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Abstract

The paper is concerned with a line of research that plumbs the scope of constructive theories. The
object of investigation here is Feferman’s intuitionistic theory of explicit mathematics augmented by the
monotone fixed point principle which asserts that every monotone operation on classifications (Feferman’s
notion of set) possesses a least fixed point. To be more precise, the new axiom not merely postulates the
existence of a least solution, but, by adjoining a new functional constant to the language, it is ensured
that a fixed point is uniformly presentable as a function of the monotone operation.

The strength of the classical non-uniform version, MID, was investigated in [GRS97] whereas that
of the uniform version was determined in [Ra98, Ra99] and shown to be that of subsystems of second
order arithmetic based on Π

1

2-comprehension. This involved a rendering of Π1

2-comprehension in terms
of fixed points of non-monotonic Π1

1-operators and a proof-theoretic interpretation of the latter in specific
operator theories that can be interpreted in explicit mathematics with the uniform monotone fixed point
principle.

The intent of the current paper is to show that the same strength obtains when the underlying logic
is taken to be intuitionistic logic.

1 Introduction

This paper continues research (cf. [Fef82, BFPS, Tak89, GRS97, Ra96, Ra98, Ra99, Ra02, Tu04]) address-
ing the status of monotone inductive definitions in the general constructive setting of Feferman’s explicit
mathematics [Fef75, Fef79], called T0. It has a strong bearing on the problem of determining the limits of
what is constructively justifiable that was of great interest to logicians ever since the 1960s (cf. [Kr63]).
The question of the strength of systems of explicit mathematics with fixed point principles MID and UMID
was raised by Feferman in [Fef82]; we quote:

What is the strength of T0 +MID? [...] I have tried, but did not succeed, to extend my interpre-
tation of T0 in Σ1

2 − AC + BI to include the statement MID. The theory T0 +MID includes
all constructive formulations of iteration of monotone inductive definitions of which I am aware,
while T0 (in its IG axiom) is based squarely on the general iteration of accessibility inductive
definitions. Thus it would be of great interest for the present subject to settle the relationship
between these theories. (p. 88)

We are particularly interested in the intuitionistic strength of the axiom UMIDN which postulates the
existence of a least fixed point for any monotone operation f on subsets of the natural numbers, where
a least solution lfp(f) is presented as a function of the operation by adjoining a new constant lfp to the
language of T0. To relate the state of the art in these matters we shall need some terminology. Below we
shall distinguish between the classical and the intuitionistic version of a theory by appending the superscript
c and i, respectively. For a system S of explicit mathematics we denote by S ↾ the version wherein the
induction principles for the natural numbers and for inductive generation are restricted to sets. INDN

stands for the schema of induction on natural numbers for arbitrary formulas of the language of explicit
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mathematics. (Π1
2-CA)0 denotes the subsystem of second order arithmetic (based on classical logic) with

Π1
2-comprehension but with induction restricted to sets, whereas (Π1

2-CA) also contains the full schema of
induction on N.
The papers [Ra98, Ra99] yielded the following results:

Theorem 1.1 (i) (Π1
2-CA)0 and Tc

0 ↾ +UMIDN have the same proof-theoretic strength.

(ii) (Π1
2-CA) and Tc

0 ↾ +INDN +UMIDN have the same proof-theoretic strength.

The first result about UMIDN on the basis of intuitionistic explicit mathematics was obtained by the second
author in [Tu04].

Theorem 1.2 (Π1
2-CA)0 and Ti

0 ↾ +UMIDN have the same proof-theoretic strength.

[Tu04] uses a characterization of (Π1
2-CA)0 via a classical µ-calculus (a theory which extends the concept

of an inductive definition), dubbed ACA0(L
µ), given by Möllerfeld [Mö02] and then proceeds to show

that ACA0(L
µ) can be interpreted in its intuitionistic version, ACAi

0(L
µ), by means of a double negation

translation. Finally, as the latter theory is readily interpretable in Ti
0 ↾ +UMIDN, the proof-theoretic

equivalence stated in Theorem 1.2 follows in view of Theorem 1.1.
The proof of [Tu04], however, does not readily generalize to Ti

0 ↾ +INDN +UMIDN and extensions by
further induction principles. The main reason for this is that adding induction principles such as induction
on natural numbers for all formulas to ACA0(L

µ) only slightly increases the strength of the theory.1 It is
suggested by the results of [Ra98] that in order to arrive at a µ-calculus of the strength of (Π1

2-CA) one has
to allow for transfinite nestings of the µ-operator for any ordinal α < ε0. By engineering a double negation
translation in a similar vein as in [Tu04], we will be able to conclude the following result.

Theorem 1.3 (i) (Π1
2-CA)0 and Ti

0 ↾ +UMIDN have the same proof-theoretic strength.

(ii) (Π1
2-CA) and Ti

0 ↾ +INDN +UMIDN have the same proof-theoretic strength.

Through Theorem 1.3 we get another proof of Theorem 1.2 (which also does not hinge upon [Mö02]).
Finally, it’s worth mentioning that the same results could be obtained by subjecting the operator theories
TOP
<ω and TOP

<ε0
to a double negation interpretation. Moreover, this translation works for extensions of

Theorem 1.3(ii) where one allows for transfinite nestings of the µ-operator as long as the ordinals come from
a primitive recursive ordinal representation system.

2 Fixed point theories

We consider different frameworks for expressing the existence of fixed point of operators.

2.1 The µ-calculus

The µ-calculus extends the concept of an inductive definition. It is basically an algebra of monotone functions
over the power class of the domain of a first order structure (or over a complete lattice), whose basic
constructors are first order definable operators, functional composition and least and greatest fixed point
operators. The µ-calculus arose from numerous works of logicians and computer scientists. It originated
with Scott and DeBakker [SD69] and was developed by Hitchcock and Park [HP73], Park [Pa70], Kozen
[K83], Pratt [Pr81], and others (see [AN01]). The µ-calculus is used in verification of computer programs
and provides a tool box for modelling a variety of phenomena, from finite automata to alternating automata
on infinite trees and infinite games with finitely presentable winning conditions. Here we will be interested in
the µ-calculus over the natural numbers. The µ-definable sets over the natural numbers were first described
by Lubarsky [Lu93]. He determined their complexity in the constructible hierarchy and showed that their
ordinal ranks in that hierarchy can reach rather large countable ordinals. In the following we denote by
ACA0(L

µ) an axiomatic theory whose language is an extension of that of the classical µ-calculus over N,

1In actuality, adding induction on natural numbers for all formulas does not increase the proof-theoretic strength at all.
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Lµ (see [Lu93]), by set quantifiers and comprehension for first-order properties. This version was formalized
in [Mö02]. The letters “ACA” stand for “arithmetic comprehension axiom” and the subscript 0 indicates
that the induction principle on natural numbers holds for sets rather than arbitrary classes. The name
“ACA0(L

µ)” for this theory is somewhat misleading as its comprehension axioms allow for the formation
of non-arithmetic sets. However, we will stick to this notation for ‘historical’ reasons.

Definition 2.1 The language of ACA0(L
µ) builds on the language of Peano arithmetic, PA. It has vari-

ables x, y, z, . . . , X, Y, Z, . . . ranging over numbers and sets of numbers, respectively. The terms of PA will
be referred to as number terms. Number terms, set terms and formulas of the language Lµ are defined as
follows.

1. The terms of PA are number terms of Lµ.

2. Set variables are set terms.

3. ⊥ is a formula.

4. If s and t are number terms then s = t is a formula.

5. If s is a number term and S is a set term then s ∈ S is a formula.

6. If ϕ0 and ϕ1 are formulas then ϕ0 ∧ ϕ1, ϕ0 ∨ ϕ1 and ϕ0 → ϕ1 are formulas.

7. If ψ is a formula then ∀xψ and ∃xψ are formulas.

8. If ψ is a formula then ∀Xψ and ∃Xψ are formulas.

9. If ϕ is an X-positive first-order formula then µxX.ϕ is a set term.

In the definition above we call a formula first-order if it does not contain set quantifiers ∃X, ∀X. For X a
set variable an expression E is said to be X-positive (X-negative) if every occurrence of X in E is positive
(negative). In classical logic we can restrict ourselves to the connectives ¬,∧,∨ and then X is positive in a
formula ϕ if every occurrence of X in ϕ is in the scope of an even number of negations. But as we shall also
be concerned with the intuitionistic µ-calculus, we define this notion inductively as follows:
(1) X is X-positive; (2) Y is both X-positive and X-negative if Y is a set variable different from X; (3) ⊥
and s = t are also both X-positive and X-negative; (4) s ∈ S is X-positive (-negative) iff S is; (5) polarity
does not change with ∧, ∨, quantifiers and the µ-symbol; (6) and, finally, ϕ0 → ϕ1 is X-positive (-negative)
iff ϕ0 is X-negative (-positive) and ϕ1 is X-positive (-negative).
For set terms S, T , S ⊆ T is the formula ∀x(x ∈ S → x ∈ T ).

Definition 2.2 The axioms of ACA0(L
µ) are the following:

1. The axioms of PA.

2. (Induction) ∀X
(

0 ∈ X ∧ ∀u(u ∈ X → u+ 1 ∈ X) → ∀uu ∈ X
)

.

3. (First-order comprehension) ∃Z∀x[x ∈ Z ↔ ϕ(x)] for every first-order formula ϕ in which the set
variable Z does not appear free.

4. (Least fixed point axiom)

∀x[x ∈ P ↔ ϕ(x, P )] ∧ ∀Y
[

∀x
(

ϕ(x, Y )→ x ∈ Y
)

→ P ⊆ Y
]

(1)

where P stands for the set term µxX.ϕ.

ACA0(L
µ) is based on classical logic. The system with the underlying logic changed to intuitionistic logic

will be denoted by ACAi
0(L

µ).
The theories with the full induction scheme IND will be denoted by ACA(Lµ) and ACAi(Lµ), respectively.
IND is the scheme

ψ(0) ∧ ∀x[ψ(x)→ ψ(x+ 1)] → ∀xψ(x)

for all formulas ψ.

3



That X is positive (negative) in ψ will be notated by ψ(X+) (ψ(X−)). Positivity is a guarantor of mono-
tonicity, while negativity guarantees anti-monotonicity.

Lemma 2.3 For every X-positive formulas ψ(X+) and and every X-negative formula θ(X−) of ACA0(L
µ)

we have:

(i) ACAi
0(L

µ) ⊢ ∀X∀Y [X ⊆ Y ∧ ψ(X) → ψ(Y )].

(ii) ACAi
0(L

µ) ⊢ ∀X∀Y [X ⊆ Y ∧ θ(Y ) → θ(X)].

Proof: Use induction on the complexity of the formulas. ✷

At first blush, the µ-calculus appears to be innocent enough. Though a first order formula ϕ(X+, x) may
contain complicated µ-terms, it might seem that these act solely as parameters and therefore one could
obtain µxX.ϕ(X+, x) via an ordinary first order arithmetic inductive definition in these parameters, so that
all the µ-definable sets would turn out to be sets recursive in finite iterations of the hyperjump. But this is
far from being true. The µ-calculus allows for nestings of least fixed point operators. Better yet, there can
be feedback. This provides the major difficulty in understanding the expressive power of Lµ. To illustrate
the complexity of nested set terms in Lµ, let θ(X+, Y −, Z+,W−) be a first order formula of Lµ. Then the
following are set terms: µzZ.θ, µyY.w /∈ µzZ.θ, µxX.µyY.w /∈ µzZ.θ, µwW.µxX.µyY.w /∈ µzZ.θ.
In the µ-calculus one can also define the greatest fixed point constructor ν : If ϕ(X+, x) is first order,
νxX.ϕ(X+, x) is {u | u /∈ µxX.¬ϕ(¬X,x)}. The appropriate measure for the complexity of µ-terms was
determined by Lubarsky [Lu93]. µ and ν can be viewed as higher order quantifiers giving rise to complexity
classes Σµn and Πµn of Lµ formulas which measure the alternations of µ and ν.
The pivotal proof-theoretic connection between ACA0(L

µ) and ACAi
0(L

µ) was established by Tupailo.

Theorem 2.4 (Tupailo) ACA0(L
µ) can be interpreted in ACAi

0(L
µ) via a double negation translation.

Proof: [Tu04]. ✷

2.2 Fragments of second order arithmetic

The proof-theoretic strength of theories is commonly calibrated using standard theories and their canonical
fragments. In classical set theory this linear line of consistency strengths is couched in terms of large cardinal
axioms while for weaker theories the line of reference systems traditionally consist in second order arithmetic
and its fragments, owing to Hilbert’s and Bernays’ [HB38] observation that large chunks of mathematics can
already be formalized in second order arithmetic.

Definition 2.5 The language L2 of second-order arithmetic contains number variables x, y, z, u, . . ., set
variables X,Y, Z, U, . . . (ranging over subsets of N), the constant 0, function symbols Suc,+, ·, and relation
symbols =, <,∈. Suc stands for the successor function. Terms are built up as usual. For n ∈ N, let
n̄ be the canonical term denoting n. Formulae are built from the prime formulae s = t, s < t, and
s ∈ X using ∧,∨,¬, ∀x, ∃x, ∀X and ∃X where s, t are terms. Note that equality in L2 is only a relation
on numbers. However, equality of sets will be considered a defined notion, namely X = Y if and only if
∀x[x ∈ X ↔ x ∈ Y ]. As per usual, number quantifiers are called bounded if they occur in the context
∀x(x < s → . . .) or ∃x(x < s ∧ . . .) for a term s which does not contain x. The Σ0

0-formulae are those
formulae in which all quantifiers are bounded number quantifiers. For k > 0, Σ0

k-formulae are formulae of
the form ∃x1∀x2 . . . Qxkφ, where φ is Σ0

0; Π
0
k-formulae are those of the form ∀x1∃x2 . . . Qxkφ. The union

of all Π0
k- and Σ0

k-formulae for all k ∈ N is the class of arithmetical or Π0
∞-formulae. The Σ1

k-formulae
(Π1

k-formulae) are the formulae ∃X1∀X2 . . . QXkφ (resp. ∀X1∃X2 . . . Qxkφ) for arithmetical φ.
The basic axioms in all theories of second-order arithmetic are the defining axioms of 0, 1,+, ·, < and the
induction axiom

∀X(0 ∈ X ∧ ∀x(x ∈ X → x+ 1 ∈ X)→ ∀x(x ∈ X)),
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respectively the scheme of induction

IND φ(0) ∧ ∀x(φ(x)→ φ(x+ 1))→ ∀xφ(x),

where φ is an arbitrary L2-formula. We consider the axiom scheme of C-comprehension for formula classes
C which is given by

C-CA ∃X∀u(u ∈ X ↔ φ(u))

for all formulae φ ∈ C in which X does not occur.
For each axiom scheme Ax we denote by (Ax) the theory consisting of the basic arithmetical axioms, the
scheme Π0

∞-CA, the scheme of induction and the scheme Ax. If we replace the scheme of induction by the
induction axiom, we denote the resulting theory by (Ax)0. An example for these notations is the theory
(Π1

1-CA) which contains the induction scheme, whereas (Π1
1-CA)0 only contains the induction axiom in

addition to the comprehension scheme for Π1
1-formulae.

In the framework of these theories one can introduce defined symbols for all primitive recursive functions.
Especially, let 〈,〉 : N×N −→ N be a primitive recursive and bijective pairing function. The xth section of U
is defined by Ux := {y : 〈x, y〉 ∈ U}. Observe that a set U is uniquely determined by its sections on account
of 〈,〉’s bijectivity. Any set R gives rise to a binary relation ≺R defined by y ≺R x := 〈y, x〉 ∈ R. Using the
foregoing coding, we can formulate the schema of Bar induction

BI ∀X
[

WF(≺X) ∧ ∀u
(

∀v ≺X uφ(v)→ φ(u)
)

→ ∀uφ(u)
]

for all formulae φ, where WF(≺X) expresses that ≺X is well-founded, i.e., WF(≺X) stands for the formula
∀Y

[

∀u
[

(∀v ≺X u v ∈ Y ) → u ∈ Y
]

→ ∀u u ∈ Y
]

.
For a collection of formulas, F , we also formulate the axiom of choice for these formulas:

F-AC ∀x∃Y F (x, Y )→ ∃Y ∀xF (x, Yx),

where F (x,X) belongs to F .

Definition 2.6 A binary relation ≺ on N is said to be a prewellordering if ≺ is well-founded and transitive
and satisfies

∀x, y [x ≺ y ∨ y ≺ x ∨ x ≡≺ y ],

where x ≡≺ y signifies ∀u
(

[u ≺ x↔ u ≺ y] ∧ [x ≺ u↔ y ≺ u]
)

.
Given two prewellorderings ✁ and ≺, we say that a function f : N→ N embeds ✁ into ≺ if ∀xy ( y ✁ x →
f(y) ≺ f(x) ) and ∀xz [ z ≺ f(x) → ∃y( y ✁ x ∧ f(y) ≡≺ z )].
Note that (Π1

1 − CA)0 suffices to prove that there exists a function f such that f embeds ✁ into ≺ or f
embeds ≺ into ✁.
We use the abbreviations PWO(≺) to express that ≺ is a prewellordering. By field(≺) we mean the set
{x : ∃y (x ≺ y ∨ y ≺ x)}. For a set V , let field(V ) = field(≺V ).
≺ is a wellordering (written WO(≺)) if PWO(≺) and ∀xy∈field(≺) [x ≺ y ∨ y ≺ x ∨ x = y]. ≺ is a
wellordering of N if WO(≺) and field(≺) = N.

Definition 2.7 Let F be a collection of L2-formulae. The principle that any operator which is describable
via an F-formula inductively defines a set, F-Fix, is expressed by the schema

∀X∃!Y φ(X,Y ) → ∃V ∃Z∃U
[

PWO(V ) ∧ ∀xφ(ZV x, Zx) ∧ φ(
⋃

x
Zx, U) ∧ U ⊆

⋃

x
Zx

]

where φ belongs to F .
Note that

⋃

x Zx is uniquely determined by φ, that is if

PWO(V̄ ) ∧ ∀xφ(Z̄V̄ x, Z̄x) ∧ φ(
⋃

x
Z̄x, Ū) ∧ Ū ⊆

⋃

x
Z̄x, (2)

then
⋃

xZx =
⋃

xZ̄x. To see this assume that f embeds ≺V into ≺V̄ . By induction on ≺V one then verifies
that ∀xZx = Z̄f(x). The latter implies the assertion. As to a fragment of second order arithmetic in which
the previous proof can be carried out, one needs provability of comparability of prewellorderings; thus, e.g.
(Π1

1-CA)0 suffices.
We shall denote

⋃

xZx by I∞φ . By ≺φ we shall refer to an arbitrary choice of prewellordering ≺V̄ satisfying
(2).
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The crucial result linking Π1
2-comprehension and and the schema F-Fix is the following.

Theorem 2.8 (Rathjen)

(i) (Σ1
2-AC)0 +Π1

1-Fix = (Π1
2-CA)0.

(ii) (Σ1
2-AC) +Π1

1-Fix = (Π1
2-CA).

Proof. [Ra98] Theorem 3.15 and Corollary 3.16. ✷

2.3 The theories M<γ

To begin with, we fix an ordinal notation system OT. For this paper it will be sufficient to assume that
OT is a standard notation system for ε0. < will refer to the primitive recursive ”less than” relation which
comes with OT, and α < ε0 will mean γ ∈ OT. The language Lµ, extending the language L2 of 2nd order

arithmetic, is described below. It is a generalization of the language of µ-calculus as presented in [Mö02,
Section 1b] and [Tu04, Section 1]. Number terms, set terms and formulas of the language Lµ are defined as
follows.

Definition 2.9 1. Number terms of L2 are number terms of Lµ.

2. Set variables are set terms.

3. ⊥ is a formula.

4. If s and t are number terms then s = t is a formula.

5. If s is a number term and S is a set term then s ∈ S is a formula.

6. If ϕ0 and ϕ1 are formulas then ϕ0 ∧ ϕ1, ϕ0 ∨ ϕ1 and ϕ0 → ϕ1 are formulas.

7. If ψ is a formula then ∀xψ and ∃xψ are formulas.

8. If ψ is a formula then ∀Xψ and ∃Xψ are formulas.

9. If ϕ is a first-order (i.e. not containing set quantifiers) formula then µxyXY.ϕ is a set term.

Fix a limit ordinal γ ≤ ε0 for the remainder of this article. M<γ is based on classical logic. The basic
axioms of M<γ are those of ACA0(Lµ), i.e. ACA0 extended to the language Lµ. The main additional
axiom scheme LFPγ [ϕ[x, y,X, Y ], T ] will govern the µ-term T := µxyXY.ϕ; its formulation requires some
preparation. The basic idea is to state it as

∀y<α∀Y ”ϕ[x, y,X, Y ] is monotone in X”→ ∀y<αLFPx,X [ϕ[x, y,X, T<y], Ty] (3)

(for abbreviations see below), for every first-order formula ϕ and every α < γ, but for technical reasons we
formulate it in a slightly different way. In our formulation, in order to claim ∀y<αLFPx,X [ϕ[x, y,X, T<y], Ty],
we require monotonicity not only of the formula ϕ, but of all formulas χ s.t. T ”depends on” a µ-term
µxyXY.χ. Exact definitions are given next.

Definition 2.10 For every formula ψ and every µ-term T := µxyXY.ϕ, assuming that all bound vari-
ables in them are renamed so as to avoid collisions, we define finite sets M(ψ) and M(T ) of the form
{〈ℓi, µxiyiXiYi.ϕi〉 | . . .}, where ℓi is a finite list of variables, inductively as follows:

M(ψ) :=



















∅ if ψ is ⊥, s = t or s ∈ X;
M(ψ0) ∪M(ψ1) if ψ is ψ0 ◦ ψ1 and ◦ ∈ {∧,∨,→};
{〈(ℓi, x), Ti〉 | 〈ℓi, Ti〉 ∈ M(χ[x])} if ψ is Qxχ[x] and Q ∈ {∀, ∃};
M(χ[X]) if ψ is QXχ[X] and Q ∈ {∀, ∃};
{〈∅, µxyXY.ϕ〉} ∪ {〈(ℓi, x, y,X, Y ), Ti〉 | 〈ℓi, Ti〉 ∈ M(ϕ)} if ψ is s ∈ µxyXY.ϕ.

Finally we defineM(T ) :=M(0 ∈ T ).
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Now LFPα[ϕ, T ] is defined as an axiom scheme

Mon(M(T ), α)→ ∀y<αLFPx,X [ϕ[x, y,X, T<y], Ty], (4)

for every first-order formula ϕ and every α < γ, where we adopt the following abbreviations:

Mon(M(T ), α) stands for the conjunction of all formulas

∀~zi∀ ~Zi∀yi<α∀Yi ”ϕi[xi, yi, Xi, Yi] is monotone in Xi”,

where 〈(~zi, ~Zi), µxiyiXiYi.ϕi〉 ∈ M(T ).

X ⊆ Y for ∀x (x ∈ X → x ∈ Y ),

LFPx,X [ψ[x,X], Z] for ∀x (x ∈ Z ↔ ψ[x, Z]) ∧ ∀U(∀z(ψ[z, U ]→ z ∈ U)→ Z ⊆ U),

x ∈ Zy for (y, x) ∈ Z,

x ∈ Z<y for (x)0 < y ∧ x ∈ Z,

(·, ·), (·)0, (·)1 for the usual pairing and unpairing operations on natural numbers.

Spelling out the formulas the abbreviations Mon(M(T ), α) and LFPα[ϕ, T ] stand for, we have that Mon(M(T ), α)
is the conjunction of the formulas

∀~zi∀ ~Zi∀yi<α∀Yi∀X
′
i∀X

′′
i (X ′

i ⊆ X
′′
i → (ϕi[xi, yi, X

′, Yi]→ ϕi[xi, yi, X
′′
i , Yi])) (5)

where 〈(~zi, ~Zi), µxiyiXiYi.ϕi〉 ∈ M(T ); and LFPα[ϕ, T ] is the formula

Mon(M(T ), α) → ∀y<α (∀x (x ∈ Ty ↔ ϕ[x, y, Ty, T<y]) (6)

∧∀U(∀z(ϕ[z, y, U, T<y]→ z ∈ U)→ Ty ⊆ U)).

In addition to the above,M<γ contains the scheme of transfinite induction TIα, for every formula ψ[x] ∈ Lµ
and every α < γ: ∀x(∀y<xψ[y]→ ψ[x])→ ∀x<αψ[x]. (7)

Lemma 2.11 Let ϕ(x,X) be a first order formula of M<γ (which usually contains other free variables)
such that ϕ(x,X) isM<γ-provably monotone in x,X, i.e.,

M<γ ⊢ ∀x ∀X ∀Z [X ⊆ Z ∧ ϕ(x,X) → ϕ(x, Z)].

Let the first-order formula ϕ
st
(x,X) be defined by

ϕ
st
(x,X) := ∃u, v

[

x = (u, v) ∧ ϕ(u, {z : (z, u) ∈ X}) ∧ (8)

¬ϕ(v, {z : ¬ϕ(u, {w : (w, z) ∈ X})})
]

.

Then ϕ
st
(x,X) is provably monotone in M<γ with respect to x,X. Letting x <ϕ y stand for (x, y) ∈

µxX.ϕ
st
(x,X), we get

M<γ ⊢ WF(<ϕ) ∧ ∀u [u ∈ µxX.ϕ(x,X) ↔ ϕ(u, {v : v <ϕ u})]. (9)

Proof.The monotonicity of ϕ
st
(x,X) follows from that of ϕ(x,X). (9) is proved in [Ra96], section 3 and

stated in [Ra96], Corollary 3.3. The proof presented in [Ra96], though, is formally carried out in a system of
explicit mathematics with an extra axiom asserting that every monotone operation on sets has a least fixed
point. However, one easily checks that that proof carries over toM<γ . ✷

Proposition 2.12 To every first-order formula θ(x,X) ofM<γ and variables x,X we can effectively assign
a first-order formula Υ(x,X) of M<γ with the same free variables such that Υ(x,X) is M<γ-provably
monotone with respect to x,X, i.e.,

M<γ ⊢ ∀x ∀X ∀Z [X ⊆ Z ∧ Υ(x,X) → Υ(x, Z)]. (10)
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Moreover, setting

Υu := {y : Υ(y, {v : v <Υ u})},

Θu := {a : (0, a, a) ∈ Υu},

Θ<u :=
⋃

y<Υ u

Θy := {b : ∃y <Υ u b ∈ Θy}

Θ∞ :=
⋃

u

Θu := {z : ∃u z ∈ Θu}

Γθ(X) := {x : θ(x,X)},

M<γ proves that

Θu = Γθ(Θ
<u) ∪ Θ<u, (11)

Γθ(Θ
∞) ⊆ Θ∞. (12)

In particular, Θ∞ is first-order definable in the language of M<γ and M<γ proves that Θ∞ is a set and
that Θ∞ arises by iterating the operator Γθ along the stage comparison prewellordering <Υ of µxX.Υ(x,X).
Moreover, Θ∞ is closed under Γθ. In other words, Θ∞ is the set inductively defined by the operator Γθ.

Proof. The details of the definition of Υ can be found in [Ra96] Definition 4.3. More precisely, one has to
substitute Γθ for the operator Θ in [Ra96] Definition 4.3 and then define Υ(x,X) by x ∈ Υ(X), where the
latter Υ denotes the operator defined in [Ra96] Definition 4.3. The statement we want to prove is [Ra96]
Theorem 4.1 except that we have to replace the theory T0 ↾ +MID byM<γ . Upon nearer inspection of the
proof of [Ra96] Theorem 4.1, one sees that in works inM<γ as well. ✷

Definition 2.13 For every first order formula θ(x,X) ofM<γ and variables x,X we notate the first order
definable set Θ∞ of Proposition 2.12 by µνxX.θ(x,X).

Proposition 2.14 To every first order formula θ(x, y,X, Y ) of M<γ , δ < γ, and variables x, y,X, Y we
can assign a first order definable set S such that

M<γ ⊢ ∀α ≤ δ Sα = νµxX. θ(x, α,X, S<α) (13)

where Sα := {u : (α, u) ∈ S} and S<α := {(β, v) ∈ S : β < α}.

Proof. Let Υ(x, y,X, Y ) be the formula of Proposition 2.12 assigned to θ and the variables x,X. Then
Υ(x, y,X, Y ) isM<γ-provably monotone with respect to x,X. Let Υst(x, y,X, Y ) be the formula introduced
in Lemma 2.11 that inductively defines the stage comparison relation on µxX.Υ(x, y,X, Y ). This formula is
alsoM<γ-provably monotone with respect to x,X. Let

Ỹ (α) := {(β, (z)1) : z ∈ Yβ ∧ (z)0 = 1 ∧ β < α}

Υ̃(x, α,X, Y ) := ∃u, v
(

x = (u, v) ∧
(

[u = 0 ∧ Υst(v, α, {y : (0, y) ∈ X}, Ỹ (α))]

∨ [u = 1 ∧ ∃wΥ((0, v, v), α, {z : (0, (z, w)) ∈ X}, Ỹ (α))]
))

.

Note that Υ̃(x, α,X, Y ) is monotone (provably so inM<γ) with respect to x,X. Thus T := µxyXY.Υ̃ is a
term ofM<γ . Finally put

S := {(α,w) : (α, (1, w)) ∈ T}.

We shall now prove (13). Letting Y = T<α we have

Ỹ (α) = {(β, (z)1) : z ∈ Tβ ∧ (z)0 = 1 ∧ β < α}

= S<α.
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Let

A := µxX.Υst(x, α,X, S<α),

B := {v : ∃wΥ((0, v, v), α, {z : (z, w) ∈ A}, S<α)},

C := {(0, y) : y ∈ A} ∪ {(1, z) : z ∈ B}.

As ∀v [v ∈ A↔ Υst(v, α,A, S<α)] we then have

Υ̃(x, α, C, T<α) ↔ ∃u, v
(

x = (u, v) ∧
(

[u = 0 ∧ Υst(v, α,A, S<α)] (14)

∨ [u = 1 ∧ ∃wΥ((0, v, v), α, {z : (z, w) ∈ A}, S<α)]
))

↔ ∃u, v (x = (u, v) ∧ ([u = 0 ∧ v ∈ A] ∨ [u = 1 ∧ v ∈ B]))

↔ x ∈ C,

so that

Tα ⊆ C. (15)

From ∀x [x ∈ Tα ↔ Υ̃(x, α, Tα, T<α)] it follows that

∀v [(0, v) ∈ Tα ↔ Υst(v, α, {y : (0, y) ∈ Tα}, S<α)]

and hence

A ⊆ {y : (0, y) ∈ Tα}. (16)

(15) and (16) together yield {y : (0, y) ∈ Tα} = A. Moreover, as

∀v [(1, v) ∈ Tα ↔ ∃wΥ((0, v, v), α, {z : (z, w) ∈ {y : (0, y) ∈ Tα}, S<α)]

we also get B = {v : (1, v) ∈ Tα} and consequently arrive at

Tα = C (17)

Sα = B. (18)

In view of Proposition 2.12 this entails that

Sα = µνxX. θ(x, α,X, S<α).

✷

Next, we want to show that (Π1
2-CA)0 and (Π1

2-CA) can be reduced toM<ω andM<ε0 , respectively. Here
we shall draw on [Ra98]. It follows from [Ra98] Theorem 3.15, Corollary 3.16, Corollary 4.25 and Corollary
4.29 that (Π1

2-CA)0 and (Π1
2-CA) can be reduced to certain operator theories TOP

<ω and TOP
<ε0

, respectively.
More precisely, we have

Theorem 2.15 (i) (Π1
2-CA)0 and TOP

<ω prove the same Π1
3 sentences.

(ii) (Π1
2-CA) and TOP

<ε0
prove the same Π1

3 sentences.

Thus it suffices to show that TOP
<ω and TOP

<ε0
can be interpreted in M<ω and M<ε0 , respectively. The

foregoing theories are based on axioms for finite and transfinite iterations of certain operators. TOP
<ω is the

the theory (Π0
∞ −CA)0 augmented by the axioms

OPn ∀ ~X∀Y ∃Z Φ
~X
n (Y ) = Z

for all n.
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TOP
<ε0

be the theory (Π0
∞ −CA)0 augmented by the axioms

OPα ∀ ~X∀Y ∃Z Φ
~X
α (Y ) = Z

for all α < ε0.
For a detailed account of the syntax and axioms of TOP

<ω and TOP
<ε0

we refer to [Ra98]. The crucial observation

is that the operators Φ
~X
n can be defined in M<ω and the operators Φ

~X
α can be defined in M<ε0 , using

Proposition 2.14. As a result we can conclude the following theorem.

Theorem 2.16 (i) M<ω has the same proof-theoretic strength as (Π1
2-CA)0.

(ii) M<ε0 has the same proof-theoretic strength as (Π1
2-CA).

Proof : In light of the foregoing remarks we only need to show that (Π1
2-CA)0 and (Π1

2-CA) can accom-
modateMω andMε0 , respectively. This follows from Theorem 2.8, i.e., [Ra98] Theorem 3.15 and Corollary
3.16. ✷

3 Double-negation translation

Fix γ ≤ ε0. LetM
i

<γ result fromM<γ by changing the logic from classical to intuitionistic. In this section,

following the method of [Tu04, Section 1], we will prove thatMi

<γ has the same strength asM<γ .

Definition 3.1 (Negative, completely negative, ϕN )
A formula ϕ is negative iff occurrences of every atom, ∨, ∃x or ∃X not in the scope of the µ-symbol in ϕ
are negated.
For any ϕ by ϕN we define the formula obtained from ϕ by putting ¬¬ in front of every atom, ∨, ∃x or ∃X
in ϕ not in the scope of µ.
An expression is completely negative iff all occurrences of atoms, ∨, ∃x and ∃X in it, including those in the
scope of µ, are negated.

Note that ϕN is negative andM(ϕ) =M(ϕN ) for every formula ϕ.

Definition 3.2 (Complete negation operation N(e))
For any expression e we define N(e) recursively as follows:

1. N(e) := e if e is ⊥, a number term or a set variable.

2. N commutes with =, ∈ and logical connectives.

3. N(µxyXY.ϕ) := µxyXY.(N(ϕ))N .

Note that if e is a µ-term then N(e) is completely negative.

Lemma 3.3 For any µ-term T we have

M(N(T )) = {〈ℓi, µxiyiXiYi.(N(ϕi))
N 〉 | 〈ℓi, µxiyiXiYi.ϕi〉 ∈ M(T )}.

Proof. By induction on T . ✷

The calculusMN
<γ is the same asM<γ , with the only difference that LFPα[ϕ[x, y,X, Y ], T ] is replaced by

an axiom LFPN
α [ϕ[x, y,X, Y ], T ], where T is µxyXY.ϕ, which is

Mon(M(N(T ), α) → ∀x (x ∈ (N(T ))y ↔ N(ϕ)[x, y, (N(T ))y, (N(T ))<y]) ∧ (19)

∀U(∀z(N(ϕ)[z, y, U, (N(T ))<y]→ z ∈ U)→ (N(T ))y ⊆ U),
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where Mon(M(N(T ), α) signifies the conjunction of all formulas

∀~zi∀ ~Zi∀yi<α∀Yi∀X
′
i∀X

′′
i (X

′
i ⊆ X

′′
i → (N(ϕi[xi, yi, X

′, Yi])→ N(ϕi[xi, yi, X
′′
i , Yi])))

with 〈(~zi, ~Zi), µxiyiXiYi.ϕi〉 ∈ M(T ).

Lemma 3.4 M<γ can be interpreted inMN
<γ .

Proof. Given a derivation d inM<γ , replace every formula ϕ in d by N(ϕ) in order to obtain a derivation
in MN

<γ . The only little thing to check is that N (LFPγ [ϕ[x, y,X, Y ], µxyXY.ϕ]) is of the form (19), but
this is straightforward. ✷

For a set Z by Z we denote the set {x | ¬x ∈ Z}, which exists by Arithmetical Comprehension. Below we
use the standard notation Y

.
= Z to mean ∀x(x ∈ Y ↔ x ∈ Z).

Lemma 3.5 (Extensionality Lemma)
For every α < γ Mi

<γ proves that if Z1
.
= Z2 then:

(a) if Mon(M(ϕ[Z1]), α) ∧Mon(M(ϕ[Z2]), α) then ϕ[Z1]↔ ϕ[Z2], for every formula ϕ;
(b) for a term T [Z] := µxyXY.ϕ[x, y,X, Y, Z] if

Mon(M(T [Z1]), α) ∧Mon(M(T [Z2]), α)

then ∀y<α(µxyXY.ϕ[Z1])y
.
= (µxyXY.ϕ[Z2])y, for every first-order formula ϕ.

Proof proceeds by induction on the buildup of an expression e[Z]. Below we use IH as an abbreviation for
“induction hypothesis”. The assertion is obvious when e is an elementary atom, i.e. an atom not of the form
s ∈ S where S is a µ-term. The induction step for logical connectives is also straightforward, we consider →
and ∃z for illustration.
Assume ϕ is ϕ0 → ϕ1. From Mon(M(ϕ[Z1]), α) ∧Mon(M(ϕ[Z2]), α) we get
Mon(M(ϕi[Z1]), α) ∧Mon(M(ϕi[Z2]), α) for both i = 0, 1. By IH ϕi[Z1] ↔ ϕi[Z2] for both i = 0, 1, thus
yielding ϕ[Z1]↔ ϕ[Z2].
Assume ϕ is ∃zψ[z]. From Mon(M(ϕ[Z1]), α) ∧Mon(M(ϕ[Z2]), α) we get
Mon(M(ψ[z, Z1]), α) ∧Mon(M(ψ[z, Z2]), α), for any z. By IH ψ[z, Z1] ↔ ψ[z, Z2], for any z, thus yield-
ing ϕ[Z1] ↔ ϕ[Z2]. The induction step for (b) requires subsidiary transfinite induction on y. So as-
suming Mon(M(T [Z1]), α) ∧ Mon(M(T [Z2]), α), ϕ[x, y,X, Y, Z1] ↔ ϕ[x, y,X, Y, Z2], y < α, (T [Z1])z

.
=

(T [Z2])z for all z < y and ϕ be first-order, it remains to show (T [Z1])y := (µxyXY.ϕ[x, y,X, Y, Z1])y
.
=

(µxyXY.ϕ[x, y,X, Y, Z2])y =: (T [Z2])y. From (6) we have

∀x (x ∈ (T [Z1])y ↔ ϕ[x, y, (T [Z1])y, (T [Z1])<y, Z1]) ∧ (20)

∀U(∀z(ϕ[z, y, U, (T [Z1])<y, Z1]→ z ∈ U)→ (T [Z1])y ⊆ U)

and

∀x (x ∈ (T [Z2])y ↔ ϕ[x, y, (T [Z2])y, (T [Z2])<y, Z2]) ∧ (21)

∀U(∀z(ϕ[z, y, U, (T [Z2])<y, Z2]→ z ∈ U)→ (T [Z2])y ⊆ U).

From the first conjunct of (20), by the main IH, we have

∀x (x ∈ (T [Z1])y ↔ ϕ[x, y, (T [Z1])y, (T [Z1])<y, Z2]);

applying the subsiduary IH and then the main IH again we arrive at

∀x (x ∈ (T [Z1])y ↔ ϕ[x, y, (T [Z1])y, (T [Z2])<y, Z2]).

From the second conjunct of (21), taking U := (T [Z1])y, we obtain (T [Z2])y ⊆ (T [Z1])y. Similarly we get
(T [Z1])y ⊆ (T [Z2])y. Together this gives (T [Z1])y

.
= (T [Z2])y. ✷
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Lemma 3.6 MN
<γ can be interpreted inMi

<γ .

Proof. Apply the double-negation translation (·)N . Classical logic goes into intuitionistic. It’s easily checked
(and well-known) that translations of all axioms ofACA0(Lµ) are derivable intuitionistically from the axioms
of ACA0(Lµ). Transfinite induction (7) is also no problem, since < is a recursive relation and ¬¬z1 < z2 can

be equivalently replaced by z1 < z2. So we need only derive inMi

<γ the formula
(

LFPN
γ [ϕ[x, y,X, Y ], T ]

)N

(T := µxyXY.ϕ), i.e.
∧

〈(~zi, ~Zi),µxiyiXiYi.ϕi〉∈M(T ) ∀~zi∀
~Zi∀yi<α∀Yi∀X

′
i∀X

′′
i

(

X ′
i ⊆ X

′′
i →

(

(

N(ϕi[xi, yi, X
′, Yi])

)N
→

(

N(ϕi[xi, yi, X
′′
i , Yi])

)N
))

→

∀y<α
(

∀x (x ∈ N(T )y ↔ (N(ϕ))N [x, y, (N(T ))y, (N(T ))<y]) ∧

∀U(∀z((N(ϕ))N [z, y, U, (N(T ))<y]→ z ∈ U)→ N(T )y ⊆ U)
)

,

(22)
where by z1<z2 we denote ¬¬z1 < z2. As remarked above, < can be equivalently replaced by <; also, by
Lemma 3.3 the premise of the implication (22) can be equivalently replaced by

∧

〈(~zi, ~Zi),µxiyiXiYi.ϕi〉∈M(N(T )) ∀~zi∀
~Zi∀yi<α∀Yi∀X

′
i∀X

′′
i

(

X ′
i ⊆ X

′′
i → (ϕi[xi, yi, X

′, Yi]→ ϕi[xi, yi, X
′′
i , Yi])

)

.

We will derive now inMi

<γ the formula
∧

〈(~zi, ~Zi),µxiyiXiYi.ϕi〉∈M(T ) ∀~zi∀
~Zi∀yi<α∀Yi∀X

′
i∀X

′′
i

(

X ′
i ⊆ X

′′
i →

(

(

N(ϕi[xi, yi, X
′, Yi])

)N
→

(

N(ϕi[xi, yi, X
′′
i , Yi])

)N
))

→

∀y<α
(

∀x (x ∈ N(T )y ↔ (N(ϕ))N [x, y, (N(T ))y, (N(T ))<y]) ∧

∀U(∀z((N(ϕ))N [z, y, U, (N(T ))<y]→ z ∈ U)→ N(T )y ⊆ U)
)

,

(23)
which is stronger than (22) and will imply the latter by intuitionistic logic. So assume

∧

〈(~zi, ~Zi),µxiyiXiYi.ϕi〉∈M(N(T )) ∀~zi∀
~Zi∀yi<α∀Yi∀X

′
i∀X

′′
i

(

X ′
i ⊆ X

′′
i → (ϕi[xi, yi, X

′, Yi]→ ϕi[xi, yi, X
′′
i , Yi])

)

;

this means Mon(M(N(T )), α). By the LFPγ [(N(ϕ))N , N(T )] axiom of Mi

<γ we get now

∀y<αLFPx,X [(N(ϕ))N [x, y,X, (N(T ))<y], (N(T ))y], i.e.

∀y<α
(

∀x (x ∈ N(T )y ↔ (N(ϕ))N [x, y, (N(T ))y, (N(T ))<y]) ∧

∀U(∀z((N(ϕ))N [z, y, U, (N(T ))<y]→ z ∈ U)→ N(T )y ⊆ U)
)

.
(24)

Fixing y < α, the first conjunct in the conclusion of (23) is derived by prenexing ¬¬ to the first conjunct

in (24). For the second conjunct, given U , assume ∀z
(

(N(ϕ))N [z, y, U, (N(T ))<y]→ z ∈ U
)

. For any z, we
have Mon(M((N(ϕ))N [z, y, U, (N(T ))<y]), α). Since the formula (N(ϕ))N is completely negative, we can use

the fact U
.
= U and Lemma 3.5 to prove by induction Mon(M((N(ϕ))N [z, y, U, (N(T ))<y]), α). Now using

again complete negativeness, the fact U
.
= U and Lemma 3.5(a), we obtain (N(ϕ))N [z, y, U, (N(T ))<y] ↔

(N(ϕ))N [z, y, U, (N(T ))<y], for any z. Therefore we can conclude ∀z
(

(N(ϕ))N [z, y, U, (N(T ))<y]→ z ∈ U
)

.

By the second conjunct of (24) we obtain (N(T ))y ⊆ U , which intuitionistically implies N(T )y ⊆ U . ✷

Theorem 3.7 Mi

<γ has the strength ofM<γ .

Proof. This follows now from Lemmata 3.4 and 3.6. ✷
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4 Embedding into intuitionistic Explicit Mathematics

In this section we will give embeddings of systems Mi
ω and Mi

ε0
into theories of intuitionistic Explicit

Mathematics EETJ↾ + UMIDN and EETJ + UMIDN, respectively. Together with Theorems 2.16 and
3.7 above and Theorem 6.1 of [Ra99] about classical EETJc↾ +UMIDN and EETJc +UMIDN this will
prove the following

Theorem 4.1 (a) T0↾ + UMIDN has exactly the strength of (Π1
2-CA)0;

(b) T0↾+ IndN +UMIDN has exactly the strength of (Π1
2-CA).

The proof of part (a) of this theorem is another way to the main result of [Tu04]; part (b) is a new result.

4.1 Explicit Mathematics: a reminder

Language LEM. All theories of Explicit Mathematics, considered in this paper, are formulated in a two-
sorted language, containing variables for operations (individuals) and names, along with operation constants.
Names are thought of as a special kind of operations, coding types (sets) of operations. We use variables
a, b, c, . . . as ranging over operations, and A,B,C, . . . as ranging over names. The main constants of LEM

are the following: combinators k, s, pairing p and projections p0, p1, zero 0, successor sN and predecessor
pN, distinction by cases on natural numbers dN, join j and inductive generation i. Additionally we have
the following 9 constants called name generators : nat, id, inv, emp, and, or, imp, all, ex. Terms are built
from variables and constants by the following application clause: if s and t are terms then s · t (also written
as st) is a term, so that the application function symbol · accepts arguments of both sorts and returns an
operation. In writing terms, parentheses are thought of as associated to the left. Atomic formulas are ⊥
(falsity), s = t (s coincides with t) and s ε t (s belongs to the type named by t, s is classified under t), where
s and t are terms. Formulas are built from atomic formulas by ∧,∨,→ and two kinds of quantifiers, over
operations and over names, e.g. ∀a, ∃a, ∀A, ∃A. Finally, expression is a term or a formula. We use the
following standard abbreviations:
¬F :⇔ F → ⊥;
F0 ↔ F1 :⇔ (F0 → F1) ∧ (F1 → F0);
t↓ :⇔ ∃x(t = x);
N [t] :⇔ ∃A(t = A);
t
.
= {s[x1, . . . , xn] | F [x1, . . . , xn]} :⇔ N [t] ∧ ∀x(x ε t↔ ∃x1 . . . ∃xn(x = s[x1, . . . , xn] ∧ F [x1, . . . , xn]));
s ≃ t :⇔ (s↓ ∨ t↓)→ s = t;
s ⊆ t :⇔ ∀x ε s(x ε t); s

.
= t :⇔ s ⊆̇ t ∧ t ⊆̇ s;

t′ for sN · t; 1 for 0′; st for s · t; t(s1, . . . , sn) for (. . . (ts1) . . . sn); 〈s, t〉 for pst; s 6= t for ¬s = t, etc.
Logic. Intuitionistic 2-sorted logic of partial terms with equality.
Axioms. The axioms are divided in several groups, according to their nature.

I. Applicative axioms. These axioms formalise that operations form a partial combinatory algebra, that we
have pairing and projections, usual closure conditions on natural numbers, as well as definition by numerical
cases: (1) kab = a; (2) sab↓ ∧ sabc ≃ ac(bc); (3) pab↓ ∧ p0a↓ ∧ p1a↓ ∧ p0(pab) = a ∧ p1(pab) = b; (4)
0εnat∧∀x ε nat(sNxεnat); (5) ∀x ε nat(sNx 6= 0∧pN(sNx) = x); (6) ∀x ε nat(x 6= 0→ pNxεnat∧sN(pNx) = x);
(7) a ε nat ∧ b ε nat→ (a = b→ dNxyab = x) ∧ (a 6= b→ dNxyab = y).
II. Induction on nat. F [0] ∧ ∀x(F [x]→ F [sNx])→ ∀x ε natF [x],
for every formula F .
The following lemmata 4.2 and 4.3 are provable using only applicative axioms I (see, for example, [Fef79]).

Lemma 4.2 λ-abstraction
For every term t[x] there exists a term λx.t[x] such that λx.t[x]↓ and for every term s

s↓→ (λx.t[x])s ≃ t[s]).

Lemma 4.3 Recursion Theorem
There exists a closed term rec such that

recf↓ ∧ recfx ≃ f(recf)x.
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III. Explicit representation. This axiom states that each name is an operation: ∃x(x = A).
IV. Elementary comprehension (ECA). These axiomatise name generators: (1) N [nat]; (2) N [id] ∧
∀x(xεid↔ x = 〈p0x, p1x〉∧p0x = p1x); (3)N [inv(f,A)]∧∀x(xεinv(f,A)↔ fxεA); (4)N [emp]∧∀x(xεemp↔
⊥); (5) N [and(A,B)]∧∀x(x ε and(A,B)↔ x εA∧x εB); (6) N [or(A,B)]∧∀x(x ε or(A,B)↔ x εA∨x εB);
(7) N [imp(A,B)] ∧ ∀x(x ε imp(A,B) ↔ x ε A → x ε B); (8) N [allA] ∧ ∀x(x ε allA ↔ ∀y(〈x, y〉 ε A)); (9)
N [exA] ∧ ∀x(x ε exA↔ ∃y(〈x, y〉 ε A)).

Definition 4.4 Elementary formula
A formula is elementary iff it’s constructed from ⊥, s = t and t ε A by means of ∧,∨,→, ∀x, ∃x only. (No
occurrences of t ε s with s not a name variable and name quantifiers are allowed.)

The following lemma reduces Elementary Comprehension to a finite number of its instances; its proof requires
only axioms I, III and IV (see [Tu03, L.1.4]).

Lemma 4.5 ECA
If a formula F := F [x; ā; Ā] is elementary then there exists a term txF such that FV(txF ) = FV(F ) \ {x} and

N [txF ] ∧ ∀x(x ε t
x
F ↔ F ).

V. Join (J). This axiom states that if f is an operation from a type named by A, each value of which is a
name, then j(A, f) names a disjoint union of all fx for x ε A:

∀x ε AN [fx]→
(

N [j(A, f)] ∧ ∀z(z ε j(A, f)↔ z = 〈p0z, p1z〉 ∧ p0z ε A ∧ p1z ε f(p0z)))
)

.

VI. Inductive Generation (IG). The first part of this axiom states that i(A,B) names a wellfounded
part of a type named by A along an ordering named by B; the second part allows induction over that type
for an arbitrary formula:

N [i(A,B)] ∧ ∀x εA(∀y(〈y, x〉 ε B → y ε i(A,B))→ x ε i(A,B))

∧ (∀x εA(∀y(〈y, x〉 ε B → F [y])→ F [x])→ ∀x ε i(A,B)F [x]),

where F is an arbitrary formula.
The theory App is the one containing only applicative axioms I; EON has axioms I–II. The theory EONN
has axioms of the groups I–III. EET is EONN+ECA, EETJ is EET+ J and T0 is EETJ+ IG. By T↾
we mean a version of a theory T where both induction on natural numbers II and inductive generation VI
are restricted to formulas F := x ∈ C. By LEM,lfp we denote the language LEM extended by an operation

constant lfp. For the statement of UMID and UMIDN principles see e.g. [Ra02, Section 2.2]. We repeat
these definitions here:

Clop[f,A] means ∀X⊆A∃Y ⊆A fX = Y ;
Mon[f,A] -”- ∀X⊆A∀Y ⊆A (X ⊆ Y → fX ⊆ fY );
Lfp[Y, f, A] -”- fY ⊆ Y ∧ Y ⊆ A ∧ ∀X⊆A (fX ⊆ X → Y ⊆ X);

UMIDA -”- ∀f
(

Clop[f,A] ∧Mon[f,A]→ Lfp[lfpf, f, A]
)

.

Now, UMID is the principle UMIDV, where V
.
= {x | x = x} is (a name of) the universal type, and

UMIDN is UMIDnat.
Mon[f,A] above means that the operation f is monotone on A. Plain ”f monotone” means that f is
monotone on V.

Lemma 4.6 Define Lfp′[Y, f, A] to be Lfp[Y, f, A] ∧ Y ⊆ fY , UMID′
A to be

∀f
(

Clop[f,A] ∧Mon[f,A]→ Lfp′[lfpf, f, A]
)

. Then, on the basis of intuitionistic logic, UMIDA ↔ UMID′
A.

Proof. The direction ← is obvious. For →, assume UMIDA, Clop[f,A] and Mon[f,A]. This implies
lfpf ⊆ A and f(lfpf) ⊆ lfpf . By monotonicity of f we have f(f(lfpf)) ⊆ f(lfpf). But this yields lfpf ⊆
f(lfpf) by the remaining part of the Lfp[lfpf, f, A] assertion. ✷

For every number term t of Lµ one defines in the standard way its translation tEM into the language LEM.
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4.2 Embeddings of Mi

ω and Mi

ε0

In this subsection we start with proving Theorem 4.1(a), by showing how to translate a derivation inMi

ω into
a derivation in EETJ↾ + UMIDN. Changes necessary to upgrade the argument toMi

ε0
(Theorem 4.1(b))

will be indicated in the end. First we note that every proof inMi

ω is a proof inMi

n for some natural number

n; from now on we fix this n. In Explicit Mathematics, we reason here in EETJ↾ + UMIDN.

Lemma 4.7 There is an operation J s.t. if ∀y < n∀Y ⊆ nat (Clop[fyY, nat] ∧Mon[fyY, nat]) then the
following holds:
(a) ∃Z⊆nat (Z = Jf);
(b) for every y < n (Jf)y

.
= lfp(fy

⊕

z<y(Jf)z), where Ai := {x ε nat | (i, x) ε A},
⊕

z<y Az := {(z, x) |z < y ∧ (z, x) ε A}, (·, ·) and < denote (translations of) appropriate operations/relations
on natural numbers.

Proof. Assume ∀y < n∀Y ⊆ nat (Clop[fyY, nat] ∧Mon[fyY, nat]). By the UMIDN axiom we can define
types Jy, for all y < n, to satisfy Jy = lfp(fy

⊕

z<y J
z). Finally we put Jf :=

⊕

z<n J
z. ✷

Definition 4.8 (txϕ, f
x,X
ϕ )

For every first-order formula ϕ and a variable x of Lµ we define a term txϕ of LEM,lfp by recursion on ϕ in
the following way:

txϕ :=







































































emp if ϕ is ⊥;
inv(λx.〈sEM[x], tEM[x]〉, id) if ϕ is s[x] = t[x];
inv(λx.sEM[x], X) if ϕ is s[x] ∈ X;
and(txϕ0[x]

, txϕ1[x]
) if ϕ is ϕ0[x] ∧ ϕ1[x];

or(txϕ0[x]
, txϕ1[x]

) if ϕ is ϕ0[x] ∨ ϕ1[x];

imp(txϕ0[x]
, txϕ1[x]

) if ϕ is ϕ0[x]→ ϕ1[x];

tx∀yεnat(〈y,x〉εj(nat,λy.tx
ψ[x,y]

)) if ϕ is ∀yψ[x, y];

tx∃yεnat(〈y,x〉εj(nat,λy.tx
ψ[x,y]

)) if ϕ is ∃yψ[x, y];

inv(λx.〈x, sEM[x]〉, j(nat, λx.J(f [x]))),
where f [x] := λzλZλY.and(ty

ψ[x,y,z,Y,Z], nat)
if ϕ is s[x] ∈ µyzY Z.ψ[x, y, z, Y, Z],

where in the quantifier clauses for an elementary formula η[x] of LEM,lfp txη[x] is the standard term s.t.

txη[x] :
.
= {x | η[x]} (see Lemma 4.5). The operation fx,Xϕ is now defined as λX.and(txϕ, nat).

Definition 4.9 (ϕEM)
For every formula ϕ of Lµ we define its translation ϕEM of LEM,lfp by recursion on ϕ in the following way:

ϕEM :=







































































⊥ if ϕ is ⊥;
sEM = tEM if ϕ is s = t;
sEM ∈ X if ϕ is s ∈ X;
ϕEM
0 ∧ ϕEM

1 if ϕ is ϕ0 ∧ ϕ1;
ϕEM
0 ∨ ϕEM

1 if ϕ is ϕ0 ∨ ϕ1;
ϕEM
0 → ϕEM

1 if ϕ is ϕ0 → ϕ1;
∀x ε natψEM[x] if ϕ is ∀xψ[x];
∃x ε natψEM[x] if ϕ is ∃xψ[x];
∀X⊆natψEM[X] if ϕ is ∀Xψ[X];
∃X⊆natψEM[X] if ϕ is ∃Xψ[X];

sEM ε J(λyλY.fx,Xψ ) if ϕ is s ∈ µxyXY.ψ[x, y,X, Y ].

In short, this translation leaves everything intact, except it relativizes quantifiers to (subtypes of) nat and
replaces µ by iterated lfp applied to appropriate operations.
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Lemma 4.10 For a term T := µxyXY.ϕ ∈ Lµ if
(

Mon(M(T ), n)
)EM

then the following holds:
(a) txϕ is a name, i.e. ∃Z(Z = txϕ);

(b) ∀y<n∀Y ⊆nat (Clop(fx,Xϕ , nat) ∧Mon(fx,Xϕ , nat)).

Proof. (a) and (b) are proved simultaneously by induction on T . By IH we may assume that the assertion

holds for all µ-terms µxiyiXiYi.χ occurring in ϕ but not inside its µ-terms. Assuming
(

Mon(M(T ), n)
)EM

,
we therefore have ∀yi < n∀Yi ⊆ nat∀Xi ⊆ nat ∃Zi(Zi = txiχi) ∧ ∀yi < n∀Yi ⊆ nat (Clop(fxi,Xiχi

, nat) ∧

Mon(fxi,Xiχi
, nat)), for all i, and for all x ε nat, y<n, X ⊆ nat and Y ⊆ nat. By the LFPn[χi, µxiyiXiYi.χi]

axioms and Definition 4.8 this proves ∃Z (Z = txϕ), i.e. (a), for any y < n, X ⊆ nat and Y ⊆ nat. Now

another use of
(

Mon(M(T ), n)
)EM

and Definition 4.8 gives us (b). ✷

Lemma 4.11 If ϕ[x, y,X, Y ] is first-order then EETJ↾ + UMIDN proves
∀y<n∀Y ⊆nat∀x ε nat∀X⊆nat

(

ϕEM[x, y,X, Y ]↔ x ε (λyλY.fx,Xϕ )yY X
)

.

Proof. This follows immediately from Definitions 4.8 and 4.9. ✷

Lemma 4.12 Mi
n can be interpreted in EETJ↾ + UMIDN.

Proof. This is straightforward now. Interpretations of all axioms, except the LFPn axiom (4) and TIn,
are standard. In particular, Arithmetical Comprehension requires Elementary Comprehension of EM, and
restricted induction calls for the restricted induction on nat. (TIn)

EM is derivable by logic. Now we turn to
the LFPn axiom. Applying Definition 4.9, in Explicit Mathematics this turns into

(

Mon(M(T ), n)
)EM

→
(

∀y<nLFPx,X [ϕ[x, y,X, T<y], Ty]
)EM

,

where T := µxyXY.ϕ[x, y,X, Y ]. So assume
(

Mon(M(T ), n)
)EM

. We are left with the task to prove

∀y<n
(

(

∀x (x ∈ Ty ↔ ϕ[x, y, Ty, T<y])
)EM

∧
(

∀U(∀z(ϕ[z, y, U, T<y]→ z ∈ U)→ Ty ⊆ U)
)EM

)

,

i.e.

∀y<n
(

∀x ε nat (x ε Ty ↔ ϕEM[x, y,Ty,T<y]) ∧ ∀U⊆nat(∀z ε nat(ϕ
EM[z, y, U,T<y]→ z ε U)→ Ty ⊆ U)

)

,

where T := J(λyλY.fx,Xϕ ). By Lemma 4.11 this is equivalent to

∀y<n
(

∀x ε nat (x ε Ty ↔ x ε (λyλY.fx,Xϕ )yT<yTy) ∧

∀U⊆nat(∀z ε nat(z ε (λyλY.fx,Xϕ )yT<yU → z ε U)→ Ty ⊆ U)
)

,

which follows from UMIDN axiom by Lemmata 4.10, 4.7 and 4.6. ✷

This completes embedding ofMi

ω into EETJ↾ + UMIDN, and thereby the proof of Theorem 4.1(a). For

Theorem 4.1(b), we proceed in exactly the same way, with the following small changes: (1) From the very
beginning, we observe that a derivation in Mi

ε0
is a derivation in Mi

β for some β < ε0. We use this β in

place of n < ω from the case ofMi

ω. (2) In the proof of Lemma 4.7 we need to refer to Recursion Theorem
4.3 and transfinite induction for β. Namely, existence of an operation J̃ s.t. (J̃f)y ≃ lfp(fy

⊕

z<y(J̃f)z)

follows from Recursion Theorem, but, taking as before Jf :=
⊕

y<β J̃f , in order to prove ∃Z⊆nat (Z = Jf)

and ∀y<β(Jf)y
.
= lfp(fy

⊕

z<y(Jf)z) we need to use TIβ . (3) In the beginning of proof of Lemma 4.12, we

observe that (TIβ)
EM is a theorem of EETJ.
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