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Probability Distributions for Space and Time Averaged Quantum Stress Tensors

Christopher J. Fewster∗

Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom

L. H. Ford†

Institute of Cosmology, Department of Physics and Astronomy,

Tufts University, Medford, Massachusetts 02155, USA

We extend previous work on quantum stress tensor operators which have been averaged over
finite time intervals to include averaging over finite regions of space as well. The space and time
averaging can be viewed as describing a measurement process for a stress tensor component, such
as the energy density of a quantized field in its vacuum state. Although spatial averaging reduces
the probability of large vacuum fluctuations compared to time averaging alone, we find that the
probability distribution decreases more slowly than exponentially as the magnitude of the measured
energy density increases. This implies that vacuum fluctuations can sometimes dominate over
thermal fluctuations and potentially have observable effects.

I. INTRODUCTION

Although the vacuum state of a quantum field theory is an eigenstate of the Hamiltonian, the integral of the energy

density over all space, it is not an eigenstate of the local energy density or of other components of the stress tensor.

This implies the existence of vacuum fluctuations of the energy density and other quadratic operators. For these

fluctuations to be finite, and hence physically meaningful, these operators must be averaged over a finite spacetime

region. We can view the averaging process as representing the outcome of a measurement of the operator. The energy

density at a single spacetime point is not measurable, and hence not meaningful. However, the spacetime average is

meaningful, and will have finite fluctuations described by a probability distribution.

The study of the probability distributions for quantum stress tensors was begun in Ref. [1] for conformal field

theory (CFT) in two spacetime dimensions, and continued in Refs. [2] and [3] for the free massless scalar and the free

electromagnetic quantum fields in flat four dimensional spacetime. Further results on two-dimensional CFT appear

in [4, 5]. Let x denote a dimensionless measure of the averaged stress tensor component T . If τ is a measure of the

size of the sampling region, then in units where ~ = c = 1, we may take x = τd T , where d is the dimension of the

spacetime. Let P (x) denote a probability distribution so that P (x) dx is the probability in a measurement of finding

an outcome in the interval [x, x + dx]. There are two key features of P (x) for a quadratic operator, such as the

energy density, which have emerged in the papers just cited: 1) There is a negative lower bound on the region where

P (x) 6= 0 if T ≥ 0 at the classical level, and 2) P (x) can fall more slowly than exponentially, leading to an enhanced

probability for large positive fluctuations relative to thermal fluctuations. By contrast, the probability distribution

for the spacetime average of a linear operator, such as the electric field, is a Gaussian function.

If T is a non-negative quantity in classical physics, such as the energy density, its quantization typically admits

quantum states for which its expectation value is below the vacuum value. In particular, if the vacuum expectation

value vanishes there exist states for which its expectation value is negative, 〈T 〉 < 0, so regions where the mean energy

density is negative become possible. At least in some models, these regions are constrained by quantum inequalities
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of the form 〈τd T 〉 ≥ −x0, where x0 > 0 is a dimensionless number of the order of or somewhat less than unity. These

models include the free massless and massive scalar fields, the electromagnetic and Dirac fields and a wide class of

conformal field theories in two dimensions. For a recent review see [6]. If the quantum inequality gives the optimal

lower bound on expectation values, then P (x) = 0 if x < −x0. This means that −x0 is the lowest eigenvalue of the

averaged operator T , and is hence both the lower bound on expectation values, and the smallest possible outcome

of a measurement in any state. In particular a negative lower bound is expected for the probability distribution for

any quadratic operator representing a classically non-negative quantity in (massive or massless) free quantum field

theories.

For the energy density (at least for the averages considered to date) the tail of P (x) for x ≫ 1 was found to

fall as an exponential in two spacetime dimensions [1, 4], but more slowly in four dimensions [2, 3]. Specifically,

P (x) ∼ c0 x
b e−ax

c

for some constants c0, b, a, c, of which c is the most crucial. For stress tensor operators averaged

in time with a Lorentzian function, it was found in Ref. [2] that c = 1/3. This implies that the distribution is

highly skewed and so fluctuations which are several orders of magnitude larger than the standard deviation can have

a non-negligible probability of occurring. This is a result which would not be possible in random processes where

measurements at different moments in time are uncorrelated, in which case the central limit theorem would give a

Gaussian probability distribution. By contrast our results reflect the highly correlated nature of quantum vacuum

fluctuations.

Although a Lorentzian function of time is a useful model, it suffers from the defect that it describes a measurement

which began in the infinite past and is only completed in the infinite future. A more realistic description involves

smooth (infinitely differentiable) functions which have compact support, that is, are zero outside of a finite interval.

The probability distributions for quantum stress tensors measured in a finite interval with such functions was studied

in Ref. [3]. A class of compactly supported functions was treated, whose Fourier transforms fall as e−γ|ω|
α

, where

0 < α < 1 and γ > 0, as |ω| → ∞. It was argued that such functions could arise in physical situations, as illustrated

by a simple electrical circuit whose switch-on corresponds to α = 1/2. For this class of functions, it was shown that

the tail of the probability distribution now decays with c = α/3. Thus if, for example, a measurement of the energy

density in the vacuum state of the electromagnetic field is described by the α = 1/2 function, then the probability

of finding a very large energy density associated with x ≫ 1 will be roughly proportional to e−ax
1/6

. The same

asymptotic form, with a slightly different value of the constant a was found for the massless, minimally coupled scalar

field.

The previous results on stress tensor probability distributions [1–3] were obtained either from a moment generating

function [1], or by asymptotic calculation of high moments [2, 3]. In four dimensions, the moments approach suffers

from the ambiguity that the moments do not necessarily uniquely determine P (x). In the case of a probability

distribution with support on a half-line, as is the case for stress tensors, the Stieltjes moment theorem [7] guarantees

that P (x) is uniquely determined by the moments of the operator provided that the n-moment grows no faster

than (2n)!Dn as n → ∞, for some constant D. However, the moments of stress tensor operators averaged with the

compactly supported functions of time discussed in Ref. [3] grow as (3n/α)!. The non-compactly supported Lorentzian

function used in Ref. [2] formally corresponds to the α = 1 case, and leads to moments with (3n)! growth. In all

of these cases, P (x) might not be uniquely determined from the moments. In general, when the moments grow too

rapidly to ensure uniqueness, there can be several distinct choices for P (x) which all produce the same moments,

and differ from one another by an oscillatory function of x. Even if P (x) is not uniquely determined, its integrals

over a finite interval tend to cancel the oscillations and can give a reliable estimate of the probability of a result in

this interval. For example, in some applications one is interested in the probability of a fluctuation which exceeds a
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given threshold and is given by the complementary cumulative distribution, P>(x) =
∫∞
x
P (y) dy, and it is possible

to extract bounds on this function from the moment sequence in some cases, even if the moment sequence does not

determine the probability distribution uniquely [2].

There is also an independent approach to finding P (x) which does not use the moments, which is direct diago-

nalization of the averaged operator T by a Bogoliubov transformation to find its eigenvalues and eigenstates. The

probability of finding a given eigenvalue in a measurement on the original vacuum state is then the squared overlap of

the eigenstate with the vacuum. In practice, this approach must be performed numerically on a system with a finite

number of degrees of freedom. This was done in Ref. [8] for a massless scalar field in a spherical cavity including about

one hundred modes for time sampling associated with several values of α. The results are in reasonable agreement

with those found for the tail of P (x) in Refs. [2, 3]. This lends support to the conclusion in the latter references that

fluctuations several orders of magnitude larger than the the typical fluctuation can have a non-negligible probability

of occurrence.

Such large fluctuations may have potentially observable effects. For example, the role of large radiation pressure

fluctuations in enhancing the barrier penetration by charged particles was treated in Ref. [9], where it was argued that

these fluctuations have the potential in some circumstances to increase the barrier penetration rate by several orders

of magnitude compared to the rate predicted by the usual quantum tunneling process. It was further suggested that

this effect may have already been observed in the nuclear fusion of heavy ions with heavy nuclei. By contrast, the

vacuum fluctuations of the linear electric field, which obey a Gaussian probability distribution, cause only a modest

increase in penetration rates [10, 11]. Quantum stress tensor fluctuations are also of interest in gravity theory, as they

can drive passive fluctuations of the gravitational field, which is a variety of quantum gravity effect. Stress tensor

fluctuations in the early universe could play a role in the creation of primordial density perturbations [12, 13] or tensor

perturbations [14]. The references just cited all deal with integrals of the stress tensor correlation function, and hence

the variance of the stress tensor fluctuations. It will be of interest to study the probability of large fluctuations in these

and other gravitational applications. One possible application is to the effects of vacuum fluctuations on the small

scale causal structure of spacetime. In two-dimensional models, it has been found that large positive fluctuations can

cause focussing of geodesics, and closure of lightcones on small scales [15, 16].

Most of the previous work on the probability of quantum stress tensors fluctuations was restricted to operators

averaged in time at one spatial point. The purpose of the present paper is to extend this treatment to include the

effects of averaging in space as well. The outline of the paper is as follows: In Sec. II, we discuss stress tensor

probability distributions in two spacetime dimensions, particularly in conformal field theory where exact results are

possible. Space and time averaging of stress tensor operators in four-dimensional Minkowski spacetime is developed in

Sec. III, and the sampling functions needed for this averaging are discussed. An iteration procedure for the calculation

of the moments of the averaged operators is introduced. This procedure is analyzed in detail in Sec. IV. It is argued

that if the spatial averaging scale is smaller than the temporal scale, then the lower moments are sensitive only to

the time averaging, but the high moments will also depend upon spatial averaging. The implications of these results

for the rate of growth of the moments is treated in Sec. V. It is found that the initial growth rate can be the (3n/α)!

behavior found in Ref. [3] with time averaging alone. However, for larger n, there is a transition to a somewhat lower

growth rate of (n/α)!. This suggests that the criterion due to Stieltjes holds for 1/2 ≤ α < 1, implying that the

moments uniquely determine the probability distribution among those that vanish on a half-line. The implications of

these results for the tail of the probability distribution are discussed in Sec. VI, where it is shown that the asymptotic

form of P (x) now falls more rapidly than in the worldline case, but still more slowly than an exponential function. This

reflects that fact that spatial averaging somewhat reduces the probability of large fluctuations, but this probability
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remains high enough to have important physical effects. The latter point is discussed in more detail in the final

section, Sec. VII, where the key results of the paper are summarized and discussed. Appendix A contains an explicit

construction of specific forms of the temporal and spatial sampling functions. Appendix B discusses some results on

the asymptotic forms of integrals which are used in Sec. V.

Units in which ~ = c = 1 are used throughout the paper.

II. EXACT RESULTS IN 2-DIMENSIONAL CONFORMAL FIELD THEORY

Two-dimensional conformal field theory (CFT) provides an interesting example, in which the relative effects of time

and space averaging can be determined in detail. Recall that the energy density of a CFT in 1 + 1-dimensions splits

into mutually commuting left- and right-moving components

T00(t, x) = TR(u) + TL(v), (1)

where we assume flat spacetime and let u = t − x, v = t + x. Any spacetime average of the energy density can be

written in terms of these components as
∫

dx dt T00(t, x)f(t, x) =

∫

dv TL(v)FL(v) +

∫

duTR(u)FR(u), (2)

where

FL(v) =
1

2

∫ ∞

−∞
du f

(

u+ v

2
,
v − u

2

)

FR(u) =
1

2

∫ ∞

−∞
dv f

(

u+ v

2
,
v − u

2

)

.

Here, the leading factor of 1/2 is a Jacobian determinant. Now let PL be the probability density function for

measurements of TL, averaged against FL, in the vacuum state, i.e.,

∫ ω2

ω1

dω PL(ω) = Prob
(

TL(FL) ∈ [ω1, ω2]
)

(3)

and write PR and P for the analogous probability density functions of TR (averaged against FR) and T00 (averaged

against f). As TL and TR commute, the probability distributions are independent and the combined probability

distribution is obtained as their convolution,

P (λ) =

∫ ∞

−∞
dλ′PL(λ− λ′)PR(λ

′). (4)

The probability distribution of these components of the energy tensor can be determined – at least in principle –

either by a moment generating function method [1] or by conformal welding techniques [4]. The latter method can

be applied to the cases of the vacuum and certain other special states, including thermal equilibrium states and also

highest weight states [4]. Each method rests on the solution to certain subsidiary problems and closed form results

are only available in particular cases [1, 4, 5], though the method of [4] is also amenable to numerical treatment.

Here, we draw attention to a special case where the probability distribution can be determined in closed form for

different spatial and temporal averaging scales. Let

f(t, x) = (2πℓτ)−1e−
1

2
(t2/τ2+x2/ℓ2), (5)
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that is, a product of Gaussians in space and time, normalized to have unit integral over spacetime, in which ℓ and τ

determine the spatial and temporal averaging scales. In this case, a simple calculation gives

FL(u) =
e−u

2/(2σ2)

√
2πσ2

, (6)

which is also a normalized Gaussian with characteristic width σ =
√
ℓ2 + τ2. It is easily seen that FR(v) = FL(v).

For any unitary positive energy CFT, the probability distribution of TL(FL) in the vacuum state is known in a closed

form [1] (see [4, 5] for some other closed form expressions) and is given by the shifted Gamma distribution

PL(ω) = ϑ(ω + ω0)
(2πσ2)c/24

Γ(c/24)
(ω + ω0)

c/24−1e−2πσ2(ω+ω0), (7)

where c is the central charge of the CFT [e.g., c = 1 for a massless scalar field], ω0 = c/(48πσ2) and ϑ is a Heaviside

function. As PL and PR are identical, the overall probability distribution is the convolution of PL with itself and is

again a shifted Gamma distribution

P (ω) = ϑ(ω + 2ω0)
(2πσ2)c/12

Γ(c/12)
(ω + 2ω0)

c/12−1e−2πσ2(ω+2ω0). (8)

To see this, it is easiest to proceed from the moment generating function

ML(µ) =

∫ ∞

−∞
dµPL(ω)e

µω =

[

e−µ/(2πσ
2)

1− µ/(2πσ2)

]c/24

(9)

for PL (defined for µ < 2πσ2) and note that the moment generating function for P must be

M(µ) =ML(µ)
2 =

[

e−µ/(2πσ
2)

1− µ/(2πσ2)

]c/12

. (10)

Therefore the probability density function for P is just that of PL but with c replaced by 2c throughout.

We may read off a sharp quantum inequality bound on the averaged energy density from (8), namely

∫

dt dx 〈T00(t, x)〉ψf(t, x) ≥ − c

24π(ℓ2 + τ2)
(11)

for any physically reasonable state ψ. This inequality may also be obtained as a special case of a general quantum

inequality bound proved by different methods in [17], in which a precise specification of the relevant states may be

found. It is interesting to compare this bound with the worldline bound

1

τ
√
2π

∫

dt e−t
2/(2τ2)〈T00(t, x)〉ψ ≥ − c

24πτ2
(12)

obtained in [1, 17] for Gaussian smearing on timescale τ . If one attempted to derive a spacetime bound by simply

averaging all these bounds in x with the appropriate Gaussian weight, one would obtain a (non-sharp) bound

∫

dt dx 〈T00(t, x)〉ψf(t, x) ≥ − c

24πτ2
. (13)

As one might expect, the sharp bound (11) improves on this for all ℓ > 0, and becomes progressively tighter as ℓ

increases. In the limit ℓ → ∞, we see that the sharp lower bound in (11) vanishes, which is to be expected as the

Hamiltonian is a positive operator. Similarly, the probability distribution (8) converges to the delta-distribution δ(ω)

in this limit, reflecting the fact that vacuum measurements of the Hamiltonian result in 0 with probability 1.
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Our main interest, however, is in the effect of the spatial averaging on the moments and the probability distribution

for finite spatial averaging scales. Inspecting the moment generating function (10), it is clear that the n-th moment

scales with the characteristic scale σ as

M (τ,ℓ)
n =

(

τ2

σ2

)n

M (τ,0)
n =

(

1 + (ℓ/τ)2
)−n

M (τ,0)
n . (14)

For n(ℓ/τ)2 ≪ 1, the moments are little changed from those obtained by pure worldline smearing. This is a special

case of a more general effect whereby a worldline result can be obtained as a limit of a small spatial averaging scale,

which will be discussed in Sec. VIB. At higher n, of course, the effects of the spatial averaging become apparent.

Likewise, for a range of values ω slightly greater than zero, the probability distribution of ρ is well-approximated by

its values for ℓ = 0 (with τ fixed), but as ω increases, the two distributions depart from one another, with the ℓ > 0

distribution decaying exponentially faster. An illustrative plot appears in Fig. 1. Note, however, that the probability

of finding a negative measurement outcome is given in terms of the lower incomplete Γ-function as

Prob(T00(F ) ≤ 0) =
γ(c/12, c/12)

Γ(c/12)
, (15)

which is independent of ℓ and τ , and depends only on the central charge c (provided we maintain Gaussian sampling).

Some results for non-Gaussian worldline sampling can be found in Ref. [4, 5].

Extrapolating from these results, we may expect that for general quantum field theories, spatial averaging reduces

the magnitude of the quantum inequality bound and also causes the positive tail of the probability distribution to

decay more rapidly. Nonetheless, we may also expect that for sufficiently low moments or for a range of smaller

values in the probability distribution, one may neglect the effect of spatial averaging on scales small in relation to the

temporal averaging. Nonetheless, not all features of the CFT might be expected to generalize. In particular, here the

spacetime averaged probability distribution is of the same functional form as the worldline averaged case, but with

different parameters. As we will see, this is a special feature of conformal fields and is not true in general.

III. MOMENTS WITH SPATIAL AVERAGING

A. Averaged operators and their moments

Let T (x, t) be a quadratic normal ordered bosonic operator in four dimensional flat spacetime, such as a stress

tensor component for a free scalar or electromagnetic field. We consider a space and time average of this operator

defined by

T =

∫ ∞

−∞
dt f(t)

∫

d3x g(x) T (x, t) , (16)

where f(t) and g(x) are compactly supported functions of time and of space, respectively. They are assumed to be

non-negative and satisfy

∫ ∞

−∞
dt f(t) = 1 , (17)

and
∫

d3x g(x) = 1. (18)
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ω

P (ω)

0

FIG. 1: The probability density P (ω) plotted for central charge c = 1 with averaging along a worldline (left-hand curve, red)
and for spacetime averaging with the same temporal sampling scale τ and ℓ = 2τ (right-hand curve, blue). The latter is
displaced to the right and decays more rapidly. The vertical asymptotes occur at the quantum inequality bound in each case.

Note that the averaging process breaks Lorentz symmetry. This is to be expected, as the averaging describes a

measurement made in a specific spacetime region and in a selected frame of reference. The space and time averaged

operator may be expanded in terms of annihilation and creation operators in the form

T =
∑

i j

(Aij a
†
i aj +Bij ai aj +B∗

ij a
†
i a

†
j) , (19)

where [ai, a
†
j ] = δij11, A is hermitian and B is symmetric. The moments of T are defined as the vacuum expectation

values of powers of T :

µn = 〈Tn〉 . (20)

The various moments can be expressed as polynomials in the matrices, Aij and Bij . The second moment, for example,

is given by

µ2 = 2TrB†B = 2
∑

jℓ

|Bjℓ|2 . (21)

The primary example which we investigate in this paper is T =: ϕ̇2 :, the squared time derivative of a massless

scalar field. We may write a mode expansion for ϕ̇ as

ϕ̇(t,x) =
∑

k

√

ω

2V

(

ak e
i(k·x−ωt) + a†k e

−i(k·x−ωt)
)

, (22)

where ω = |k| and V is a quantization volume with periodic boundary conditions, which fixes the summation lattice

for k.

Let the Fourier transforms of the sampling functions be defined by

f̂(ω) =

∫ ∞

−∞
dt e−iωtf(t) (23)
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and

ĝ(k) =

∫

d3x eik·x g(x) . (24)

Equations (17) and (18) imply that f̂(0) = ĝ(0) = 1. Here we assume that the sampling functions, and hence their

Fourier transforms, are even, real functions. The matrices Aij and Bij which appear in T and hence in the expressions

for its moments, may be expressed in terms of f̂ and ĝ. For the case of T =: ϕ̇2 :, we have

Ajℓ =

√
ωjωℓ

V
f̂(ωj − ωℓ) ĝ(kj − kℓ) (25)

and

Bjℓ =

√
ωjωℓ

2V
f̂(ωj + ωℓ) ĝ(kj + kℓ) , (26)

both of which are real and symmetric.

We can now understand why time averaging is essential in four spacetime dimensions. The time average contributes

a factor of f̂2(ωj + ωℓ) to µ2 which renders the sum over all modes in Eq. (21) finite. If we had averaged only in

space, then µ2 would just contain a factor of ĝ2(kj + kℓ), and receive a divergent contribution from the region where

kj = −kℓ, that is, from modes with antiparallel wavevectors.

In Ref. [3], it was argued that there is a dominant contribution to µn, which is

Mn = 4
∑

j1···jn
Bj1j2 Aj2j3 Aj3j4 · · ·Ajn−1jn Bjnj1 , (27)

This contribution contains the maximum number of factors of Ajℓ, which tend to be larger that the corresponding

Bjℓ, because of the minus sign in the f̂(ωj − ωℓ) factor, which allows it to be larger on average than the f̂(ωj + ωℓ)

factor in Bjℓ. We will assume Mn continues to be the dominant contribution when spatial averaging is included. If

f̂ and ĝ are non-negative, all of the omitted terms are non-negative, so Mn is always a lower bound on the exact

moment. The construction of non-negative f̂ and ĝ is discussed in Ref. [3] and in Sec. III B.

We now give the generalization of the discussion in Sec. IIIA of Ref. [3] to the case with spatial and temporal

averaging. Use Eqs. (25) and (26) to write

Mn = Cn

∫ ∞

0

d3k1 · · · d3kn ω1 · · ·ωn f̂(ω1 + ω2)ĝ(k1 + k2) f̂(ω2 − ω3)ĝ(k2 − k3) · · · (28)

f̂(ωn−1 − ωn)ĝ(kn−1 − kn) f̂(ωn + ω1)ĝ(kn + k1) ,

where

Cn =
1

(2π)3n
, (29)

and we have taken the V → ∞ limit. In the case that n = 2m is even, we can write the above expression as

M2m = C2m

∫

d3kd3q k q [Gm−1(k, q)]
2 , (30)

where k = |k|, q = |q|, and we define

Gm−1(k1,km+1) =

∫

d3k2 · · · d3km ω2 · · ·ωm f̂(ω1+ω2)ĝ(k1+k2) f̂(ω2−ω3)ĝ(k2−k3) · · · f̂(ωm−ωm+1)ĝ(km−km+1) .

(31)

These functions satisfy a recurrence relation

Gm+1(k, q) =

∫

d3ℓ ℓ f̂(q − ℓ)ĝ(q − ℓ)Gm(k, ℓ) (32)

for m ≥ 0, where

G0(k, q) = f̂(q + k)ĝ(q + k) . (33)
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B. Compactly supported averaging functions

In this paper, we assume that both f(t) and g(x) are functions with compact support, and hence describe mea-

surements made in both a finite time interval and a finite spatial region. This implies that their Fourier transforms,

f̂(ω) and ĝ(k), decay more slowly than exponentially for large values of their arguments. Starting with f , we assume

that its support has characteristic width τ (in a specific example given below, this will be the length of the support),

and that its Fourier transform behaves asymptotically as

f̂(ω) ∼ Cfe
−|ωτ |α , |ω| → ∞ (34)

for some constants 0 < α < 1 and Cf > 0, the latter of which is fixed by the requirement that f has unit integral, i.e.,

f̂(0) = 1. It is further assumed that f is even and nonnegative, and that the same is true of f̂ . A class of functions

with these properties was constructed and discussed in detail in Sect. II of Ref. [3].

Turning to g, we require similar properties and, additionally, spherical symmetry. Functions of this type may be

constructed as follows. Start with a nonnegative even and smooth function of compact support, h, with support of

characteristic width ℓ (in an example below, this will be half the width of the support) and Fourier transform obeying

ĥ(ω) ∼ Che
−η|ωℓ|λ , |ω| → ∞ (35)

for some constants η > 0, 0 < λ < 1 and Ch > 0. We also assume that ĥ(ω) has a maximum at ω = 0 and is monotone

decreasing on the positive half-line, so that ĥ′(ω) ≤ 0 and ĥ′′(0) < 0. Setting

g(x) =
h(|x|/ℓ)

2π ℓ3|ĥ′′(0)|
, (36)

we then have

ĝ(k) = − 2

k ℓ3|ĥ′′(0)|
d

dk

∫ ∞

0

dr cos(kr)h(r/ℓ) =
ĥ′(kℓ)

kℓ ĥ′′(0)
. (37)

Using L’Hôpital’s rule and the fact that ĥ′(0) = 0 it is easily seen that ĝ(0) = 1, so g has unit integral over 3-space.

Note also that ĝ(k) ≥ 0 for all k. Furthermore, we may deduce

ĝ(k) ∼ Cg
e−ǫk

λ

k2−λ
as k → ∞ , (38)

where

ǫ = ηsλ , Cg =
λǫCh

|ĥ′′(0)|
. (39)

Here we define s = ℓ/τ as the ratio of the spatial and temporal sampling widths. We will henceforth adopt units

of time in which τ = 1, so s = ℓ, unless otherwise noted. In this situation, ǫ1/λ measures the ratio of spatial and

temporal sampling scales if η is of order one.

A specific example for the case α = λ = 1
2 may be based on results in [3], where a nonnegative smooth and even

function L was constructed, with support [−1, 1], unit integral, and nonnegative Fourier transform obeying

L̂(ω) ∼ CLe
−
√

2|ω| as |ω| → ∞ , (40)

where the numerical value of CL = 2.9324 to 5 significant figures. See in particular Figs. 4 & 5 of Ref. [3]. Setting

f(t) =
2

τ
L(2t/τ) , h(r) = L(r/s) , (41)
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q

0
q

0

FIG. 2: The ball and shell geometry, indicating the regime where q is larger than the ball radius, in which the effects of
spatial averaging are seen (left-hand figure), and the regime where q is smaller than the ball radius and spatial averaging is less
significant (right-hand figure).

then f has support [−τ/2, τ/2], while g is supported in a ball of radius s. Noting that f̂(ω) = L̂(ωτ/2) and

ĥ(ω) = sL̂(ωs), the transforms of f and g have asymptotic behavior

f̂(ω) ∼ Cfe
−
√

|ωτ | as |ω| → ∞ , (42)

where Cf = CL, and

ĝ(k) ∼ Cg
e−ǫ

√
k

k3/2
as k → ∞ , (43)

where ǫ =
√
2s and Cg has numerical value

Cg =
27.18

s3/2
(44)

The construction of some specific approximate forms for f̂(ω) and ĝ(k) is described in more detail in Appendix A.

IV. ANALYSIS OF THE ITERATION PROCEDURE

A. Heuristic treatment

Any smooth compactly supported function has a Fourier transform that decays faster than any inverse power.

Therefore the integrals in Eq. (32) are dominated by contributions from certain regions of the integration domain.

Proceeding somewhat heuristically for the moment, the factor of f̂ restricts the effective integration region to a shell

of typical radius ∼ q and thickness ρf̂ ∝ 1/τ , while the factor of ĝ restricts the effective integration region to a ball

centered at q and of radius ρĝ ∝ 1/s. Overall, the integration will be dominated by contributions arising from the

intersection of the ball and shell, as illustrated by Fig. 2.

If q is small in relation to the ball radius ρĝ, the shell is contained within the ball so the integration therefore

extends over the whole of the shell, which has a volume ∼ q2ρf̂ . Therefore one expects, roughly, that

Gm+1(k, q) ∼ Cq3Gm(k, q) (45)

for such q and a constant C. This is the growth rate expected in the worldline limit treated in Ref. [3], and corresponds

to the factor of Ωp in Eqs. (77) and (78) of that paper, as we are currently dealing with the case p = 3. On the other



11

hand, as q becomes large in relation to the radius of the ball determined by ĝ, the effective integration region volume

tends to a constant ∼ (ρĝ)
2ρf̂ , where ρĝ is the effective support radius of ĝ and similarly for ρf̂ . Therefore, for large

q, we expect

Gm+1(k, q) ∼ C ′q Gm(k, q) , (46)

for another constant C ′. The consequence of this is that low moments (which are largely fixed by the small q regime)

will behave like those of the worldline averaged quantities, whereas higher moments grow rather less rapidly. The

distinction between low and high moments is determined by the ratio ρĝ/ρf̂ ≈ τ/s: the smaller the scale of spatial

averaging relative to temporal averaging, i.e., the larger the ratio ρĝ/ρf̂ of momentum space averaging scales, the

larger q must be to detect the effect of spatial averaging and therefore the higher the threshold beyond which the

moments Mn are affected by the spatial averaging. This fits in with some basic intuition: on one hand, if one shrinks

the spatial averaging to a δ-function, one ought to obtain the worldline results, consistent with Eq. (45); on the other,

one would expect that broadening the spatial averaging should suppress the effects of short-wavelength modes relative

to the worldline case and therefore diminish the probability of large fluctuations. These expectations are in agreement

with the exact results found for CFTs in Sec. II. For the energy density, in fact, if averaging extends uniformly across

a full Cauchy surface, one obtains a multiple of the Hamiltonian and all fluctuations vanish because the vacuum is

an eigenstate of the Hamiltonian. Note, however, that the vacuum is not an eigenstate of the operators formed by

integrating stress tensor components other than the energy density over all space. Nonetheless, we will find that

spatial averaging of these stress tensor components also reduces the probability of large vacuum fluctuations.

In the rest of this section we investigate these heuristic ideas more quantitatively by both numerical and analytic

means.

B. The first iteration

To start, we consider in more detail how to approximate the first iterate G1(k, q), given by

G1(k, q) =

∫

d3ℓ ℓf̂(q − ℓ)ĝ(q − ℓ)f̂(k + ℓ)ĝ(k + ℓ) , (47)

in the regime where q and k both tend to infinity though not necessarily at the same rate. Each of the Fourier

transforms in the integrand decays rapidly as the magnitude of its argument increases. Therefore the dominant

contributions to the integral are expected to arise from regions where ℓ ≈ q or ℓ ≈ −k. Unless k ≈ −q, a case that

we defer for the moment, these two regions are well-separated as q,k → ∞ and their contributions may be analysed

separately.

Consider first the contribution from ℓ ≈ q. In this region, f̂(k + ℓ)ĝ(k + ℓ) ≈ f̂(k + q)ĝ(k + q) = G0(k, q), and

therefore the contribution to G1 is expected to be approximately

qI(q)G0(k, q) (48)

where the function I(q) is defined as

I(q) =

∫

d3ℓ f̂(q − ℓ)ĝ(q − ℓ) , (49)

and will be called the iteration coefficient ; note that it depends only on the magnitude q of q due to spherical symmetry

of g. The iteration coefficient will be studied in more detail below; in particular, it has a finite, non-zero limit as

q → ∞.
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On the other hand, in the region where ℓ ≈ −k we may approximate ĝ(q− ℓ)f̂(k+ ℓ) ≈ ĝ(q+k)f̂(2k), maintaining

the assumption that k 6≈ −q. The contribution is then approximately

kĝ(q + k)f̂(2k)

∫

d3ℓ f̂(q − ℓ)ĝ(k + ℓ) . (50)

Under the additional assumption that q ≫ k the f̂ factor may be taken outside the integral, using f̂(q−ℓ) ≈ f̂(q−k) ≈
f̂(q + k), giving an approximate contribution

kĝ(q + k)f̂(q + k)f̂(2k)

∫

d3ℓ ĝ(k + ℓ) = (2π)3g(0)kf̂(2k)G0(k, q) (51)

to G1. Owing to the rapid decay of f̂(2k), this contribution is subdominant relative to that of Eq. (48) and we deduce

that

G1(k, q) ≈ qI(q)G0(k, q) (52)

as q,k → ∞ with q ≫ k. Alternatively, suppose that q and k have comparable magnitudes. Provided that k 6≈ −q,

we may then approximate Eq. (50) using f̂(2k) ≈ f̂(k + q), and replacing q by k under the integral. Then Eq. (50)

contributes approximately kI(k)G0(k, q) to G1(k, q). Combining with Eq. (48) we have in total

G1(k, q) ≈ [qI(q) + kI(k)]G0(k, q) (53)

as q,k → ∞ with k 6≈ −q. In particular,

G1(q, q) ≈ 2qI(q)G0(q, q) ∼ 2q I(∞)G0(q, q) (54)

as q → ∞.

If k ≈ −q the two contributing regions overlap and should not be analysed separately. Instead, we expect that

G1(−q, q) ≈ qf̂(2q)

∫

d3ℓ f̂(q − ℓ)ĝ(q − ℓ)2 < qf̂(2q)

∫

d3ℓ f̂(q − ℓ)ĝ(q − ℓ) = q f̂(2q) I(q) , (55)

where the inequality arises because 0 ≤ ĝ ≤ 1.

The ability to pull factors such as f̂(2q) out of the integral arises because these functions become flat for large

arguments, as was noted above Eq. (77) in [3]. More precisely, f̂ ′(ω)/f̂(ω) → 0 as ω → ∞, so f̂ ′ = o(f̂). In addition,

the function ĥ defined in Appendix A satisfies |ĥ′|/ĥ . 0.33, and is hence relatively flat for all values of its arguement.

C. The iteration coefficient

1. Form for large q

Our basic hypothesis is that under the iteration Eq. (32),

Gm+1(k, q) ≈ qI(q)Gm(k, q) (56)

for q ≫ k, where the iteration coefficient, I(q), was defined in Eq. (49). Changing variables to m = q − ℓ,

I(q) =

∫

d3mf̂(q − ‖q −m‖)ĝ(m) (57)

Our aim is to show that I(q) → I(∞) as q → ∞, where

I(∞) =

∫

d3mf̂(q̂ ·m)ĝ(m) , (58)
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and q̂ = q/q is a unit vector along q.

To prove this, note that for each fixed m, one has

q − ‖q −m‖ = q(1− (1− 2q̂ ·m/q +m2/q2)1/2) → q̂ ·m (59)

as ‖q‖ → ∞. Therefore the integrand approaches the required form pointwise. Noting also that f̂(ω) ≤ f̂(0) for all

ω, and that f̂(0)ĝ(m) is integrable, the required result follows by the dominated convergence theorem. We call I(∞)

the asymptotic iteration coefficient, and identify it with the constant C ′ which appeared in Eq. (46).

2. A coordinate space form of I(∞)

We may write Eq. (58) as

I(∞) = 2π

∫ ∞

0

dmm2 ĝ(m)

∫ 1

−1

dc f̂(mc) = 2π

∫ ∞

0

dmm ĝ(m)

∫ m

−m
dξ f̂(ξ) , (60)

where c is the cosine of the angle between m and q, and we let ξ = mc. Next we use Eq. (23) and perform the

ξ-integration to write

I(∞) = 2πi

∫ ∞

−∞
dt
f(t)

t

∫ ∞

0

dmm ĝ(m) (e−imt − eimt) . (61)

Next use Eq. (37) and the fact that ĥ′(ms) is an odd function to write

I(∞) =
2πi

s ĥ′′(0)

∫ ∞

−∞
dt
f(t)

t

∫ ∞

−∞
dm ĥ′(ms) e−imt = − 2π

s2 ĥ′′(0)

∫ ∞

−∞
dt f(t)

∫ ∞

−∞
dm ĥ(ms) e−imt . (62)

In the second step above, an integration by parts was performed using ĥ(ms) → 0 as m→ ±∞. Finally, we recognize

that the m-integration is an inverse Fourier transform yielding 2πh(−t/s) = 2πh(t/s) to obtain

I(∞) = − 4π2

s3 ĥ′′(0)

∫ ∞

−∞
dt f(t)h(t/s) . (63)

We may use Eq. (23) to write

ĥ′′(0) = −
∫ ∞

−∞
dt t2 h(t) = −2

∫ ∞

0

dt t2 h(t) , (64)

which allows I(∞) to be calculated directly from the coordinate space sampling functions, f(t) and h(t).

Recall that f(t) has a characteristic width τ = 1, and h(t/s) has width s. It is of interest to consider the limits in

which one of these widths is large compared to the other. First consider the case of a large spatial sampling region,

s≫ 1. This causes h(t/s) ≈ h(0), and we may use
∫∞
−∞ dt f(t) = 1 to write

I(∞) ≈ −4π2 h(0)

s3 ĥ′′(0)
, s≫ 1 . (65)

In the opposite limit of a small spatial sampling scale, we note that the function h(t/s) forces the integral to get its

dominant contribution from small t, so f(t) ≈ f(0), and now we use
∫∞
−∞ dt h(t/s) = s to find

I(∞) ≈ −4π2 f(0)

s2 ĥ′′(0)
, s≪ 1 . (66)

The powers of s−3 and s−2 which appear in Eqs. (65) and (66), respectively, will be numerically confirmed in Sec. VIA.
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D. Test of the iteration procedure

Here we wish to test numerically a special case of our proposed iteration procedure. Specifically, we expect that

G1(k, q) ≈ q I(∞)G0(k, q) , (67)

in the limit that q ≫ k. Define

R =
G1(k, q)

q I(∞)G0(k, q)
. (68)

We numerically evaluate G1(k, q) and G0(k, q), using Eqs. (32) and (33), Here we use the approximate forms of f̂(ω)

and ĝ(k) for the case α = λ = 1/2 given in Appendix A.

R

q

k = 50 k = 100 k = 150

50 100 150 200 250

0.5

1.0

1.5

2.0

FIG. 3: The ratio R of the iteration integral to its expected asymptotic value for large q is plotted as a function of q for three
choices of k when q and k are parallel. Note that there is a local maximum when q ≈ k, but R → 1 when q ≫ k.

The ratio R is plotted in Fig. 3 as a function of q for different values of k when the vectors q and k are parallel,

and in Fig. 4 when they are antiparallel. We see that R ≈ 1 for large q, which supports our iteration hypothesis. We

may use the results in Sec. IVB to understand some of the other features in Figs. 3 and 4. First, there are maxima

in Fig. 3 near q ≈ k where R ≈ 2. This follows from Eq. (54), which further shows that the height of this ridge is

bounded, so R → 2 when q → ∞ with k = q. A second feature are the minma in Fig. 4 near q ≈ −k, where R < 1.

This feature follows from Eq. (55).

E. A growth bound

Alongside the numerical evidence supporting our iteration procedure, it is useful to have analytic worst-case bounds

on the growth of Gm. We assume that there exist constants C > 0, 0 < α < 1, τ > 0, 0 < λ < 1 and ǫ > 0 such that

0 ≤ f̂(ω) ≤ Ce−|ωτ |α , 0 ≤ ĝ(k) ≤ Ce−ǫ‖τk‖
λ

(69)
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FIG. 4: The ratio R as a function of q is repeated for the case that q and k are antiparallel. Now there is a local minimum
when q ≈ k, surrounded by local maxima, but again R → 1 when q ≫ k.

for all ω ∈ R, k ∈ R
3. As previously, we adopt units in which τ = 1. Here the constant η defined in Eq. (35) has been

set to η = 1, and the parameter ǫ1/λ measures the ratio of spatial and temporal sampling scales.

It is useful to establish some rough bounds on the way in which the functions Gm can grow with m. Because it is

no more difficult, we study a slightly more general problem than the recurrence relation expressed by (32) and (33).

For integer p ≥ 1, and with fixed test functions f and g whose Fourier transforms satisfy Eq. (69), we define an

integral operator Ξ(p) by

(Ξ(p)G)(k, q) =

∫

d3ℓ ℓpf̂(q − ℓ)ĝ(q − ℓ)G(k, ℓ) (70)

and consider the iteration Gm+1 = Ξ(p)Gm, with G0 as in (33).

Starting from the assumption in Eq. (69), our aim is to prove that

|Gm(k, q)| ≤ Q(p)
m (q)e−(k+q)α−ǫ‖k+q‖λ

(71)

for all k, q ∈ R
3, where Q

(p)
m is a polynomial of degree at most mp with coefficients independent of q and k.

In our situation of interest, p = 1, so the polynomial factor in q has degree at most m, which supports the heuristic

expectation given in Eq. (46). We will need two useful inequalities. The first was proved as Eq. (B6) in [3], and

asserts

xα + yα ≥ (x+ y)α + (1− α)min{x, y}α (72)

which holds for x, y > 0 and 0 < α < 1. Here, we also require an analogous inequality on vector norms,

‖x‖α + ‖y‖α ≥ (‖x‖+ ‖y‖)α + (1− α)min{‖x‖, ‖y‖}α

≥ ‖x+ y‖α + (1− α)min{‖x‖, ‖y‖}α (73)

for x,y ∈ R
3, 0 < α < 1, where in the first step we apply (72) to x = ‖x‖ and y = ‖y‖ and in the second, we have

applied the ordinary triangle inequality, and the fact that 0 < α < 1.
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The proof of Eq. (71) is inductive. The statement is true by assumption for m = 0, because it follows from Eq. (69)

and Eq. (33) that

|G0(k, q)| ≤ C2e−(k+q)α−ǫ‖k+q‖λ

(74)

for all k, q ∈ R
3. So let us now suppose that (71) holds for some m ≥ 0. We obtain

|Gm+1(k, q)| ≤ C2

∫

d3ℓ ℓpQ(p)
m (ℓ)e−|q−ℓ|α−ǫ‖q−ℓ‖λ

e−(k+ℓ)α−ǫ‖k+ℓ‖λ

(75)

Expanding the degree-mp polynomial Q
(p)
m , it is clearly sufficient for our inductive argument to show that integrals

of the form (where := denotes equal by definition)

L(r)(k, q) :=

∫

d3ℓ ℓre−|q−ℓ|α−ǫ‖q−ℓ‖λ

e−(k+ℓ)α−ǫ‖k+ℓ‖λ

, (76)

with r ≥ p ≥ 1, obey bounds of the form

L(r)(k, q) ≤ P (r)(q)e−(k+q)α−ǫ‖k+q‖λ

(77)

for all k, q, where P (r) is a polynomial of degree r with coefficients independent of k and q, whose leading coefficient

is also independent of r.

To prove the estimate (77), we apply (73) to obtain

L(r)(k, q) ≤ e−ǫ‖k+q‖λ

∫

d3ℓ ℓre−|q−ℓ|α−(k+ℓ)αe−ǫ(1−λ)min(‖q−ℓ‖,‖k+ℓ‖)λ .

Now split the integral into the regions ℓ < 21/rq and ℓ ≥ 21/rq. In the first of these, we can use the fact that ℓr < 2qr

if r ≥ 1, further, we apply (72) to find

e−|q−ℓ|α−(k+ℓ)α ≤ e−(k+q)α−(1−α)min(|q−ℓ|,k+ℓ)α ≤ e−(k+q)α . (78)

Thus the contribution is bounded from above by

2qre−(k+q)α−ǫ‖k+q‖λ

∫

ℓ<21/rq

d3ℓ e−ǫ(1−λ)min(‖q−ℓ‖,‖k+ℓ‖)λ . (79)

In the second region, we use e−(k+ℓ)α ≤ e−(k+q)α to see that the contribution is bounded by

Sr,αe
−(k+q)α−ǫ‖k+q‖λ

∫

ℓ>21/rq

d3ℓ e−ǫ(1−λ)min(‖q−ℓ‖,‖k+ℓ‖)λ , (80)

where

Sr,α := sup
q>0

sup
ℓ>21/rq

ℓre−(ℓ−q)α

= sup
q>0

sup
ℓ>21/rq

(1− q/ℓ)−r(ℓ− q)re−(ℓ−q)α

≤ (1− 2−1/r)−r sup
x>0

xr/αe−x = (1− 2−1/r)−r(r/α)r/αe−r/α. (81)

Here sup denote a supremum, so supq>0 supℓ>21/rq is the least upper bound of values taken subject to the constraints

that q > 0 and ℓ > 21/rq. As the upper bound suggests, Sr,α will grow rapidly in r for fixed α. We may recombine

the estimates (79) and (80) as

L(r)(k, q) ≤ (2qr + Sr,α)e
−(k+q)α−ǫ‖k+q‖λ

∫

d3ℓ e−ǫ(1−λ)min(‖q−ℓ‖,‖k+ℓ‖)λ , (82)
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where we have simply estimated the individual integrals by their extension to all of R3. Using the elementary fact

e−min{A,B} ≤ e−A + e−B (83)

and the freedom to translate the origin of coordinates, one has
∫

d3ℓ e−ǫ(1−λ)min(‖q−ℓ‖,‖k+ℓ‖)λ ≤ 2

∫

d3ℓ e−ǫ(1−λ)ℓ
λ

= 8π

∫ ∞

0

dℓ ℓ2e−ǫ(1−λ)ℓ
λ

=
8πΓ(3/λ)

λ(ǫ(1− λ))3/λ
,

which gives overall,

L(r)(k, q) ≤ 8πΓ(3/λ)

λ(ǫ(1− λ))3/λ
(2qr + Sr,α)e

−(k+q)α−ǫ‖k+q‖λ

. (84)

Accordingly, L(r)(k, q) is bounded by a polynomial in q (with coefficients independent of k and q, and leading

coefficient independent of r) multiplied by e−(q+k)α−ǫ‖k+q‖λ

. This concludes the inductive proof of the bound (71).

We make no claim that this is the tightest possible upper bound that could be derived. However, the argument is

relatively simple and indicates a worst-case growth rate for the functions Gm(k, q) that is nonetheless broadly in line

with the heuristic discussion of Sec. IVA, in the case p = 1.

V. RATE OF GROWTH OF THE MOMENTS

A. Approximate Forms of the Moments

Recall that in the iteration procedure for Gm(k, q), using Eq. (32), we expect for the initial iterations to each bring

out a factor proportional to q3, and the later iterations to each bring out a factor of I(∞) q. Thus, for m ≫ 1, we

expect the asymptotic form for Gm(k, q), to be

Gm(k, q) ≈ C [I(∞)]m qm+µG0(k, q) (85)

where C and µ are constants which correct for the possibility that the first several iterations bring out different

constants and powers of q than do the later iterations. If we use this form in Eq. (30), we find

Mn ≈ Cn C
2 [I(∞)]n−2 Sn+2µ−1 , (86)

where

SN =

∫

d3q qN
∫

d3k k f̂2(q + k)ĝ2(q + k) . (87)

We will estimate this integral for the case that N ≫ 1. As we expect that the dominant contribution comes from

q ≫ k, we approximate |q + k| ≈ q. If we assume that f̂ and ĝ may be approximated by their asymptotic forms,

Eqs. (34) and (38), then we have

SN ≈ TN = 16π2C2
fg

∫ ∞

0

dq qN+2

∫ ∞

0

dk k3 e−2(q+k)α e−2ǫqλ

q4−2λ
, (88)

where we have written

Cfg = CfCg . (89)

Next let k = r − q to write

TN = 16π2C2
fg

∫ ∞

0

dq qN+2(λ−1) e−2ǫqλ
∫ ∞

q

dr(r − q)3 e−2rα (90)
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Define a new variable u by r = q(1 + u)1/α to write to final integral above as

∫ ∞

q

dr(r − q)3 e−2rα =
q4

α

∫ ∞

0

du (1 + u)1/α−1 [(1 + u)1/α − 1]3 e−2qα(1+u)

≈ q4

α4
e−2qα

∫ ∞

0

duu3 e−2qαu =
3

8α4
q4(1−α) e−2qα , (91)

where in the second step we used the fact that the dominant contribution comes from the region where u≪ 1 because

r ≈ q when q ≫ k. Thus we have

TN ≈
6π2C2

fg

α4

∫ ∞

0

dq qN+2(1+λ)−4α e−2(qα+ǫqλ) . (92)

For the case α = λ, this integral may be evaluated explicitly to obtain

TN ≈
6π2C2

fg

α5
[2(1 + ǫ)](2α−N−3)/α Γ

(

N + 3

α
− 2

)

. (93)

When α = 1/2, this becomes

TN =
192π2C2

fg Γ(2N + 4)

[2(1 + ǫ)]2N+4
. (94)

B. Contribution from q + k ≈ 0

The result in Eq. (88), that SN ≈ TN , relies upon the dominant contribution to SN coming from regions where

q ≫ k when N ≫ 1. However, it is worth examining more carefully the contribution from the region where q+k ≈ 0,

where the argument of ĝ becomes small, in order to show that this contribution is small in relation to TN . In this

region k ≈ q and the contribution to SN is therefore bounded by

SN1 =

∫

d3q qN+1f̂(2q)2
∫

d3k ĝ(k + q)2

= 4π

∫ ∞

0

dq qN+3f̂(2q)2
∫

d3k ĝ(k)2

. C

∫ ∞

0

dq qN+3e−2(2q)α

≈ C ′2−N(1+1/α)Γ

(

N + 4

α

)

(95)

for constants C and C ′ = C/(161+1/αα), depending on f , g and α but not N . Here we have changed variables from

k to k+ q in the second line. We need this contribution to SN be small compared to TN , our estimate for SN , when

N is large. Next we will examine several special cases.

1. Case: α = λ = 1
2

Here we have an explicit formula for TN , given in Eq. (94), while

SN1 .
C ′

23N
Γ(2N + 8) . (96)

This is suppressed compared to TN by a factor proportional to

(

1 + ǫ√
2

)2N

N4 . (97)
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This factor decreases as N grows provided that ǫ ≤
√
2− 1 ≈ 0.414. Under this condition, in which spatial sampling

takes place over modest scales relative to temporal sampling, we expect TN to be a good approximation to SN for

large N for α = λ = 1
2 .

2. Case: λ ≤ α/2

Here we may use some asymptotic results given in Appendix B. First note that if we let q = 2−1/α r, then Eq. (92)

becomes

TN =
6π2C2

fg

α4
2−(N+3+2λ)/α+4

∫ ∞

0

dr rN+2(1+λ)−4α e−r
α−ǫ′rλ ∝ 2−N/α IN+3+2λ−4α(ǫ

′), (98)

where ǫ′ = 21−λ/α ǫ, and IN is defined as

IN =

∫ ∞

0

dq qN−1e−q
α−ǫqλ . (99)

The asymptotic forms of IN for large N are given in Eq. (B11) when λ < α/2, and in Eq. (B12) when λ = α/2.

Although there is a discontinuity between these two forms at λ = α/2 in the form of a factor of eǫ
2/8, both forms

have the same dependence upon N :

IN (ǫ) ∝ Γ(N/α) e−ǫ (N/α−1)λ/α ∼ Γ(N/α) e−ǫ(N/α)
λ/α

. (100)

We may combine this result with Eqs. (95) and (98) to write

SN1

TN
∝ Γ(N/α+ 4/α)

Γ((N + 3 + 2λ)/α− 4)
eǫ

′ (N/α)λ/α

e−N ln 2 . (101)

The ratio of gamma functions can at most grow as a power of N , and here λ/α ≤ 1/2, so the behavior of the ratio

SN1/TN is dominated by the e−N ln 2 factor, which decays exponentially as N increases, leading to SN1 ≪ TN for

large N .

3. Case: α/2 ≤ λ ≤ 2α/3

The asymptotic form for IN in this case is given by Eq. (B13), where β = λ/α. Note that the exponential in the

right-hand-side of Eq. (B13) contains two terms. The first is a negative term proportional to (N/α)β , which also

appears in Eqs. (B11) and (B12). The second is a positive term to proportional to (N/α)2β−1. However, β > 2β − 1

in the range of interest here, so the first term dominates the exponential and again leads to the same leading order

asymptotic behavior for IN as that given in Eq. (100). Hence, the ratio SN1/TN is again given by Eq. (101) for large

N . In all of these cases, we conclude that SN1 is asymptotically small compared to TN , so the region where q+k ≈ 0

does not give a large contribution to SN .

C. Numerical Tests of SN → TN

We can test the approach of SN to its limiting form, TN , for large N by numerically evaluating Eqs. (87) and (92). In

the special case that λ = α = 1/2, TN is given by Eq (94), and we may use the explicit forms for f̂ and ĝ constructed in

Appendix A to evaluate SN . In all cases, we may approximate the sampling functions in Eq. (87) by their asymptotic
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forms for large arguments if N is large. In this case, we use Eq. (34) for f̂ . However, we need to modify the form

given in Eq. (38) for ĝ to avoid a singularity at q + k = 0. For this purpose, we use the cutoff-dependent form

ĝC(k,Q0) = Cg
e−ǫk

λ

(k +Q0)2−λ
, (102)

and test the dependence of the integral upon the parameter Q0.

The results obtained from both approaches are plotted in Fig. 5 for the case that λ = α = 1/2, where ǫ =
√
2s, and

agree reasonably well. The cutoff parameter Q0 was varied between values of about 1 and 10 without a significant

effect. We can see that for smaller values of s, SN/TN becomes close to one for large N . For larger values of s, SN/TN

is noticeably larger than one for the range of N considered.
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SN/TN α = λ =
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s = 0.01

s = 0.025
s = 0.05

FIG. 5: The ratio SN/TN is plotted as a function of N for different values of s for the case α = λ = 1
2
. The solid lines were

computed using the forms for f̂ and ĝ constructed in Appendix A, and the dashed lines using the asymptotic forms, Eqs. (34)
and (102).

Some results for α = 1/2, but λ < α are plotted in Figs. 6 and 7. In this case, Eq. (87) was evaluated using Eqs. (34)

and (38). Again, the result seems to be relatively independent of Q0. Here we appear to find that SN → TN for

N ≫ 1, but that this limit is attained more quickly for smaller values of ǫ and of λ. Note that in all cases, we find

SN > TN ,

In the special case that λ < α/2 < 1/2, we are able to give a rigorous proof that SN/TN → 1 as N → ∞, but the

details will be omitted here.

D. Asymptotic Behavior of the Moments

We may now use Eq. (86) and assume that SN ≈ TN to write

Mn ≈ Cn C
2 [I(∞)]n−2 Tn+2µ−1 , (103)

for n≫ 1. If we let q → 2−1/α q in Eq. (92), then we have

TN ≈
6π2C2

fg

α4
24−(N+3+2λ)/α IN+3+2λ−4α(ǫ

′) . (104)
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FIG. 6: The ratio SN/TN is plotted as a function of N for different values of ǫ for the case α = 1
2
and λ = 1

3
.
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FIG. 7: The ratio SN/TN is plotted as a function of N for two values of ǫ for the case α = 1
2
and λ = 1

4
. Here this ratio

approaches one more quickly and is less dependent upon the value of ǫ, as compared with the cases with larger value of λ.

where ǫ′ = 21−λ/α ǫ and IN (ǫ) is defined in Eq. (B7). Now we have

Mn ≈
6π2C2

fg

α4

[

C

I(∞)

]2

24−2(1+µ+λ)/αBn In+2(1+µ+λ)−4α(ǫ
′) , (105)

where we have used Eq. (29), and defined

B =
I(∞)

21/α (2π)3
. (106)
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As already mentioned, the asymptotic behavior of IN for large N is discussed for several cases in Appendix B, where

it is found that IN/Γ(N/α) is bounded as N → ∞. This leads to a factor of Γ
(

n+2(1+µ+λ)
α − 4

)

inMn, which reveals

that for large n, the moments grow no faster than (n/α)! (times a factor growing exponentially in n). This is slower

than the (3n/α)! growth rate found in Ref. [3] for the case of time averaging alone. However, if α < 1, it is still faster

than n! growth.

VI. THE TAIL OF THE PROBABILITY DISTRIBUTION

A. The form of the tail

Note that Eq. (105) for Mn, the dominant contribution to the n-th moment, can be written as

Mn ≈ K0B
n In+2(1+λ+µ)−4α(ǫ

′) = K0B
n

∫ ∞

0

dq qn+1+2(λ+µ)−4αe−q
α−ǫ′qλ . (107)

If we let x = B q, then this expression becomes

Mn ≈ K

∫ ∞

0

dx xn
[

x1+2(λ+µ)−4α e−(x/B)α−ǫ′ (x/B)λ
]

, (108)

where K0 and K are constants independent of n. Recall that the moments of the probability distribution, P (x), are

µn, where

Mn ≈ µn =

∫ ∞

−x0

dx xn P (x) ≈
∫ ∞

0

dx xn P (x) . (109)

The last step holds when n is sufficiently large that the the interval [−x0, 0] makes a negligible contribution to the

integral. Comparison of Eqs. (108) and (109) suggests that

P (x) ≈ K x1+2(λ+µ)−4α e−(x/B)α−ǫ′ (x/B)λ (110)

for large x.

This identification is subject to the possible ambiguity that rapidly growing moments might not uniquely determine

the probability distribution. However, for a probability distribution which is nonzero on a half line, as is the case

here, the condition that the moments uniquely determine P (x) is the Stieltjes criterion [7], which requires

|µn| ≤ C Dn (2n)! (111)

for all n for some choice of constants C and D. We found in the previous section that here the moments grow no

faster than (n/α)!, so this criterion is satisfied for α ≥ 1/2 and hence P (x) is uniquely determined by the moments. If

α < 1/2, then we have the same situation as in the worldline case, where the moments might not uniquely determine

P (x). Nonetheless, it is possible to gain some information about the tail of the distribution, as discussed in Sec. VI

of Ref. [2].

The constants K and µ are not determined by the methods used here, because the transition between the low

order and high order iteration regimes, discussed in Sec. VA, is not fully understood. However, the argument of the

exponential in Eq. (110) is determined, and governs the primary rate of decay of the tail. If λ < α, the (x/B)α term

in Eq. (110) will eventually dominate the (x/B)λ term, and we will have

P (x) ∝ e−(x/B)α (112)
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for sufficiently large x. In the case that λ = α, we have the asymptotic form

P (x) ∝ e−(1+ǫ) (x/B)α , (113)

as ǫ′ = ǫ in this case. Recall that B is determined by Eqs. (60) and (106). In the special case that λ = α = 1/2,

we may numerically compute B as a function of s = ℓ/τ , using the the approximate forms of f̂(ω) and ĝ(k) given in

Appendix A. The results are illustrated in Figs. 8 and 9.

B

0.8 1.0 1.2 1.4 1.6 1.8 2.0

1

2

3

4

5

6

s

FIG. 8: Here the constant B, which appears in the asymptotic probability distribution, is plotted as a function of the ratio of
the spatial and temporal sampling scales, s = ℓ/τ for the case that λ = α = 1/2. Note that B ≈ 1 when s = 1, and decreases
as s increases.

In all regions, B decreases as s increases. As smaller values of B suppress the probability of a fluctuation with

a given dimensionless magnitude x, this is consistent with the intuition that increasing ℓ relative to τ decreases the

probability of a large fluctuation.

B. The transition from worldline behavior to spacetime averaged behavior

Recall that in Ref. [3], the averaging along a worldline alone was treated, and the asymptotic form of the probability

distribution was found to be of the form

P (x) ∼ c0 x
b e−ax

c

(114)

with c = α/3. In contrast, the asymptotic form of the spacetime averaged distribution, for λ ≤ α, has a similar form,

but with c = α. The effect of the spatial averaging has been to enhance the rate of decrease of the tail of P (x).

However, if the spatial sampling scale s is small compared to the temporal scale τ , we expect a finite region in x

where the worldline form holds approximately. This is the regime depicted in the right part of Fig. 2, when q . 1/s

in τ = 1 units, and when each iteration produces a factor of q3, as predicted by Eq. (45). In this regime, the n-th

moment, given by Eq. (30), will contain an integral on q of the form
∫ ∞

0

dq q3n+3 f̂2(q) ≈ C2
f

∫ ∞

0

dq q3n+3 e−2qα , (115)
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FIG. 9: Here B for the case that λ = α = 1/2 is plotted over a larger range on a log-log plot. Note that B ∝ s−2 for s . 1, in
accordance with Eq. (66), as B decreases from 104 to about 1 as s increases from 0.01 to 1. Furthermore. B ∝ s−3 for s & 1,
in accordance with Eq. (65). Here B decreases by about six orders of magnitude as s increases from 1 to 100.

where we assume n ≫ 1 and use Eq, (34). The peak of this integrand, and hence the region which gives the dominant

contribution to the integral, occurs at

q = q∗ =

[

3(n+ 1)

2α

]1/α

≈
(

3n

2α

)1/α

(116)

if n ≫ 1. The requirement that the worldline approximation is valid implies that q∗ . 1/s and hence

n .
2α

3
s−α . (117)

This condition gives the range of moments which are determined by the temporal sampling alone. It is interesting

to determine the interval of x that largely determines these moments. If we use the approximation in Eq. (114) for

P (x), the n-th moment is

µn =

∫ ∞

−x0

dx xn P (x) ≈ c0

∫ ∞

0

dx xn+b e−ax
c

. (118)

The maximum of this integrand is at

x = xn ≈
( n

ac

)1/c

, (119)

if n ≫ b. If we set n equal to its upper limit in Eq. (117), then we obtain an estimate for the value of x at which the

transition from worldline to spacetime averaged behavior occurs:

x∗ ≈ s−3 = (τ/ℓ)3 , (120)

where we have used c = α/3 and assumed that a factor of a/2 is of order one. As was discussed in Ref. [9], x . x∗

is the range of validity of the worldline approximation. More generally x ≈ x∗ marks the transition in P (x) from its

worldline form to the spacetime averaged form.
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C. The relative importance of different moments for the probability of large fluctuations

We have seen that the lower moments, those which satisfy Eq. (117), determine the inner part of the probability

distribution where x . x∗. Similarly, we expect the higher moments to determine the region where x & x∗. We can

make this statement more precise by noting that the form of P (x) for large x, given by either Eqs. (112) or (113),

is also of the form of Eq. (114) with c = α. The argument leading to Eq. (119) still holds, and tells us that a given

region of P (x) for x & x∗ is determined by moments of order n, where

n ≈ αaxα . (121)

In this region,

P (x) ∝ e−ax
c ≈ e−n/α . (122)

This tells us that the value of P (x) decreases exponentially with increasing n. The significance of this result lies in the

fact that in a given application of the tail of probability distribution, we are typically interested in the probability of

fluctuations which might be large compared to the typical fluctuation, but for which P (x) is still above some threshold

of observability. Thus the regime of greatest physical interest may be one where x≫ 1, but is not the x→ ∞ limit.

Recall that the form of the tail of P (x) given by Eq. (110) was derived assuming that SN ≈ TN for large N .

The numerical results given in Figs. 5, 6, and 7 indicate this happening in some cases. However, in other cases,

especially the λ = α = 1/2 case in Fig. 5, SN is somewhat larger than TN for N . 200. Although the ratio SN/TN

is still decreasing, and might approach one eventually, it is perhaps more important that SN > TN in many cases of

physical interest. This implies that Eq. (110) is better viewed as a lower bound on the actual probability distribution

in these cases. For example, suppose that SN ≈ ATN in some range of N ≫ 1, where A > 1 is a constant. The

corresponding range of x is given by Eq. (121), given that n ≈ N for N ≫ 1. In this case, we can expect that

Eq. (110) underestimates the correct distribution in this range by a factor of 1/A. Note that the overall constant in

Eq. (110) is not determined by the arguments presented in this paper. An alternative approach to computing P (x) is

numerical diagonalization, which was used in Ref. [8] for the case of time averaging. Work is currently in progress to

extend this approach to the case of spacetime averaged operators. In principle, the diagonalization approach is free

of the ambiguities encountered in the present work.

D. The case when the sampling length is large compared to the sampling time

In much of this paper, we have implicitly assumed that s < 1, or ℓ < τ . However, the opposite limit of large

sampling length, s > 1 is also of some interest. In this case, the diameter of the ball depicted in Fig. 2 is less than

than the thickness of the shell. If s ≫ 1, the relevant illustration is the left-hand panel of this figure, but with the

ball entirely contained within the shell, as the case where the very small ball is partly outside the much thicker shell

will give a small contribution. In this case, the iteration will always be described by Eq. (46) with C ′ = I(∞), and

the dominant contribution to the moments, Mn, will be given by Eq. (86) with C = 1 and µ = 0 for all n. However,

the arguments in Sec. VI that SN ≈ TN still require that N ≫ 1. We may now write Eq. (110) for the asymptotic

form of the tail of the probability distribution as

P (x) ≈ K x1+2λ−4α e−(x/B)α−ǫ′ (x/B)λ (123)
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for x≫ 1, where the constant K is found from Eqs. (105) and (106) to be

K =
3C2

fg

32π4 α4
24−2(2+λ)/αB−2(2+λ)+4α . (124)

Unlike the more general case, here K can be computed explicitly once the sampling functions are known. Note that

when s > 1, Eq. (65) tells us that

B ≈ B1

s3
, (125)

where B1 is a constant. However, the factor of C2
fg is also a function of s.

Now we consider the special case where α = λ = 1/2, where ǫ′ = ǫ =
√
s≫ 1. Now Eq. (123) becomes

P (x) ≈ K e−
√
s4 x/B1 , (126)

where

K =
3C2

fg

128π4B3
. (127)

Recall that Cfg = Cf Cg. Further assume that these constants have the values given in Sec. III B: Cf ≈ 2.93 and Cg

as given in Eq. (44), and that B1 ≈ 1, as illustrated in Figs. 8 and 9. Finally, note that s4 x = ℓ4 T , as x = τ4T and

T is the spacetime average of : ϕ̇2 :. We may write the asymptotic probability distribution for T as

P (T ) ≈ 1.5 s6 e−
√
ℓ4 T . (128)

The factor of s6 presumably reflects the fact that the limit τ → 0 for fixed ℓ is not meaningful. Equation (128) is

only valid when T is sufficiently large that P (T ) ≪ 1. However, even if s is of order one, it approximately agrees with

Eqs. (112) and (113) with α = 1/2.

We may use the above results to make some estimates of the extent to which vacuum fluctuations of the electro-

magnetic energy density ρ can dominate thermal fluctuations. If α = 1/2 and ℓ & τ , the probability of a large vacuum

fluctuation can be estimated as PV ≈ e−
√
ℓ4 ρ. Here we assume that the probability distribution for the electromag-

netic energy density is roughly approximated by that for ϕ̇2, where ϕ is a massless scalar field. This assumption is

supported in the world line case by the results in Sect. VA of Ref. [2]. If ℓ ≫ τ then this estimate is too low by

a factor of s6. On the same spatial scale, hence a region of volume ℓ3, the probability of a thermal fluctuation is

given by PT ≈ e−ℓ
3 ρ/T , where T denotes the temperature, and we use units with Boltzmann’s constant set to one.

Consider the case when ℓ ≈ 1/T , about one thermal wavelength. Here PT ≈ e−ρ/T
4

, but PV ≈ e−
√
ρ/T 4

. Recall

that ρ0 = π2 T 4/15 ≈ 0.66T 4 is the mean energy density in a photon bath at temperature T . In the case of a large

fluctuation where one finds ρ = N ρ0, we have PT ≈ e−0.66N , but PV ≈ e−
√
0.66N . If N ≫ 1, then the probability

of finding this result due to a vacuum fluctuation is far greater that due to a thermal fluctuation. For example, for

N = 100, we have PV ≈ 1025 PT , and even for N = 10, PV ≈ 56PT .

VII. SUMMARY AND DISCUSSION

In this paper, we have discussed the fluctuations of quantum stress tensor operators which have been averaged over

finite intervals in both time and space. One can view this spacetime averaging as modeling a measurement process

which takes place in a finite spacetime region. Some averaging is essential for the operator to have finite moments

and hence a meaningful probability distribution. In the two spacetime dimensional CFT models treated in Sec. II,
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the averaging could be performed in time alone or equivalently in space alone, or it could be both in time and in

space. In the latter case, the probability of large fluctuations is suppressed compared to the cases of time averaging

alone or space averaging alone. In the four-dimensional models treated in the remainder of the paper, time averaging

is essential. Space averaging alone would not suppress an infinite contribution to the moments coming from pairs

of modes associated with equal and opposite momenta. For the same reason, there are no quantum inequalities for

purely spatial averaging in four dimensions [18].

We have developed a formalism for treating the effects of both space and time averaging. In both cases, we assume

that the averaging intervals are finite, and hence are described by compactly supported functions of time and of space.

We have assumed that there is an inertial frame (a laboratory frame) in which the space time averaging can be written

as a product of a compactly supported function of time and of a spherically symmetric, compactly supported function

of space. The Fourier transform of the former is taken to be asymptotically proportional to e−|ωτ |α , and that of the

latter to be asymptotically proportional to e−(ℓk)λ , where 0 < λ ≤ α < 1, τ is the characteristic width of the time

sampling functions, and ℓ is that of the spatial sampling function.

We developed an iteration procedure which generalizes that used in Ref. [3] for the worldline case, and used

this procedure to infer the rate of growth of the moments and the asymptotic form of the stress tensor probability

distribution, P (x). Here x = τ4 T is a dimensionless measure of the averaged operator T . We found that if the spatial

sampling scale is small compared to the temporal scale, ℓ ≪ τ , then there is finite range in x which reproduces the

worldline result that P (x) ∼ c0 x
b e−ax

c

with c = α/3. However, as x increases further, there is a transition region,

beyond which P (x) again takes the same functional form, but with different values of the constants. We argued that

the transition occurs at a value x∗ ≈ (τ/ℓ)3. In particular, as x→ ∞, we find c ≈ α. This larger value of c compared

to the worldline case reflects the role of spatial averaging in suppressing large fluctuations. Nonetheless, with α < 1,

the probability distribution still falls more slowly than an exponential function. This allows the possibility of large

physical effects from the fluctuations of space and time averaged stress tensors.

This paper has dealt in detail with the case of the quadratic operator : ϕ̇2 :, where ϕ is a massless scalar field in four

dimensional flat spacetime. This operator is a part of the expressions for the scalar field stress tensor components,

and is closely related to quantities such as the squared electric field which appear in the electromagnetic stress tensor

components. Thus the probability distribution for : ϕ̇2 :, is indicative of the results expected for the energy density

of massless fields. The detailed correspondence between the probability distribution for : ϕ̇2 : and those for energy

densities of the massless scalar and electromagnetic fields was given in Sect. VA of Ref. [2] for the case of time averaging

alone. A topic of future work will the extension of these results to cases involving both time and space averaging.

We also plan to examine the role of a nonzero mass. One expects that the mass will tend to suppress the probability

of stress tensor fluctuations, but will not greatly alter the asymptotic tail describing very large fluctuations, as these

fluctuations are likely to depend primarily on high frequency modes with energies larger than the mass. However, this

needs to be examined in more detail. Another extension will be to the case of curved spacetime. So long as both the

temporal and spatial averaging scales are small compared to the local radius of spacetime curvature, the flat spacetime

results should be accurate. Even when the averaging scales approach or even exceed the radius of curvature, or the

horizon size in cosmological models, the tail of the distribution can be accurately described by the flat space results

to the extent that the tail depends primarily upon short wavelength mode. We hope to make this more explicit in

the future.

A typical vacuum fluctuation of the energy density or other stress tensor components is described by the root mean

square value, xrms, which is expected to be of order of one in τ = 1 units. In the case where the switching function

corresponds to α = 1/2, then the probability density for a large fluctuation of the space and time averaged energy
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density is roughly proportional to e−
√
x. A large fluctuation with x = 100xrms is expected to be suppressed by a

factor of order e−10 = 4.5 × 10−5 compared to a typical fluctuation. By comparison, in a process described by a

Gaussian distribution, such a large fluctuation would be suppressed by a factor of e−104 .

The results in this paper potentially have applications to several areas of physics, including phonon fluctuations in

condensed matter physics, quantum tunneling, density fluctuations in the early universe [12, 13], and the small scale

structure of spacetime [15, 16].
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APPENDIX A: CONSTRUCTION OF AN EXPLICIT CHOICE OF f̂(ω) AND OF ĝ(k)

In this appendix, we describe the construction of the specific forms of f̂(ω) and of ĝ(k) which are used in the

numerical computations reported in this paper. We first follow the procedure given in Sec. IIB of [3], and define the

compactly supported function H(t) by

H(t) =

{

2
π (1− 4t2)−3/2e−1/(1−4t2) |t| < 1

2

0 |t| ≥ 1
2

. (A1)

Its Fourier transform is

Ĥ(ω) =

∫ ∞

−∞
dt e−iωtH(t) = 2

∫ 1/2

0

dt cos(ωt)H(t) . (A2)

In numerical computations, we avoid the singularity in the (1 − 4t2)−3/2 factor by setting the upper limit of

integration to 0.499. We define

L̂(ω) = Ĥ2(ω) +
1

2
[Ĥ2(ω + π) + Ĥ2(ω − π)] . (A3)

Here the appearance of the square of Ĥ ensures that L̂(ω) ≥ 0, and the sum of three terms in Eq. (A3) is used to

suppress oscillations as a function of ω. Next let

ĥ(ω) =
L̂(ω)

L̂(0)
. (A4)

Now ĥ(0) = 1, so that ĥ(ω) is the Fourier transform of a normalized sampling function. Its asymptotic form for large

arguments is

ĥasy(ω) ≈ 2.9324e−
√
2ω . (A5)

It is useful to have a simple approximate form of ĥ(ω) for smaller values of its argument for use in numerical calcu-

lations. This can be found by fitting a polynomial to numerically computed values for ĥ(ω), giving an approximation

ĥfit(ω) = 1.− 0.0378271ω2 − 0.000429218ω3 + 0.000875262ω4 (A6)

− 0.0000485667ω5 − 2.61062× 10−6 ω6 + 1.9601× 10−7 ω7 , ω < 9.92 ,
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and

ĥfit(ω) = ĥasy(ω) , ω ≥ 9.92 . (A7)

The value of ω = 9.92, at which the polynomial is matched to ĥasy(ω) is selected to make the match as smooth as

possible. The function ĥ(ω), which is computed using Eqs. (A1)-(A4), and its approximate form, ĥfit(ω), are plotted in

Fig. 10. The matching region is illustrated in Fig. 11. For ω ≤ 8, the fractional error in the fit, |ĥfit(ω)− ĥ(ω)|/ĥ(ω),
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0.8

1.0

ω

ĥ(ω)

ĥfit(ω)

FIG. 10: The functions ĥ(ω) and ĥfit(ω) are illustrated. They are essentially identical on the scale shown, apart from a small

local maximum in ĥ(ω) near ω = 13.
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ĥfit(ω) ĥ(ω)

FIG. 11: Here ĥ(ω) , its asymptotic form ĥasy(ω) , and ĥfit(ω) are illustrated near the matching region. The fitting function,

ĥfit(ω), has been chosen to interpolate as smoothly as possible between ĥ(ω) and ĥfit(ω).
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is less than about 0.003. For larger values of ω, ĥfit(ω) was selected to approximate ĥasy(ω). However, ĥ(ω) undergoes

some oscillations before approaching ĥasy(ω), as may be seen in Fig. 11.

We may use this choice of ĥfit(ω) to define a temporal sampling function by f̂fit(ω) = ĥfit(ω/2), and a spatial

function, using Eq. (37), by

ĝfit(k) =
ĥ′fit(kℓ)

kℓ ĥ′′fit(0)
. (A8)

The latter function is illustrated in Fig. 12.
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FIG. 12: Here ĝfit(k) is plotted. It is the Fourier transform of the spherically symmetric spatial sampling function derived from

ĥfit(ω).

APPENDIX B: FULKS’ GENERALIZATION OF LAPLACE’S METHOD

The classical method of Laplace for asymptotic evaluation of integrals applies to expressions of the form

Ih =

∫ b

a

f(t)e−hφ(t) dt (B1)

as the parameter h becomes large. As is well-known, the asymptotic behavior of Ih is determined by the properties

of f and h near the global minimum of φ on the integration range, as well as the character of this minimum – in

particular, whether it is a stationary or nonstationary minimum, and whether it is located at an endpoint or in the

interior. In this section we discuss more the general problem in which the integral

Ih,k =

∫ b

a

f(t)e−hφ(t)+kψ(t) dt (B2)

depends on two large parameters, both of which are becoming large, but at different rates. To be specific, we will

assume that k grows more slowly than h, to the extent that k = o(h) as h→ ∞.

Fulks [19] considered integrals of the form (B2) where −∞ < a < b ≤ ∞, in which φ has a single global minimum

at a. As he remarks, it is easy to generalize to the situation in which −∞ ≤ a < b ≤ ∞ and φ has a single interior

global minimum at t∗ ∈ (a, b), and we will state the results for this case.
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Theorem 1. Suppose that

• φ has a single global minimum at t∗ ∈ (a, b), near which it is C3, and is nonincreasing in [a, t∗] and nondecreasing

in [t∗, b]

• ψ is C2 near t∗, and continuous on [a, b]

• f is continuous at t∗ and f(t∗) 6= 0; it is also locally integrable and the integral Ih,k exists for sufficiently large

h, k.

Then if h, k → ∞ with k = o(h), the asymptotics may be given as follows:

1. if k = o(
√
h) or ψ′(t∗) = 0 then

Ih,k ∼ f(t∗)

√

2π

hφ′′(t∗)
exp (−hφ(t∗) + kψ(t∗)) ; (B3)

2. if 0 < lim inf k/
√
h and lim sup k/

√
h <∞ then

Ih,k ∼ f(t∗)

√

2π

hφ′′(t∗)
exp

(

−hφ(t∗) + kψ(t∗) +
ψ′(t∗)2k2

2φ′′(t∗)h

)

; (B4)

3. if
√
h = o(k) and ψ′(t∗) 6= 0 then

Ih,k ∼ f(t∗)

√

2π

hφ′′(t∗)
exp (−hφ(τ) + kψ(τ)) , (B5)

where τ is determined by hφ′(τ) = kψ′(τ) and is the position of the global minimum of −hφ(t)+kψ(t). If, more

specifically, k = o(h2/3), one has

Ih,k ∼ f(t∗)

√

2π

hφ′′(t∗)
exp

(

−hφ(t∗) + kψ(t∗) +
ψ′(t∗)2k2

2φ′′(t∗)h

)

. (B6)

(Other special cases can be given, for different conditions on the growth of k relative to h and suitable higher

regularity of φ and ψ. In general we can solve for τ as a series in k/h and the exponent will contain terms

proportional to h(k/h)a for all a ∈ N0 so that h(k/h)a is constant or growing as h→ ∞).

Proof. Apart from the parenthetic comment, all the statements are lightly adapted from Theorems 1–4 and the

Corollary of [19], noting the comments that follow the Corollary. The comment is evident by expanding the inverse

function to η(t) = φ′(t)/ψ′(t) using Taylor’s theorem with remainder, noting that τ = η−1(k/h).

As an example, we consider the integrals

IN =

∫ ∞

0

dq qN−1e−q
α−ǫqλ , (B7)

where 0 < λ < α < 1, defined in Eq. (99). [For reference, the case λ = α can be evaluated exactly to give

IN = α−1Γ(N/α)(1 + ǫ)−N/α.] Changing variables to v = qα gives

IN = α−1

∫ ∞

0

dv vN/α−1e−v−ǫv
β

, (B8)
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in which the integral is known as Faxén’s integral, IN = α−1Fi(β,N/α;−ǫ) in the notation of [20, §9.4]. Setting

Ω = N/α− 1 and β = λ/α, and making the change of variables v = Ωt, we have

IN =
ΩΩ+1

α

∫ ∞

0

dt eΩ(log t−t)−ǫΩβtβ , (B9)

in which the integral is of Fulks’ form with h = Ω, k = Ωβ , φ(t) = t− log t, ψ(t) = −ǫtβ , f ≡ 1. Noting that

φ′(t) = 1− t−1, φ′′(t) = t−2 (B10)

we see that φ has a single global minimum at t∗ = 1, to the left of which it is decreasing and to the right of which

it is increasing. Note that φ(t∗) = φ′′(t∗) = 1, ψ(t∗) = −ǫ, ψ′(t∗) = −βǫ. There are several cases, depending on the

value of β = λ/α:

• if λ < α/2, then k = o(
√
h) and by (B3),

IN ∼ ΩΩ+1/2e−Ω−ǫΩλ/α√
2π

α
∼ α−1Γ(N/α)e−ǫ(N/α−1)λ/α

; (B11)

• if λ = α/2, then k =
√
h and by (B4),

IN ∼ ΩΩ+1/2e−Ω−ǫΩλ/α+ǫ2/8
√
2π

α
∼ α−1eǫ

2/8Γ(N/α)e−ǫ
√
N/α−1; (B12)

• if α/2 < λ < 2α/3 then
√
h = o(k) and k = o(h2/3), and by (B6),

IN ∼ ΩΩ+1/2e−Ω−ǫΩλ/α+(ǫβ)2Ω2β−1/2
√
2π

α
∼ α−1Γ(N/α)e−ǫ(N/α−1)λ/α+(ǫβ)2(N/α−1)2β−1/2 (B13)

(so this formula also holds for λ = α/2);

• if α/2 < λ < α < 1, with no further information, then by (B5),

IN ∼ ΩΩ+1/2τΩe−Ωτ−ǫ(Ωτ)λ/α√
2π

α
∼ α−1Γ(N/α)τN/α−1e−(N/α−1)(τ−1)−ǫ((N/α−1)τ)λ/α

, (B14)

where τ is determined by τ + ǫβΩβ−1τβ = 1, β = λ/α. More could be said given a tighter upper bound on λ/α

and indeed the formula (B13) given for the range λ ∈ (α/2, 2α/3) is a special case.

As a check on the result for λ = α/2, we note that IN can be evaluated in terms of Kummer functions in this case.

Changing variables to v = qα/2, one has

IN =
2

α

∫ ∞

0

dv v2N/α−1e−v
2−ǫv, (B15)

which evaluates by [21, 3.462.1]

IN =
1

α
21−N/αΓ(2N/α)eǫ

2/8D−2N/α(ǫ/
√
2) (B16)

=
2

α
2−2N/αΓ(2N/α)U

(

N

α
,
1

2
,
ǫ2

4

)

(B17)

=
Γ(N/α)Γ(N/α+ 1/2)

α
√
π

U

(

N

α
,
1

2
,
ǫ2

4

)

. (B18)

where Dν(z) is a parabolic cylinder function and U is Kummer’s function (see [22, §12.1 & 12.7.14] for the relation

between these special functions). The last step uses the duplication formula for Γ-functions.
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Asymptotic expansions of the Kummer function U for large parameters are known – see [22, §13] and [23] – and

give

IN (ǫ) ∼ Γ(N/α+ 1/2)eǫ
2/8

α
√

N/α− 1
e−ǫ

√
N/α−1 ∼ Γ(N/α)eǫ

2/8

α
e−ǫ

√
N/α−1 (B19)

in agreement with our results above.
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