for such q and a constantC. This is the growth rate expected
in the worldline limit treated in Ref. [3] and corresponds to

the factor of Ωp in Eqs. (77) and (78) of that paper, as we

are currently dealing with the case p ¼ 3. On the other

hand, as q becomes large in relation to the radius of the ball

determined by ĝ, the effective integration region volume

tends to a constant ∼ðρĝÞ2ρf̂, where ρĝ is the effective

support radius of ĝ and similarly for ρf̂. Therefore, for large

q, we expect

Gmþ1ðk; qÞ ∼ C0qGmðk; qÞ; ð46Þ

for another constant C0. The consequence of this is that low
moments (which are largely fixed by the small q regime)

will behave like those of the worldline averaged quantities,

whereas higher moments grow rather less rapidly. The

distinction between low and high moments is determined

by the ratio ρĝ=ρf̂ ≈ τ=s: the smaller the scale of spatial

averaging relative to temporal averaging, i.e., the larger the

ratio ρĝ=ρf̂ of momentum space averaging scales, the larger

q must be to detect the effect of spatial averaging and

therefore the higher the threshold beyond which the

moments Mn are affected by the spatial averaging. This

fits in with some basic intuition: on one hand, if one shrinks

the spatial averaging to a δ function, one ought to obtain the

worldline results, consistent with Eq. (45); on the other, one

would expect that broadening the spatial averaging should

suppress the effects of short-wavelength modes relative to

the worldline case and therefore diminish the probability of

large fluctuations. These expectations are in agreement

with the exact results found for CFTs in Sec. II. For the

energy density, in fact, if averaging extends uniformly

across a full Cauchy surface, one obtains a multiple of the

Hamiltonian and all fluctuations vanish because the vac-

uum is an eigenstate of the Hamiltonian. Note, however,

that the vacuum is not an eigenstate of the operators formed

by integrating stress tensor components other than the

energy density over all space. Nonetheless, we will find that

spatial averaging of these stress tensor components also

reduces the probability of large vacuum fluctuations.

In the rest of this section we investigate these heuristic

ideas more quantitatively by both numerical and ana-

lytic means.

B. The first iteration

To start, we consider in more detail how to approximate

the first iterate G1ðk; qÞ, given by

G1ðk;qÞ¼
Z

d3llf̂ðq−lÞĝðq−lÞf̂ðkþlÞĝðkþlÞ; ð47Þ

in the regime where q and k both tend to infinity though not

necessarily at the same rate. Each of the Fourier transforms

in the integrand decays rapidly as the magnitude of its

argument increases. Therefore the dominant contributions

to the integral are expected to arise from regions where

l ≈ q or l ≈ −k. Unless k ≈ −q, a case that we defer for the

moment, these two regions are well separated as q; k → ∞

and their contributions may be analyzed separately.

Consider first the contribution from l ≈ q. In this

region, f̂ðkþ lÞĝðkþ lÞ ≈ f̂ðkþ qÞĝðkþ qÞ ¼ G0ðk; qÞ,
and therefore the contribution to G1 is expected to be

approximately

qIðqÞG0ðk; qÞ; ð48Þ

where the function IðqÞ is defined as

IðqÞ ¼
Z

d3lf̂ðq − lÞĝðq − lÞ ð49Þ

and will be called the iteration coefficient; note that it

depends only on the magnitude q of q due to spherical

symmetry of g. The iteration coefficient will be studied in

more detail below; in particular, it has a finite, nonzero limit

as q → ∞.

On the other hand, in the region where l ≈ −k we may

approximate ĝðq − lÞf̂ðkþ lÞ ≈ ĝðqþ kÞf̂ð2kÞ, maintain-

ing the assumption that k ≉ −q. The contribution is then

approximately

kĝðqþ kÞf̂ð2kÞ
Z

d3lf̂ðq − lÞĝðkþ lÞ: ð50Þ

Under the additional assumption that q ≫ k the f̂ factor

may be taken outside the integral, using f̂ðq − lÞ≈
f̂ðq − kÞ ≈ f̂ðqþ kÞ, giving an approximate contribution

kĝðqþ kÞf̂ðqþ kÞf̂ð2kÞ
Z

d3lĝðkþ lÞ

¼ ð2πÞ3gð0Þkf̂ð2kÞG0ðk; qÞ ð51Þ

to G1. Owing to the rapid decay of f̂ð2kÞ, this contribu-

tion is subdominant relative to that of Eq. (48) and we

deduce that

G1ðk; qÞ ≈ qIðqÞG0ðk; qÞ ð52Þ

as q; k → ∞ with q ≫ k. Alternatively, suppose that q and

k have comparable magnitudes. Provided that k ≉ −q, we

may then approximate Eq. (50) using f̂ð2kÞ ≈ f̂ðkþ qÞ
and replacing q by k under the integral. Then Eq. (50)
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contributes approximately kIðkÞG0ðk; qÞ to G1ðk; qÞ.
Combining with Eq. (48) we have in total

G1ðk; qÞ ≈ ½qIðqÞ þ kIðkÞ�G0ðk; qÞ ð53Þ

as q; k → ∞ with k ≉ −q. In particular,

G1ðq; qÞ ≈ 2qIðqÞG0ðq; qÞ ∼ 2qIð∞ÞG0ðq; qÞ ð54Þ

as q → ∞.

If k ≈ −q, the two contributing regions overlap and

should not be analyzed separately. Instead, we expect that

G1ð−q; qÞ ≈ qf̂ð2qÞ
Z

d3lf̂ðq − lÞĝðq − lÞ2

< qf̂ð2qÞ
Z

d3lf̂ðq − lÞĝðq − lÞ

¼ qf̂ð2qÞIðqÞ; ð55Þ

where the inequality arises because 0 ≤ ĝ ≤ 1.

The ability to pull factors such as f̂ð2qÞ out of the

integral arises because these functions become flat for large

arguments, as was noted above Eq. (77) in [3]. More

precisely, f̂0ðωÞ=f̂ðωÞ → 0 as ω → ∞, so f̂0 ¼ oðf̂Þ. In
addition, the function ĥ defined in Appendix A satisfies

jĥ0j=ĥ ≲ 0.33 and is hence relatively flat for all values of its

argument.

C. The iteration coefficient

1. Form for large q

Our basic hypothesis is that, under the iteration Eq. (32),

Gmþ1ðk; qÞ ≈ qIðqÞGmðk; qÞ ð56Þ

for q ≫ k, where the iteration coefficient IðqÞ was defined
in Eq. (49). Changing variables to m ¼ q − l,

IðqÞ ¼
Z

d3mf̂ðq − kq −mkÞĝðmÞ: ð57Þ

Our aim is to show that IðqÞ → Ið∞Þ as q → ∞, where

Ið∞Þ ¼
Z

d3mf̂ðq̂ ·mÞĝðmÞ ð58Þ

and q̂ ¼ q=q is a unit vector along q.

To prove this, note that for each fixed m, one has

q−kq−mk¼ qð1− ð1−2q̂ ·m=qþm2=q2Þ1=2Þ→ q̂ ·m

ð59Þ

as kqk → ∞. Therefore the integrand approaches the

required form pointwise. Noting also that f̂ðωÞ ≤ f̂ð0Þ

for all ω, and that f̂ð0ÞĝðmÞ is integrable, the required result
follows by the dominated convergence theorem. We call

Ið∞Þ the asymptotic iteration coefficient and identify it

with the constant C0 which appeared in Eq. (46).

2. A coordinate space form of Ið∞Þ
We may write Eq. (58) as

Ið∞Þ ¼ 2π

Z

∞

0

dmm2ĝðmÞ
Z

1

−1

dcf̂ðmcÞ

¼ 2π

Z

∞

0

dmmĝðmÞ
Z

m

−m

dξf̂ðξÞ; ð60Þ

where c is the cosine of the angle between m and q, and we

let ξ ¼ mc. Next we use Eq. (23) and perform the ξ

integration to write

Ið∞Þ¼ 2πi

Z

∞

−∞

dt
fðtÞ
t

Z

∞

0

dmmĝðmÞðe−imt− eimtÞ: ð61Þ

Next use Eq. (37) and the fact that ĥ0ðmsÞ is an odd

function to write

Ið∞Þ ¼ 2πi

sĥ00ð0Þ

Z

∞

−∞

dt
fðtÞ
t

Z

∞

−∞

dmĥ0ðmsÞe−imt

¼ −
2π

s2ĥ00ð0Þ

Z

∞

−∞

dtfðtÞ
Z

∞

−∞

dmĥðmsÞe−imt: ð62Þ

In the second step above, an integration by parts was

performed using ĥðmsÞ → 0 as m → �∞. Finally, we

recognize that the m integration is an inverse Fourier

transform yielding 2πhð−t=sÞ ¼ 2πhðt=sÞ to obtain

Ið∞Þ ¼ −
4π2

s3ĥ00ð0Þ

Z

∞

−∞

dtfðtÞhðt=sÞ: ð63Þ

We may use Eq. (23) to write

ĥ00ð0Þ ¼ −

Z

∞

−∞

dtt2hðtÞ ¼ −2

Z

∞

0

dtt2hðtÞ; ð64Þ

which allows Ið∞Þ to be calculated directly from the

coordinate space sampling functions fðtÞ and hðtÞ.
Recall that fðtÞ has a characteristic width τ ¼ 1, and

hðt=sÞ has width s. It is of interest to consider the limits

in which one of these widths is large compared to the

other. First consider the case of a large spatial sampling

region s ≫ 1. This causes hðt=sÞ ≈ hð0Þ, and we may use
R

∞
−∞

dtfðtÞ ¼ 1 to write

Ið∞Þ ≈ −
4π2hð0Þ
s3ĥ00ð0Þ

; s ≫ 1: ð65Þ
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In the opposite limit of a small spatial sampling scale, we

note that the function hðt=sÞ forces the integral to get its

dominant contribution from small t, so fðtÞ ≈ fð0Þ, and
now we use

R

∞
−∞

dthðt=sÞ ¼ s to find

Ið∞Þ ≈ −
4π2fð0Þ
s2ĥ00ð0Þ

; s ≪ 1: ð66Þ

The powers of s−3 and s−2 which appear in Eqs. (65) and

(66), respectively, will be numerically confirmed in

Sec. VI A.

D. Test of the iteration procedure

Here we wish to test numerically a special case of our

proposed iteration procedure. Specifically, we expect that

G1ðk; qÞ ≈ qIð∞ÞG0ðk; qÞ; ð67Þ

in the limit that q ≫ k. Define

R ¼ G1ðk; qÞ
qIð∞ÞG0ðk; qÞ

: ð68Þ

We numerically evaluate G1ðk; qÞ and G0ðk; qÞ, using

Eqs. (32) and (33). Here we use the approximate forms

of f̂ðωÞ and ĝðkÞ for the case α ¼ λ ¼ 1=2 given in

Appendix A.

The ratio R is plotted in Fig. 3 as a function of q for

different values of k when the vectors q and k are parallel

and in Fig. 4 when they are antiparallel. We see that R ≈ 1

for large q, which supports our iteration hypothesis. We

may use the results in Sec. IV B to understand some of the

other features in Figs. 3 and 4. First, there are maxima in

Fig. 3 near q ≈ k where R ≈ 2. This follows from Eq. (54),

which further shows that the height of this ridge is bounded,

so R → 2 when q → ∞ with k ¼ q. A second feature are

the minima in Fig. 4 near q ≈ −k, where R < 1. This

feature follows from Eq. (55).

E. A growth bound

Alongside the numerical evidence supporting our iter-

ation procedure, it is useful to have analytic worst-case

bounds on the growth of Gm. We assume that there exist

constants C > 0, 0 < α < 1, τ > 0, 0 < λ < 1 and ϵ > 0

such that

0 ≤ f̂ðωÞ ≤ Ce−jωτj
α

; 0 ≤ ĝðkÞ ≤ Ce−ϵkτkk
λ ð69Þ

for all ω ∈ R, k ∈ R
3. As previously, we adopt units in

which τ ¼ 1. Here the constant η defined in Eq. (35) has

been set to η ¼ 1, and the parameter ϵ1=λ measures the ratio

of spatial and temporal sampling scales.

It is useful to establish some rough bounds on the way in

which the functions Gm can grow with m. Because it is no

more difficult, we study a slightly more general problem

than the recurrence relation expressed by (32) and (33).

For integer p ≥ 1, and with fixed test functions f and g
whose Fourier transforms satisfy Eq. (69), we define an

integral operator ΞðpÞ by

ðΞðpÞGÞðk; qÞ ¼
Z

d3llpf̂ðq − lÞĝðq − lÞGðk;lÞ ð70Þ

and consider the iteration Gmþ1 ¼ Ξ
ðpÞGm, with G0 as

in (33).

Starting from the assumption in Eq. (69), our aim is to

prove that

jGmðk; qÞj ≤ Q
ðpÞ
m ðqÞe−ðkþqÞα−ϵkkþqkλ ð71Þ

FIG. 3. The ratio R of the iteration integral to its expected

asymptotic value for large q is plotted as a function of q for three

choices of k when q and k are parallel. Note that there is a local

maximum when q ≈ k, but R → 1 when q ≫ k.

FIG. 4. The ratio R as a function of q is repeated for the

case that q and k are antiparallel. Now there is a local minimum

when q ≈ k, surrounded by local maxima, but again R → 1

when q ≫ k.
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for all k; q ∈ R
3, where Q

ðpÞ
m is a polynomial of degree at

most mp with coefficients independent of q and k.

In our situation of interest, p ¼ 1, so the polynomial

factor in q has degree at most m, which supports the

heuristic expectation given in Eq. (46). We will need two

useful inequalities. The first was proved as Eq. (B6) in [3]

and asserts

xα þ yα ≥ ðxþ yÞα þ ð1 − αÞminfx; ygα; ð72Þ

which holds for x; y > 0 and 0 < α < 1. Here, we also

require an analogous inequality on vector norms,

kxkα þ kykα ≥ ðkxk þ kykÞα þ ð1 − αÞminfkxk; kykgα

≥ kxþ ykα þ ð1 − αÞminfkxk; kykgα ð73Þ

for x; y ∈ R3, 0 < α < 1, where in the first step we apply

(72) to x ¼ kxk and y ¼ kyk and in the second we have

applied the ordinary triangle inequality and the fact

that 0 < α < 1.

The proof of Eq. (71) is inductive. The statement is true

by assumption form ¼ 0, because it follows from Eqs. (69)

and (33) that

jG0ðk; qÞj ≤ C2e−ðkþqÞα−ϵkkþqkλ ð74Þ

for all k; q ∈ R
3. So let us now suppose that (71) holds for

some m ≥ 0. We obtain

jGmþ1ðk;qÞj

≤C2

Z

d3llpQ
ðpÞ
m ðlÞe−jq−ljα−ϵkq−lkλe−ðkþlÞα−ϵkkþlkλ :

ð75Þ

Expanding the degree-mp polynomial Q
ðpÞ
m , it is clearly

sufficient for our inductive argument to show that integrals

of the form (where ≔ denotes equal by definition)

LðrÞðk;qÞ≔
Z

d3llre−jq−lj
α−ϵkq−lkλe−ðkþlÞ

α−ϵkkþlkλ ; ð76Þ

with r ≥ p ≥ 1, obey bounds of the form

LðrÞðk; qÞ ≤ PðrÞðqÞe−ðkþqÞα−ϵkkþqkλ ð77Þ

for all k; q, where PðrÞ is a polynomial of degree r with

coefficients independent of k and q, whose leading coef-

ficient is also independent of r.
To prove the estimate (77), we apply (73) to obtain

LðrÞðk; qÞ ≤ e−ϵkkþqkλ
Z

d3llre−jq−lj
α−ðkþlÞα

× e−ϵð1−λÞminðkq−lk;kkþlkÞλ :

Now split the integral into the regions l < 21=rq and

l ≥ 21=rq. In the first of these, we can use the fact that

l
r < 2qr if r ≥ 1; further, we apply (72) to find

e−jq−lj
α−ðkþlÞα ≤ e−ðkþqÞα−ð1−αÞminðjq−lj;kþlÞα ≤ e−ðkþqÞα :

ð78Þ

Thus the contribution is bounded from above by

2qre−ðkþqÞα−ϵkkþqkλ
Z

l<21=rq

d3le−ϵð1−λÞminðkq−lk;kkþlkÞλ :

ð79Þ

In the second region, we use e−ðkþlÞ
α

≤ e−ðkþqÞα to see that

the contribution is bounded by

Sr;αe
−ðkþqÞα−ϵkkþqkλ

Z

l>21=rq

d3le−ϵð1−λÞminðkq−lk;kkþlkÞλ ;

ð80Þ

where

Sr;α≔ sup
q>0

sup
l>21=rq

lre−ðl−qÞ
α

¼ sup
q>0

sup
l>21=rq

ð1−q=lÞ−rðl−qÞre−ðl−qÞα

≤ ð1−2−1=rÞ−rsup
x>0

xr=αe−x ¼ð1−2−1=rÞ−rðr=αÞr=αe−r=α:

ð81Þ

Here sup denote a supremum, so supq>0supl>21=rq is the

least upper bound of values taken subject to the constraints

that q > 0 and l > 21=rq. As the upper bound suggests,

Sr;α will grow rapidly in r for fixed α. We may recombine

the estimates (79) and (80) as

LðrÞðk; qÞ ≤ ð2qr þ Sr;αÞe−ðkþqÞα−ϵkkþqkλ

×

Z

d3le−ϵð1−λÞminðkq−lk;kkþlkÞλ ; ð82Þ

where we have simply estimated the individual integrals by

their extension to all of R3. Using the elementary fact

e−minfA;Bg ≤ e−A þ e−B ð83Þ

and the freedom to translate the origin of coordinates,

one has

Z

d3le−ϵð1−λÞminðkq−lk;kkþlkÞλ ≤ 2

Z

d3le−ϵð1−λÞl
λ

¼ 8π

Z

∞

0

dll2e−ϵð1−λÞl
λ ¼ 8πΓð3=λÞ

λðϵð1 − λÞÞ3=λ ;
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which gives, overall,

LðrÞðk; qÞ ≤ 8πΓð3=λÞ
λðϵð1 − λÞÞ3=λ ð2q

r þ Sr;αÞe−ðkþqÞα−ϵkkþqkλ :

ð84Þ

Accordingly, LðrÞðk; qÞ is bounded by a polynomial in q
(with coefficients independent of k and q and leading

coefficient independent of r) multiplied by e−ðqþkÞα−ϵkkþqkλ.
This concludes the inductive proof of the bound (71).

We make no claim that this is the tightest possible upper

bound that could be derived. However, the argument is

relatively simple and indicates a worst-case growth rate for

the functions Gmðk; qÞ that is nonetheless broadly in line

with the heuristic discussion of Sec. IVA, in the

case p ¼ 1.

V. RATE OF GROWTH OF THE MOMENTS

A. Approximate forms of the moments

Recall that in the iteration procedure for Gmðk; qÞ, using
Eq. (32), we expect for the initial iterations to each bring

out a factor proportional to q3 and the later iterations to

each bring out a factor of Ið∞Þq. Thus, for m ≫ 1, we

expect the asymptotic form for Gmðk; qÞ to be

Gmðk; qÞ ≈ C½Ið∞Þ�mqmþμG0ðk; qÞ; ð85Þ

where C and μ are constants which correct for the

possibility that the first several iterations bring out different

constants and powers of q than do the later iterations. If we

use this form in Eq. (30), we find

Mn ≈ CnC
2½Ið∞Þ�n−2Snþ2μ−1; ð86Þ

where

SN ¼
Z

d3qqN
Z

d3kkf̂2ðqþ kÞĝ2ðqþ kÞ: ð87Þ

We will estimate this integral for the case that N ≫ 1. As

we expect that the dominant contribution comes from

q ≫ k, we approximate jqþ kj ≈ q. If we assume that f̂
and ĝ may be approximated by their asymptotic forms,

Eqs. (34) and (38), then we have

SN ≈TN ¼ 16π2C2
fg

Z

∞

0

dqqNþ2

Z

∞

0

dkk3e−2ðqþkÞα e
−2ϵqλ

q4−2λ
;

ð88Þ

where we have written

Cfg ¼ CfCg: ð89Þ

Next let k ¼ r − q to write

TN ¼ 16π2C2
fg

Z

∞

0

dqqNþ2ðλ−1Þe−2ϵq
λ

Z

∞

q

drðr − qÞ3e−2rα :

ð90Þ

Define a new variable u by r ¼ qð1þ uÞ1=α to write the

final integral above as

Z

∞

q

drðr − qÞ3e−2rα

¼ q4

α

Z

∞

0

duð1þ uÞ1=α−1½ð1þ uÞ1=α − 1�3e−2qαð1þuÞ

≈
q4

α4
e−2q

α

Z

∞

0

duu3e−2q
αu ¼ 3

8α4
q4ð1−αÞe−2q

α

; ð91Þ

where in the second step we used the fact that the dominant

contribution comes from the region where u ≪ 1 because

r ≈ q when q ≫ k. Thus we have

TN ≈
6π2C2

fg

α4

Z

∞

0

dqqNþ2ð1þλÞ−4αe−2ðq
αþϵqλÞ: ð92Þ

For the case α ¼ λ, this integral may be evaluated explicitly

to obtain

TN ≈
6π2C2

fg

α5
½2ð1þ ϵÞ�ð2α−N−3Þ=α

Γ

�

N þ 3

α
− 2

�

: ð93Þ

When α ¼ 1=2, this becomes

TN ¼
192π2C2

fgΓð2N þ 4Þ
½2ð1þ ϵÞ�2Nþ4

: ð94Þ

B. Contribution from q+ k ≈ 0

The result in Eq. (88), that SN ≈ TN , relies upon the

dominant contribution to SN coming from regions where

q ≫ k when N ≫ 1. However, it is worth examining more

carefully the contribution from the region where qþ k ≈ 0,

where the argument of ĝ becomes small, in order to show

that this contribution is small in relation to TN . In this

region k ≈ q and the contribution to SN is therefore

bounded by

SN1 ¼
Z

d3qqNþ1f̂ð2qÞ2
Z

d3kĝðkþ qÞ2

¼ 4π

Z

∞

0

dqqNþ3f̂ð2qÞ2
Z

d3kĝðkÞ2

≲ C

Z

∞

0

dqqNþ3e−2ð2qÞ
α

≈ C02−Nð1þ1=αÞ
Γ

�

N þ 4

α

�

ð95Þ
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for constants C and C0 ¼ C=ð161þ1=ααÞ, depending on f, g
and α but not N. Here we have changed variables from k to

kþ q in the second line. We need this contribution to SN be

small compared to TN , our estimate for SN, whenN is large.

Next we will examine several special cases.

1. Case: α= λ = 1
2

Here we have an explicit formula for TN, given in

Eq. (94), while

SN1 ≲
C0

23N
Γð2N þ 8Þ: ð96Þ

This is suppressed compared to TN by a factor propor-

tional to
�

1þ ϵ
ffiffiffi

2
p

�

2N

N4: ð97Þ

This factor decreases asN grows provided that ϵ≤
ffiffiffi

2
p

−1≈

0.414. Under this condition, in which spatial sampling

takes place over modest scales relative to temporal sam-

pling, we expect TN to be a good approximation to SN for

large N for α ¼ λ ¼ 1
2
.

2. Case: λ ≤ α=2

Here we may use some asymptotic results given in

Appendix B. First note that if we let q ¼ 2−1=αr, then
Eq. (92) becomes

TN ¼
6π2C2

fg

α4
2−ðNþ3þ2λÞ=αþ4

×

Z

∞

0

drrNþ2ð1þλÞ−4αe−r
α−ϵ0rλ ∝ 2−N=αINþ3þ2λ−4αðϵ0Þ;

ð98Þ

where ϵ0 ¼ 21−λ=αϵ and IN is defined as

IN ¼
Z

∞

0

dqqN−1e−q
α−ϵqλ : ð99Þ

The asymptotic forms of IN for large N are given in

Eq. (B11) when λ < α=2 and in Eq. (B12) when λ ¼ α=2.
Although there is a discontinuity between these two forms

at λ ¼ α=2 in the form of a factor of eϵ
2=8, both forms have

the same dependence upon N:

INðϵÞ ∝ ΓðN=αÞe−ϵðN=α−1Þλ=α ∼ ΓðN=αÞe−ϵðN=αÞλ=α : ð100Þ

Wemay combine this result with Eqs. (95) and (98) to write

SN1

TN

∝
ΓðN=αþ 4=αÞ

ΓððN þ 3þ 2λÞ=α − 4Þ e
ϵ0ðN=αÞλ=αe−N ln 2: ð101Þ

The ratio of gamma functions can at most grow as a power

of N, and here λ=α ≤ 1=2, so the behavior of the ratio

SN1=TN is dominated by the e−N ln 2 factor, which decays

exponentially as N increases, leading to SN1 ≪ TN for

large N.

3. Case: α=2 ≤ λ ≤ 2α=3

The asymptotic form for IN in this case is given by

Eq. (B13), where β ¼ λ=α. Note that the exponential in the

right-hand side of Eq. (B13) contains two terms. The first is

a negative term proportional to ðN=αÞβ, which also appears
in Eqs. (B11) and (B12). The second is a positive term to

proportional to ðN=αÞ2β−1. However, β > 2β − 1 in the

range of interest here, so the first term dominates the

exponential and again leads to the same leading-order

asymptotic behavior for IN as that given in Eq. (100).

Hence, the ratio SN1=TN is again given by Eq. (101) for

large N. In all of these cases, we conclude that SN1 is

asymptotically small compared to TN , so the region where

qþ k ≈ 0 does not give a large contribution to SN .

C. Numerical tests of SN → TN

We can test the approach of SN to its limiting form, TN ,

for large N by numerically evaluating Eqs. (87) and (92). In

the special case that λ ¼ α ¼ 1=2, TN is given by Eq. (94),

and we may use the explicit forms for f̂ and ĝ constructed

in Appendix A to evaluate SN . In all cases, we may

approximate the sampling functions in Eq. (87) by their

asymptotic forms for large arguments if N is large. In this

case, we use Eq. (34) for f̂. However, we need to modify

the form given in Eq. (38) for ĝ to avoid a singularity at

qþ k ¼ 0. For this purpose, we use the cutoff-dependent

form

ĝCðk;Q0Þ ¼ Cg

e−ϵk
λ

ðkþQ0Þ2−λ
ð102Þ

and test the dependence of the integral upon the

parameter Q0.

The results obtained from both approaches are plotted in

Fig. 5 for the case that λ ¼ α ¼ 1=2, where ϵ ¼
ffiffiffiffiffi

2s
p

, and

agree reasonably well. The cutoff parameter Q0 was varied

between values of about 1 and 10 without a significant

effect. We can see that, for smaller values of s, SN=TN

becomes close to one for large N. For larger values of s,
SN=TN is noticeably larger than one for the range of N
considered.

Some results for α ¼ 1=2, but λ < α are plotted in Figs. 6

and 7. In this case, Eq. (87) was evaluated using Eqs. (34)

and (38). Again, the result seems to be relatively indepen-

dent ofQ0. Here we appear to find that SN → TN forN ≫ 1

but that this limit is attained more quickly for smaller values

of ϵ and of λ. Note that in all cases, we find SN > TN .

In the special case that λ < α=2 < 1=2, we are able to

give a rigorous proof that SN=TN → 1 as N → ∞, but the

details will be omitted here.
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D. Asymptotic behavior of the moments

We may now use Eq. (86) and assume that SN ≈ TN to

write

Mn ≈ CnC
2½Ið∞Þ�n−2Tnþ2μ−1; ð103Þ

for n ≫ 1. If we let q → 2−1=αq in Eq. (92), then we have

TN ≈
6π2C2

fg

α4
24−ðNþ3þ2λÞ=αINþ3þ2λ−4αðϵ0Þ; ð104Þ

where ϵ0 ¼ 21−λ=αϵ and INðϵÞ is defined in Eq. (B7). Now

we have

Mn ≈
6π2C2

fg

α4

�

C

Ið∞Þ

�

2

24−2ð1þμþλÞ=αBnInþ2ð1þμþλÞ−4αðϵ0Þ;

ð105Þ

where we have used Eq. (29) and defined

B ¼ Ið∞Þ
21=αð2πÞ3 : ð106Þ

As already mentioned, the asymptotic behavior of IN for

large N is discussed for several cases in Appendix B, where

it is found that IN=ΓðN=αÞ is bounded as N → ∞. This

leads to a factor of Γðnþ2ð1þμþλÞ
α

− 4Þ in Mn, which reveals

that for large n the moments grow no faster than ðn=αÞ!
(times a factor growing exponentially in n). This is slower
than the ð3n=αÞ! growth rate found in Ref. [3] for the case

of time averaging alone. However, if α < 1, it is still faster

than n! growth.

VI. THE TAIL OF THE PROBABILITY

DISTRIBUTION

A. The form of the tail

Note that Eq. (105) forMn, the dominant contribution to

the nth moment, can be written as

Mn ≈ K0B
nInþ2ð1þλþμÞ−4αðϵ0Þ

¼ K0B
n

Z

∞

0

dqqnþ1þ2ðλþμÞ−4αe−q
α−ϵ0qλ : ð107Þ

If we let x ¼ Bq, then this expression becomes

Mn ≈ K

Z

∞

0

dxxn½x1þ2ðλþμÞ−4αe−ðx=BÞ
α−ϵ0ðx=BÞλ �; ð108Þ

where K0 and K are constants independent of n. Recall
that the moments of the probability distribution PðxÞ
are μn, where

FIG. 7. The ratio SN=TN is plotted as a function of N for two

values of ϵ for the case α ¼ 1
2
and λ ¼ 1

4
. Here this ratio

approaches one more quickly and is less dependent upon the

value of ϵ, as compared with the cases with a larger value of λ.

FIG. 6. The ratio SN=TN is plotted as a function of N for

different values of ϵ for the case α ¼ 1
2
and λ ¼ 1

3
.

FIG. 5. The ratio SN=TN is plotted as a function of N for

different values of s for the case α ¼ λ ¼ 1
2
. The solid lines were

computed using the forms for f̂ and ĝ constructed in Appendix A,
and the dashed lines using the asymptotic forms, Eqs. (34)

and (102).
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Mn ≈ μn ¼
Z

∞

−x0

dxxnPðxÞ ≈
Z

∞

0

dxxnPðxÞ: ð109Þ

The last step holds when n is sufficiently large that the

interval ½−x0; 0� makes a negligible contribution to the

integral. Comparison of Eqs. (108) and (109) suggests that

PðxÞ ≈ Kx1þ2ðλþμÞ−4αe−ðx=BÞ
α−ϵ0ðx=BÞλ ð110Þ

for large x.
This identification is subject to the possible ambiguity

that rapidly growing moments might not uniquely deter-

mine the probability distribution. However, for a proba-

bility distribution which is nonzero on a half line, as is the

case here, the condition that the moments uniquely deter-

mine PðxÞ is the Stieltjes criterion [7], which requires

jμnj ≤ CDnð2nÞ! ð111Þ

for all n for some choice of constants C andD. We found in

the previous section that here the moments grow no faster

than ðn=αÞ!, so this criterion is satisfied for α ≥ 1=2 and

hence PðxÞ is uniquely determined by the moments. If

α < 1=2, then we have the same situation as in the

worldline case, where the moments might not uniquely

determine PðxÞ. Nonetheless, it is possible to gain some

information about the tail of the distribution, as discussed in

Sec. VI of Ref. [2].

The constants K and μ are not determined by the

methods used here, because the transition between the

low-order and high-order iteration regimes, discussed in

Sec. VA, is not fully understood. However, the argument of

the exponential in Eq. (110) is determined and governs the

primary rate of decay of the tail. If λ < α, the ðx=BÞα term
in Eq. (110) will eventually dominate the ðx=BÞλ term, and

we will have

PðxÞ ∝ e−ðx=BÞ
α ð112Þ

for sufficiently large x. In the case that λ ¼ α, we have the

asymptotic form

PðxÞ ∝ e−ð1þϵÞðx=BÞα ; ð113Þ

as ϵ0 ¼ ϵ in this case. Recall that B is determined by

Eqs. (60) and (106). In the special case that λ ¼ α ¼ 1=2,
we may numerically compute B as a function of s ¼ l=τ,

using the approximate forms of f̂ðωÞ and ĝðkÞ given in

Appendix A. The results are illustrated in Figs. 8 and 9.

In all regions, B decreases as s increases. As smaller

values of B suppress the probability of a fluctuation with

a given dimensionless magnitude x, this is consistent with
the intuition that increasing l relative to τ decreases the

probability of a large fluctuation.

B. The transition from worldline behavior

to spacetime averaged behavior

Recall that in Ref. [3] the averaging along a worldline

alone was treated, and the asymptotic form of the proba-

bility distribution was found to be of the form

PðxÞ ∼ c0x
be−ax

c ð114Þ

with c ¼ α=3. In contrast, the asymptotic form of the

spacetime averaged distribution, for λ ≤ α, has a similar

form, but with c ¼ α. The effect of the spatial averaging has

been to enhance the rate of decrease of the tail of PðxÞ.
However, if the spatial sampling scale s is small compared

to the temporal scale τ, we expect a finite region in x where
the worldline form holds approximately. This is the regime

depicted in the right part of Fig. 2, when q≲ 1=s in τ ¼ 1

FIG. 8. Here the constant B, which appears in the asymptotic

probability distribution, is plotted as a function of the ratio of the

spatial and temporal sampling scales, s ¼ l=τ for the case that

λ ¼ α ¼ 1=2. Note that B ≈ 1 when s ¼ 1 and decreases as s
increases.

FIG. 9. Here B for the case that λ ¼ α ¼ 1=2 is plotted over a

larger range on a log-log plot. Note that B ∝ s−2 for s ≲ 1, in

accordance with Eq. (66), as B decreases from 104 to about 1 as s

increases from 0.01 to 1. Furthermore, B ∝ s−3 for s≳ 1, in

accordance with Eq. (65). Here B decreases by about 6 orders of

magnitude as s increases from 1 to 100.
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units and when each iteration produces a factor of q3, as
predicted by Eq. (45). In this regime, the nth moment, given

by Eq. (30), will contain an integral on q of the form

Z

∞

0

dqq3nþ3f̂2ðqÞ ≈ C2
f

Z

∞

0

dqq3nþ3e−2q
α

; ð115Þ

where we assume n ≫ 1 and use Eq. (34). The peak of this

integrand, and hence the region which gives the dominant

contribution to the integral, occurs at

q ¼ q� ¼
�

3ðnþ 1Þ
2α

�

1=α

≈

�

3n

2α

�

1=α

ð116Þ

if n ≫ 1. The requirement that the worldline approximation

is valid implies that q� ≲ 1=s and hence

n≲
2α

3
s−α: ð117Þ

This condition gives the range of moments which are

determined by the temporal sampling alone. It is interesting

to determine the interval of x that largely determines these

moments. If we use the approximation in Eq. (114) for

PðxÞ, the nth moment is

μn ¼
Z

∞

−x0

dxxnPðxÞ ≈ c0

Z

∞

0

dxxnþbe−ax
c

: ð118Þ

The maximum of this integrand is at

x ¼ xn ≈

�

n

ac

�

1=c

; ð119Þ

if n ≫ b. If we set n equal to its upper limit in Eq. (117),

then we obtain an estimate for the value of x at which the

transition from worldline to spacetime averaged behavior

occurs:

x� ≈ s−3 ¼ ðτ=lÞ3; ð120Þ

where we have used c ¼ α=3 and assumed that a factor of

a=2 is of order one. As was discussed in Ref. [9], x≲ x� is
the range of validity of the worldline approximation. More

generally x ≈ x� marks the transition in PðxÞ from its

worldline form to the spacetime averaged form.

C. The relative importance of different moments

for the probability of large fluctuations

We have seen that the lower moments, those which

satisfy Eq. (117), determine the inner part of the probability

distribution where x≲ x�. Similarly, we expect the higher

moments to determine the region where x≳ x�. We can

make this statement more precise by noting that the form

of PðxÞ for large x, given by either Eqs. (112) or (113), is

also of the form of Eq. (114) with c ¼ α. The argument

leading to Eq. (119) still holds and tells us that a given

region of PðxÞ for x≳ x� is determined by moments of

order n, where

n ≈ αaxα: ð121Þ

In this region,

PðxÞ ∝ e−ax
c

≈ e−n=α: ð122Þ

This tells us that the value of PðxÞ decreases exponentially
with increasing n. The significance of this result lies in

the fact that, in a given application of the tail of probability

distribution, we are typically interested in the probability

of fluctuations which might be large compared to the

typical fluctuation but for which PðxÞ is still above some

threshold of observability. Thus the regime of greatest

physical interest may be one where x ≫ 1 but is not the

x → ∞ limit.

Recall that the form of the tail of PðxÞ given by Eq. (110)
was derived assuming that SN ≈ TN for large N. The

numerical results given in Figs. 5–7 indicate this happening

in some cases. However, in other cases, especially the λ ¼
α ¼ 1=2 case in Fig. 5, SN is somewhat larger than TN for

N ≲ 200. Although the ratio SN=TN is still decreasing,

and might approach one eventually, it is perhaps more

important that SN > TN in many cases of physical interest.

This implies that Eq. (110) is better viewed as a lower

bound on the actual probability distribution in these cases.

For example, suppose that SN ≈ ATN in some range of

N ≫ 1, where A > 1 is a constant. The corresponding

range of x is given by Eq. (121), given that n ≈ N for

N ≫ 1. In this case, we can expect that Eq. (110) under-

estimates the correct distribution in this range by a factor of

1=A. Note that the overall constant in Eq. (110) is not

determined by the arguments presented in this paper. An

alternative approach to computing PðxÞ is numerical

diagonalization, which was used in Ref. [8] for the case

of time averaging. Work is currently in progress to extend

this approach to the case of spacetime averaged operators.

In principle, the diagonalization approach is free of the

ambiguities encountered in the present work.

D. The case when the sampling length is large

compared to the sampling time

In much of this paper, we have implicitly assumed that

s < 1, or l < τ. However, the opposite limit of large

sampling length, s > 1 is also of some interest. In this

case, the diameter of the ball depicted in Fig. 2 is less than

than the thickness of the shell. If s ≫ 1, the relevant

illustration is the left-hand panel of this figure, but with

the ball entirely contained within the shell, as the case

where the very small ball is partly outside the much thicker

shell will give a small contribution. In this case, the
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iteration will always be described by Eq. (46) with

C0 ¼ Ið∞Þ, and the dominant contribution to the moments,

Mn, will be given by Eq. (86) with C ¼ 1 and μ ¼ 0 for all

n. However, the arguments in Sec. VI that SN ≈ TN still

require that N ≫ 1. We may now write Eq. (110) for the

asymptotic form of the tail of the probability distribution as

PðxÞ ≈ Kx1þ2λ−4αe−ðx=BÞ
α−ϵ0ðx=BÞλ ð123Þ

for x ≫ 1, where the constant K is found from Eqs. (105)

and (106) to be

K ¼
3C2

fg

32π4α4
24−2ð2þλÞ=αB−2ð2þλÞþ4α: ð124Þ

Unlike the more general case, here K can be computed

explicitly once the sampling functions are known. Note

that, when s > 1, Eq. (65) tells us that

B ≈
B1

s3
; ð125Þ

where B1 is a constant. However, the factor of C
2
fg is also a

function of s.
Now we consider the special case where α ¼ λ ¼ 1=2,

and set ϵ0 ¼ ϵ ¼ ffiffiffi

s
p

≫ 1. Now Eq. (123) becomes

PðxÞ ≈ Ke−
ffiffiffiffiffiffiffiffiffiffi

s4x=B1

p
; ð126Þ

where

K ¼
3C2

fg

128π4B3
: ð127Þ

Recall that Cfg ¼ CfCg. Further assume that these con-

stants have the values given in Sec. III B: Cf ≈ 2.93 and Cg

as given in Eq. (44), and that B1 ≈ 1, as illustrated in Figs. 8

and 9. Finally, note that s4x ¼ l
4T, as x ¼ τ4T and T is the

spacetime average of ∶ _φ2∶. We may write the asymptotic

probability distribution for T as

PðTÞ ≈ 1.5s6e−
ffiffiffiffiffiffi

l4T
p

: ð128Þ

The factor of s6 presumably reflects the fact that the limit

τ → 0 for fixed l is not meaningful. Equation (128) is only

valid when T is sufficiently large that PðTÞ ≪ 1. However,

even if s is of order one, it approximately agrees with

Eqs. (112) and (113) with α ¼ 1=2.
We may use the above results to make some estimates of

the extent to which vacuum fluctuations of the electro-

magnetic energy density ρ can dominate thermal fluctua-

tions. If α ¼ 1=2 and l≳ τ, the probability of a large

vacuum fluctuation can be estimated as PV ≈ e−
ffiffiffiffiffiffi

l
4ρ

p
. Here

we assume that the probability distribution for the

electromagnetic energy density is roughly approximated

by that for _φ2, where φ is a massless scalar field. This

assumption is supported in the worldline case by the results

in Sec. VA of Ref. [2]. If l ≫ τ, then this estimate is too

low by a factor of s6. On the same spatial scale, hence a

region of volume l
3, the probability of a thermal fluc-

tuation is given by PT ≈ e−l
3ρ=T, where T denotes the

temperature, and we use units with Boltzmann’s constant

set to one. Consider the case when l ≈ 1=T, about one

thermal wavelength. Here PT ≈ e−ρ=T
4

, but PV ≈ e−
ffiffiffiffiffiffiffi

ρ=T4
p

.

Recall that ρ0 ¼ π2T4=15 ≈ 0.66T4 is the mean energy

density in a photon bath at temperature T. In the case of a

large fluctuation where one finds ρ ¼ Nρ0, we have

PT ≈ e−0.66N , but PV ≈ e−
ffiffiffiffiffiffiffiffiffi

0.66N
p

. If N ≫ 1, then the prob-

ability of finding this result due to a vacuum fluctuation is

far greater that due to a thermal fluctuation. For example,

for N ¼ 100, we have PV ≈ 1025PT , and even for

N ¼ 10, PV ≈ 56PT .

VII. SUMMARY AND DISCUSSION

In this paper, we have discussed the fluctuations of

quantum stress tensor operators which have been averaged

over finite intervals in both time and space. One can view

this spacetime averaging as modeling a measurement

process which takes place in a finite spacetime region.

Some averaging is essential for the operator to have finite

moments and hence a meaningful probability distribution.

In the two spacetime dimensional CFT models treated in

Sec. II, the averaging could be performed in time alone or

equivalently in space alone, or it could be both in time and

in space. In the latter case, the probability of large

fluctuations is suppressed compared to the cases of time

averaging alone or space averaging alone. In the four-

dimensional models treated in the remainder of the paper,

time averaging is essential. Space averaging alone would

not suppress an infinite contribution to the moments

coming from pairs of modes associated with equal and

opposite momenta. For the same reason, there are no

quantum inequalities for purely spatial averaging in four

dimensions [18].

We have developed a formalism for treating the effects of

both space and time averaging. In both cases, we assume

that the averaging intervals are finite, and hence are

described by compactly supported functions of time and

of space. We have assumed that there is an inertial frame

(a laboratory frame) in which the space time averaging can

be written as a product of a compactly supported function

of time and of a spherically symmetric, compactly sup-

ported function of space. The Fourier transform of the

former is taken to be asymptotically proportional to e−jωτj
α

,

and that of the latter to be asymptotically proportional to

e−ðlkÞ
λ

, where 0 < λ ≤ α < 1, τ is the characteristic width

of the time sampling functions, and l is that of the spatial

sampling function.
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We developed an iteration procedure which generalizes

that used in Ref. [3] for the worldline case and used this

procedure to infer the rate of growth of the moments and

the asymptotic form of the stress tensor probability dis-

tribution PðxÞ. Here x ¼ τ4T is a dimensionless measure of

the averaged operator T. We found that if the spatial

sampling scale is small compared to the temporal scale,

l ≪ τ, then there is a finite range in x which reproduces the

worldline result that PðxÞ ∼ c0x
be−ax

c

with c ¼ α=3.
However, as x increases further, there is a transition region,
beyond which PðxÞ again takes the same functional form,

but with different values of the constants. We argued that

the transition occurs at a value x� ≈ ðτ=lÞ3. In particular, as
x → ∞, we find c ≈ α. This larger value of c compared to

the worldline case reflects the role of spatial averaging in

suppressing large fluctuations. Nonetheless, with α < 1,

the probability distribution still falls more slowly than an

exponential function. This allows the possibility of large

physical effects from the fluctuations of space and time

averaged stress tensors.

This paper has dealt in detail with the case of the

quadratic operator ∶ _φ2∶, where φ is a massless scalar field

in four-dimensional flat spacetime. This operator is a part of

the expressions for the scalar field stress tensor components

and is closely related to quantities such as the squared

electric field which appear in the electromagnetic stress

tensor components. Thus the probability distribution for

∶ _φ2∶ is indicative of the results expected for the energy

density of massless fields. The detailed correspondence

between the probability distribution for ∶ _φ2∶ and those for

energy densities of the massless scalar and electromagnetic

fields was given in Sec. VA of Ref. [2] for the case of time

averaging alone. A topic of future work will be the

extension of these results to cases involving both time

and space averaging. We also plan to examine the role of a

nonzero mass. One expects that the mass will tend to

suppress the probability of stress tensor fluctuations but

will not greatly alter the asymptotic tail describing very

large fluctuations, as these fluctuations are likely to depend

primarily on high-frequency modes with energies larger

than the mass. However, this needs to be examined in more

detail. Another extension will be to the case of curved

spacetime. So long as both the temporal and spatial

averaging scales are small compared to the local radius

of spacetime curvature, the flat spacetime results should be

accurate. Even when the averaging scales approach or even

exceed the radius of curvature, or the horizon size in

cosmological models, the tail of the distribution can be

accurately described by the flat space results to the extent

that the tail depends primarily upon the short-wavelength

mode. We hope to make this more explicit in the future.

A typical vacuum fluctuation of the energy density or

other stress tensor components is described by the root

mean square value xrms, which is expected to be of order of

one in τ ¼ 1 units. In the case where the switching function

corresponds to α ¼ 1=2, then the probability density for a

large fluctuation of the space and time averaged energy

density is roughly proportional to e−
ffiffi

x
p
. A large fluctuation

with x ¼ 100xrms is expected to be suppressed by a factor

of order e−10 ¼ 4.5 × 10−5 compared to a typical fluc-

tuation. By comparison, in a process described by a

Gaussian distribution, such a large fluctuation would be

suppressed by a factor of e−10
4

.

The results in this paper potentially have applications to

several areas of physics, including phonon fluctuations in

condensed matter physics, quantum tunneling, density

fluctuations in the early Universe [12,13], and the small-

scale structure of spacetime [15,16].
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APPENDIX A: CONSTRUCTION OF AN

EXPLICIT CHOICE OF f̂ ðωÞ AND OF ĝðkÞ
In this Appendix, we describe the construction of the

specific forms of f̂ðωÞ and of ĝðkÞ which are used in the

numerical computations reported in this paper. We first

follow the procedure given in Sec. II B of [3] and define the

compactly supported function HðtÞ by

HðtÞ ¼
(

2
π
ð1 − 4t2Þ−3=2e−1=ð1−4t2Þ jtj < 1

2
;

0 jtj ≥ 1
2
:

ðA1Þ

Its Fourier transform is

ĤðωÞ¼
Z

∞

−∞

dte−iωtHðtÞ¼ 2

Z

1=2

0

dtcosðωtÞHðtÞ: ðA2Þ

In numerical computations, we avoid the singularity in

the ð1 − 4t2Þ−3=2 factor by setting the upper limit of

integration to 0.499. We define

L̂ðωÞ ¼ Ĥ2ðωÞ þ 1

2
½Ĥ2ðωþ πÞ þ Ĥ2ðω − πÞ�: ðA3Þ

Here the appearance of the square of Ĥ ensures that

L̂ðωÞ ≥ 0, and the sum of three terms in Eq. (A3) is used

to suppress oscillations as a function of ω. Next let

ĥðωÞ ¼ L̂ðωÞ
L̂ð0Þ

: ðA4Þ

Now ĥð0Þ ¼ 1, so that ĥðωÞ is the Fourier transform of a

normalized sampling function. Its asymptotic form for large

arguments is
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ĥasyðωÞ ≈ 2.9324e−
ffiffiffiffi

2ω
p

: ðA5Þ

It is useful to have a simple approximate form of ĥðωÞ
for smaller values of its argument for use in numerical

calculations. This can be found by fitting a polynomial

to numerically computed values for ĥðωÞ, giving an

approximation

ĥfitðωÞ ¼ 1 − 0.0378271ω2 − 0.000429218ω3

þ 0.000875262ω4 − 0.0000485667ω5

− 2.61062 × 10−6ω6 þ 1.9601 × 10−7ω7;

ω < 9.92; ðA6Þ

and

ĥfitðωÞ ¼ ĥasyðωÞ; ω ≥ 9.92: ðA7Þ

The value of ω ¼ 9.92, at which the polynomial is matched

to ĥasyðωÞ, is selected to make the match as smooth as

possible. The function ĥðωÞ, which is computed using

Eqs. (A1)–(A4), and its approximate form ĥfitðωÞ are

plotted in Fig. 10. The matching region is illustrated in

Fig. 11. For ω ≤ 8, the fractional error in the fit,

jĥfitðωÞ − ĥðωÞj=ĥðωÞ, is less than about 0.003. For larger

values of ω, ĥfitðωÞ was selected to approximate ĥasyðωÞ.
However, ĥðωÞ undergoes some oscillations before

approaching ĥasyðωÞ, as may be seen in Fig. 11.

We may use this choice of ĥfitðωÞ to define a temporal

sampling function by f̂fitðωÞ ¼ ĥfitðω=2Þ and a spatial

function, using Eq. (37), by

ĝfitðkÞ ¼
ĥ0fitðklÞ
klĥ00fitð0Þ

: ðA8Þ

The latter function is illustrated in Fig. 12.

APPENDIX B: FULKS’ GENERALIZATION OF

LAPLACE’S METHOD

The classical method of Laplace for asymptotic evalu-

ation of integrals applies to expressions of the form

Ih ¼
Z

b

a

fðtÞe−hϕðtÞdt ðB1Þ

as the parameter h becomes large. As is well known, the

asymptotic behavior of Ih is determined by the properties of

f and h near the global minimum of ϕ on the integration

range, as well as the character of this minimum—in

particular, whether it is a stationary or nonstationary

minimum, and whether it is located at an end point or in

the interior. In this section we discuss more the general

problem in which the integral

Ih;k ¼
Z

b

a

fðtÞe−hϕðtÞþkψðtÞdt ðB2Þ

FIG. 10. The functions ĥðωÞ and ĥfitðωÞ are illustrated. They

are essentially identical on the scale shown, apart from a small

local maximum in ĥðωÞ near ω ¼ 13.

FIG. 11. Here ĥðωÞ, its asymptotic form ĥasyðωÞ, and ĥfitðωÞ are
illustrated near the matching region. The fitting function ĥfitðωÞ
has been chosen to interpolate as smoothly as possible between

ĥðωÞ and ĥfitðωÞ.

FIG. 12. Here ĝfitðkÞ is plotted. It is the Fourier transform

of the spherically symmetric spatial sampling function derived

from ĥfitðωÞ.
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depends on two large parameters, both of which are

becoming large, but at different rates. To be specific, we

will assume that k grows more slowly than h, to the extent

that k ¼ oðhÞ as h → ∞.

Fulks [19] considered integrals of the form (B2) where

−∞ < a < b ≤ ∞, in which ϕ has a single global mini-

mum at a. As he remarks, it is easy to generalize to the

situation in which −∞ ≤ a < b ≤ ∞ and ϕ has a single

interior global minimum at t� ∈ ða; bÞ, and wewill state the
results for this case.

Theorem 1.—Suppose that

(i) ϕ has a single global minimum at t� ∈ ða; bÞ, near
which it is C3, and is nonincreasing in ½a; t�� and
nondecreasing in ½t�; b�,

(ii) ψ is C2 near t�, and continuous on ½a; b�,
(iii) f is continuous at t� and fðt�Þ ≠ 0; it is also locally

integrable and the integral Ih;k exists for sufficiently

large h; k.
Then if h; k → ∞ with k ¼ oðhÞ, the asymptotics may be

given as follows:

(1) if k ¼ oð
ffiffiffi

h
p

Þ or ψ 0ðt�Þ ¼ 0, then

Ih;k∼fðt�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

hϕ00ðt�Þ

s

expð−hϕðt�Þþkψðt�ÞÞ; ðB3Þ

(2) if 0 < lim inf k=
ffiffiffi

h
p

and lim sup k=
ffiffiffi

h
p

< ∞, then

Ih;k∼fðt�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

hϕ00ðt�Þ

s

×exp

�

−hϕðt�Þþkψðt�Þþ
ψ 0ðt�Þ2k2
2ϕ00ðt�Þh

�

; ðB4Þ

(3) if
ffiffiffi

h
p

¼ oðkÞ and ψ 0ðt�Þ ≠ 0, then

Ih;k ∼ fðt�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

hϕ00ðt�Þ

s

exp ð−hϕðτÞ þ kψðτÞÞ; ðB5Þ

where τ is determined by hϕ0ðτÞ ¼ kψ 0ðτÞ and is the
position of the global minimum of −hϕðtÞ þ kψðtÞ.
If, more specifically, k ¼ oðh2=3Þ, one has

Ih;k∼fðt�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

hϕ00ðt�Þ

s

×exp

�

−hϕðt�Þþkψðt�Þþ
ψ 0ðt�Þ2k2
2ϕ00ðt�Þh

�

: ðB6Þ

[Other special cases can be given, for different

conditions on the growth of k relative to h and

suitable higher regularity of ϕ and ψ . In general we

can solve for τ as a series in k=h and the exponent

will contain terms proportional to hðk=hÞa for all

a ∈ N0 so that hðk=hÞa is constant or growing

as h → ∞.]

Proof.—Apart from the parenthetic comment, all the

statements are lightly adapted from Theorems 1–4 and

the Corollary of [19], noting the comments that follow the

Corollary. The comment is evident by expanding the inverse

function to ηðtÞ ¼ ϕ0ðtÞ=ψ 0ðtÞ using Taylor’s theorem with

remainder, noting that τ ¼ η−1ðk=hÞ. ▪

As an example, we consider the integrals

IN ¼
Z

∞

0

dqqN−1e−q
α−ϵqλ ; ðB7Þ

where 0 < λ < α < 1, defined in Eq. (99). [For reference,

the case λ ¼ α can be evaluated exactly to give IN ¼
α−1ΓðN=αÞð1þ ϵÞ−N=α.] Changing variables to v ¼ qα

gives

IN ¼ α−1
Z

∞

0

dvvN=α−1e−v−ϵv
β

; ðB8Þ

in which the integral is known as Faxén’s integral, IN ¼
α−1Fiðβ; N=α;−ϵÞ in the notation of Sec. 9.4 in [20].

Setting Ω ¼ N=α − 1 and β ¼ λ=α, and making the change

of variables v ¼ Ωt, we have

IN ¼ Ω
Ωþ1

α

Z

∞

0

dt eΩðlog t−tÞ−ϵΩ
βtβ ; ðB9Þ

in which the integral is of Fulks’ form with h ¼ Ω, k ¼ Ω
β,

ϕðtÞ ¼ t − log t, ψðtÞ ¼ −ϵtβ, and f ≡ 1. Noting that

ϕ0ðtÞ ¼ 1 − t−1; ϕ00ðtÞ ¼ t−2; ðB10Þ

we see that ϕ has a single global minimum at t� ¼ 1, to the

left of which it is decreasing and to the right of which it is

increasing. Note that ϕðt�Þ ¼ ϕ00ðt�Þ ¼ 1, ψðt�Þ ¼ −ϵ, and

ψ 0ðt�Þ ¼ −βϵ. There are several cases, depending on the

value of β ¼ λ=α:
(i) if λ < α=2, then k ¼ oð

ffiffiffi

h
p

Þ and by (B3),

IN ∼
Ω

Ωþ1=2e−Ω−ϵΩ
λ=α ffiffiffiffiffiffi

2π
p

α
∼α−1ΓðN=αÞe−ϵðN=α−1Þλ=α ;

ðB11Þ

(ii) if λ ¼ α=2, then k ¼
ffiffiffi

h
p

and by (B4),

IN ∼
Ω

Ωþ1=2e−Ω−ϵΩ
λ=αþϵ2=8

ffiffiffiffiffiffi

2π
p

α

∼ α−1eϵ
2=8

ΓðN=αÞe−ϵ
ffiffiffiffiffiffiffiffiffiffiffi

N=α−1
p

; ðB12Þ

(iii) if α=2<λ<2α=3, then
ffiffiffi

h
p

¼ oðkÞ and k ¼ oðh2=3Þ,
and by (B6),
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IN ∼
Ω

Ωþ1=2e−Ω−ϵΩ
λ=αþðϵβÞ2Ω2β−1=2

ffiffiffiffiffiffi

2π
p

α

∼α−1ΓðN=αÞe−ϵðN=α−1Þλ=αþðϵβÞ2ðN=α−1Þ2β−1=2 ðB13Þ

(so this formula also holds for λ ¼ α=2);
(iv) if α=2 < λ < α < 1, with no further information,

then by (B5),

IN ∼
Ω

Ωþ1=2τΩe−Ωτ−ϵðΩτÞ
λ=α

ffiffiffiffiffiffi

2π
p

α

∼ α−1ΓðN=αÞτN=α−1e−ðN=α−1Þðτ−1Þ−ϵððN=α−1ÞτÞλ=α ;

ðB14Þ
where τ is determined by τþϵβΩβ−1τβ¼1, β ¼ λ=α.
More could be said given a tighter upper bound on

λ=α and indeed the formula (B13) given for the

range λ ∈ ðα=2; 2α=3Þ is a special case.

As a check on the result for λ ¼ α=2, we note that IN can

be evaluated in terms of Kummer functions in this case.

Changing variables to v ¼ qα=2, one has

IN ¼ 2

α

Z

∞

0

dvv2N=α−1e−v
2−ϵv; ðB15Þ

which evaluates by [21]

IN ¼ 1

α
21−N=α

Γð2N=αÞeϵ2=8D−2N=αðϵ=
ffiffiffi

2
p

Þ ðB16Þ

¼ 2

α
2−2N=α

Γð2N=αÞU
�

N

α
;
1

2
;
ϵ2

4

�

ðB17Þ

¼ ΓðN=αÞΓðN=αþ 1=2Þ
α

ffiffiffi

π
p U

�

N

α
;
1

2
;
ϵ2

4

�

; ðB18Þ

where DνðzÞ is a parabolic cylinder function and U is

Kummer’s function (see Secs. 12.1 and 12.7.14 in [22] for

the relation between these special functions). The last step

uses the duplication formula for Γ functions.

Asymptotic expansions of the Kummer function U
for large parameters are known—see Sec. 13 in [22] and

[23]—and give

INðϵÞ ∼
ΓðN=αþ 1=2Þeϵ2=8

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N=α − 1
p e−ϵ

ffiffiffiffiffiffiffiffiffiffiffi

N=α−1
p

∼
ΓðN=αÞeϵ2=8

α
e−ϵ

ffiffiffiffiffiffiffiffiffiffiffi

N=α−1
p

ðB19Þ

in agreement with our results above.
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