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ABSTRACT

High Performance Computing (HPC) demand is on the rise, par-
ticularly for large distributed computing. HPC systems have, by
design, very heterogeneous architectures, both in computation and
in communication bandwidth, resulting in wide variations in the
cost of communications between compute units. If large distributed
applications are to take full advantage of HPC, the physical commu-
nication capabilities must be taken into consideration when allocat-
ing workload. Hypergraphs are good at modelling total volume of
communication in parallel and distributed applications. To the best
of our knowledge, there are no hypergraph partitioning algorithms
to date that are architecture-aware. We propose a novel restreaming
hypergraph partitioning algorithm (HyperPRAW ) that takes advan-
tage of peer to peer physical bandwidth proiling data to improve
distributed applications performance in HPC systems. Our results
show that not only the quality of the partitions achieved by our
algorithm is comparable with state-of-the-art multilevel partition-
ing, but that the runtime performance in a synthetic benchmark is
signiicantly reduced in 10 hypergraph models tested, with speedup
factors of up to 14x.
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1 INTRODUCTION

In the world of Big Data and large scientiic simulations, there is
huge demand for High Performance Computing (HPC) systems.
HPC systems achieve high performance through parallelism and
distribution. By the distributed nature of their architectures, there is
a level of communication heterogeneity between any two processes
within nodes. Take as an example the architecture of ARCHER1,
the UK National Supercomputer Service. Each compute node has
two 12-core Intel Ivy Bridge processor. Four nodes are connected
to an Aries router, 188 nodes are grouped into a cabinet; and two
cabinets make up a group. There are all-to-all electric connections
between nodes in the same group and all-to-all optical connections
between diferent groups. This connectivity pattern, comparable to
other HPC systems, leads to diferent connectivity speeds between
computing units, depending on where they are hosted.

Figure 1A shows the proiled bandwidth (real communication
speed) between any two computing units within a cluster of 6
nodes in ARCHER (144 units), indicating substantial diferences
between processes communication bandwidth depending on where
the processes are hosted. The graph closely represents the architec-
ture of the system, with the highest speed connectivity between
computing units within the same processor (black), followed by
communication between the two processors in the same node (dark
grey). All other connectivity is considerably slower (light grey and
white). In this example, all nodes belonged to the same group and
we do not see any more intermediate bandwidths.

Data exchanged during a typical parallel application is shown in
Figure 1B. The noisy pattern of the peer to peer data activity is a
common feature of naive parallelism in which the total communi-
cation may be optimised (total data sent over the entire network)
but only at a global level, not at individual unit to unit links.

The mismatch between the network bandwidth pattern and the
actual data sent during simulation (Figure 1) leads to uneven costs of

1http:⁄⁄archer.ac.uk⁄

https://doi.org/10.1145/3337821.3337876
https://doi.org/10.1145/3337821.3337876
http://archer.ac.uk/


ICPP 2019, August 5–8, 2019, Kyoto, Japan Fernandez-Musoles, et al.

A

0 25 50 75 100 125
Process

0

20

40

60

80

100

120

140
Pr

oc
es

s

5.5

6.0

6.5

7.0

7.5

8.0

lo
g 

(M
B/

s)

B

0 25 50 75 100 125
Process

0

20

40

60

80

100

120

140

Pr
oc

es
s

2

4

6

8

10

12

lo
g 

(B
yt

es
 se

nt
)

Figure 1: Discrepancies betweennetwork bandwidth inHPC

systems and communication patterns in parallel applica-

tions. A: Peer to peer bandwidth heatmap on a 144 node job

in ARCHER. B: Peer to peer communication activity pattern

on a typical distributed application (run of our synthetic

benchmark with sparsine hypergraph).

communication. Since bandwidths between units are signiicantly
diferent, the cost of sending data (in terms of time) is also diferent.

Even though proile results have been shown only for ARCHER,
the indings are generalisable to any HPC systems due to their
distributed architecture. Parallel applications running in HPC sys-
tems can improve their communication performance and overall
runtimes by considering the network bandwidth of the architecture
they run on to reduce the real cost of communication.

2 RELATED WORK

Previous work has already highlighted the impact that uneven
computation and communication architectures in HPC and Cloud
computing has on computation performance [20, 21]. However,
their domain problems were limited to graphs for graph processing.
A hypergraph (a generalisation of graphs where edges can link
n number of vertices) has been shown to model total volume of
communication in parallel applications (irst noticed by [4], also
described in [9, 11]). Once the application is modelled as a hyper-
graph, partitioning algorithms can be used to optimise (reduce) the
communication volume.

Partitioning algorithms for hypergraphs with good quality re-
sults exist using a variety of algorithms: multilevel partitioning
(PaToH [5], hMetis [14], ParKway [18]) and multiconstraint [1, 9].
Unfortunately none of those approaches considers the physical

architecture of the network. When modelling parallel applications
as a hypergraph, not only it is important to reduce the hyperedge
cut (connection between two vertices located in two diferent par-
titions), but also the hop cut (connections including the physical
cost of communication).

Zoltan [10] ofers a hierarchical approach for partitioning a hy-
pergraph. It allows users to partition their hypergraphs at diferent
levels of granularity, using a sequence of partitioning schemas (re-
inements on subgraphs). Each level can be used to model a level in
the architecture hierarchy (socket, board, group, cluster, etc.). The
focus of the approach is on being able to use high cost algorithms
at levels where reducing communication is more important and
low cost ones when the communication may not impact as much.
However, this approach only establishes qualitatively diferences
between architecture levels and does not model well the cost of
communication between computing units belonging to diferent
hierarchies. This approach is not easily applicable in environments
where the architecture is not know directly (in Cloud computing) or
it is known but unreliable due to contextual circumstances (shared
network resources).

To the best of our knowledge no previous work has focused
on architecture-aware hypergraph partitioning. Previous attempts
to architecture-aware graph partitioning exist and can be divided
according to their partitioning strategy: local improvement or re-
inement with greedy strategies considering communication costs
(PARAGON [22], kvMETIS [16], GrapH [15]); streaming greedy
partitioning with communication cost as part of the allocation func-
tion ([20, 21]); and synchronous partitioning of the machine graph
(model of the architecture) and the application graph (Surfer [8]).

A diferent strategy to optimise network communication in
parallel applications is ofered by the library LibTopoMap [13].
LibTopoMap maps MPI processes to arbitrary network topologies
to direct high communicating processes to high bandwidth links.
Note that this strategy does not redistribute work to minimise com-
munication but rather maps the existing communication pattern
on an application to a network architecture.

Parallel applications may not have constant communication pat-
terns across their runtime. Using static approaches ahead of ex-
ecution to distribute workload may not yield the best results in
those circumstances. Repartitioning algorithms (those that perform
the partitioning more than once) consider this and previous work
proposes to model the cost of migrating data [6, 7] as part of the
partitioning, in addition to cut minimisation. However streaming
and restreaming approaches (see section 4) may be more suitable
in large scale partitioning (frequently faster to execute as they
work with local information only, less memory requirements and
dynamic in nature), which is the case in problems such as large
neuronal simulations or multiplication of very large sparse matrices.
To the best of our knowledge, there are no streaming partitioners
for hypergraphs that are architecture-aware.

3 KEY CONTRIBUTIONS

The goal of this work is to optimise distributed communication
in HPC systems by reducing the mismatch observed in Figure 1.
We propose a novel restreaming hypergraph partitioning that is
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architecture-aware to reduce the real cost of communication in dis-
tributed applications. This work makes the following contributions:

(1) Novel restreaming partitioning algorithm (HyperPRAW ) for
hypergraphs to reduce communication overhead on dis-
tributed applications compared to multilevel partitioning

(2) Using architecture information (physical bandwidth between
computing units) further improves runtime performance by
reducing real communication costs

(3) Reinement after reaching workload imbalance tolerance
improves the quality of the partitioning

4 PROPOSED SOLUTION

We propose a restreaming algorithm to partition hypergraphs that
incorporates information about the underlying architecture inwhich
the modelled application will run.

Let us irst deine the problem. A hypergraphH = (V ,E) consists
of a set of vertices V and a set of hyperedges E, where each hy-
peredge is a subset of V that deines the connectivity pattern. The
size of each hyperedge is denoted as its cardinality. Hypergraphs
are a generalisation of graphs that can have any cardinality, i.e.,
one hyperedge connects multiple vertices, where graphs have a
maximum cardinality of 2. Hypergraph partitioning is a process
that assigns vertices to partitions in such a way that a connectivity
metric (usually hyperedge cuts, or hyperedges that span more than
one partition) is minimised. To avoid trivial solutions that minimise
the hyperedge cut (such as assigning all vertices to one partition)
partitioning algorithms maintain load balancing by only allowing
solutions that have a total imbalance factor that is below a speciied
value. The total imbalance is calculated dividing the maximum im-
balanced partition in the scheme by the average imbalance across
partitions. Formally:

maxp∈P (L(p))

(∑ |P |i=0 L(pi ))/|P |
where P is the set of partitions and L(p) is the load cost for

partition p deined as the sum of the weights of all its nodes, L(p) =
∑N
i=0W (ni ) where N is the number of nodes in partition p and

ni ∈ p. The total imbalance must be lower or equal than an arbitrary
tolerance value.

Hypergraphs are good at modelling parallel communication
when each hyperedge represents a frequent communication group
of vertices. The more a hyperedge is cut (more partitions are in-
volved) the more the modelled application will have to send data
across partitions and hence more communication is required. Hy-
pergraphs have been used in the past to model large scale dis-
tributed scientiic simulations [12]. When using hypergraphs to
model parallel applications, the goal is to partition the hypergraph
in k partitions, where each partition represents a computing unit
in the hardware architecture the application runs on.

Streaming graph partitioners difer from static comprehensive
ones (such as k-way partitioning or recursive bisection) in that ver-
tex allocation decisions are made based on local, partial information.
This means the algorithm does not have the entire graph in view
when calculating the cost of allocating a vertex to a partition. They
are frequently called greedy since once they make a decision, it is
not revoked later on after seeing more vertices. Figure 2 depicts the

A B

C

Figure 2: Overview of a hypergraph streaming partitioning

process. A: Hypergraph, with vertices coloured based on the

partition they are currently assigned to and hyperedges rep-

resented by dotted rectangles. B: model of the architecture

and the current workload allocation; each box represents

a partition (a compute unit in the architecture), with links

weighed based on the physical peer to peer bandwidth of the

architecture; an adjacent vertical bar representswhether the

partition is currently overloaded or underloaded (measure

of imbalance). C: Streaming process in which one vertex at

a time is considered and assigned to a partition based on lo-

cal information.

streaming process for the case of hypergraph partitioning. Figure
2A represents the input hypergraph, whereas Figure 2B models
the current workload of each of the partitions based on current
allocations. Figure 2C represents the streaming process, where one
vertex is considered at a time. Based on local information, a value
function is calculated per partition and the vertex is assigned to the
one with higher value.

When an algorithm applies more than one pass (repeats the
stream that visits the vertices once), it is often referred to as a re-
streaming approach. Our algorithm takes a similar approach to the
graph restreaming software GRaSP [3] but it is applied to hyper-
graphs. To keep a good balance between the two opposing goals
(workload balance and minimisation of total communication) we
use a tempering parameter α that weighs the importance of work-
load imbalance. In the streaming partitioning algorithm FENNEL,
[19] suggest a good starting value for α , which starts low:

α =
√

(p) × |E |√
|V |

,

where p is the number of partitions, |E | is the number of hy-
peredges and |V | is the number of vertices. After each stream this
value is increased (the update parameter is set to 1.7). Our approach
difers from GRaSP in two ways: the restreaming is allowed to con-
tinue until the partition is no longer improved (what we call the
reinement phase) instead of stopping once the imbalance tolerance
is reached; we reverse the tempering of the workload imbalance
weigh once we are within imbalance toleranceÐsee section 6.1.
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These two key diferences allow for a reinement of the quality of
the partition after reaching workload imbalance tolerance.

The HyperPRAW algorithm is described in Algorithm 1. The key
step is the assignment of a vertex to a partition based on a value
function. The partition that ends up with the highest value is the
one to which the algorithm assigns the vertex. The next section
describes what goes into calculating the value of assigning any
vertex to each partition.

Algorithm 1: The HyperPRAW restreaming algorithm

Input :p (number of partitions); α (starting workload
balance weight); tα (workload balance tempering
parameter); imbalance_tolerance (maximum
imbalance tolerance); N (maximum iterations)

Output :Pk , for k = 1, ...,p, where Pk is the subset of V that
is allocated to partition k

Data :H = (V ,E), where V is a set of vertices and E is a set
of hyperedges for hypergraph H

Initialise Pk : Round robin assignment of each v ∈ V
CalculateW (k) for each partition k

for n = 1 to N do

for v ∈ V do

j ← argmaxk=1, ...,p −Nk (v) ×Tk (v) − α
W (k )
E(k )

Add v to set Pj
RecalculateW (j)

α ← α × tα
if imbalance > imbalance_tolerance then

continue
else if Cost of Pn

k
> Cost of Pn−1

k
then

return Pn−1
k

else
continue

return PN
k

The algorithm has a computational complexity that grows with
the number of iterations (N ), the number of vertices (|V |) and hyper-
edges (|E |), the hyperedge cardinality and the number of partitions
(p). The implementation of HyperPRAWcan be found on the GitHub
repository at https:⁄⁄github.com⁄cfmusoles⁄hyperPraw

4.1 Vertex assignment cost function

The value function Vi (v) in equation 1 determines the value associ-
ated with assigning vertex v to partition i .

Vi (v) = −Ni (v) ×Ti (v) − α
W (i)
E(i) (1)

where Ni (v) represents the number of partitions in which vertex
v has neighbouring vertices (described by equation 2), Ti (v) is the
total cost of communication due to assigning vertex v to partition i
(described in equation 4),W (i) is the current workload of partition
i and E(i) is the expected workload for partition i . The parameter α
weighs the importance of workload balance in the overall cost. Since
it starts at a low value, the initial streams partition mostly based on
communication cost. At later streams, the workload balance gains
importance to achieve balanced partitions.

Throughout our experiments we have assumed even cost of
computation per vertex and homogeneous work capacity for par-
titions, hence assigning one vertex to one partition increases by
1 its workload, and the expected workload for all partitions is the
total workload divided the number of partitions. However the algo-
rithm can easily account for heterogeneous computation and work
capacities.

Ni (v) =

p
∑

j=0
Aj (v)

p
(2)

Aj (v) =
{

1, if X j (v) > 1

0, otherwise
(3)

The function Ni (v) indicates the number of neighbouring parti-
tions of vertex v , should it be placed in partition i . That is, in how
many other partitions v has connecting vertices (Aj (v) indicates
whether vertex v has neighbours in partition j).

Ti (v) =
p
∑

j=0

X j (v) ×C(i, j) (4)

The function Ti (v) computes the cost of communication associ-
ated with allocating vertex v to partition i . That cost, for another
partition j is the number of neighboursv has in j (X j (v)) multiplied
by the cost of communication between partitions i and j (C(i, j)
which is discussed in section 4.2). The total communication cost
is the sum of all costs for each partition other than the one v is
assigned to (i).

In order to successfully calculate the total cost due to commu-
nication, the algorithm requires information regarding the cost of
communicating between partitions (i.e., computing units). The next
section describes how we map this cost.

4.2 Mapping cost of communication

The cost of communication matrix is derived from the peer to
peer bandwidth calculated through proiling before HyperPRAW
starts the streaming process. Discovery through proiling gives
HyperPRAW lexibility as it can be applied to any architecture
topology and it will discover the network costs automatically. This
is an advantage in environments where the architecture is not
known (in Cloud computing), or when it is known but unreliable
due to contextual circumstances (shared network resources). If the
bandwidth or communication costs are known, they can be used
directly without the need for proiling.

When the cost of communication is done through proiling, irst
the bandwidth matrix is found, then it is transformed to represent
cost of communication and not speed. The bandwidth proiling is
done by iteratively sending data to and fromMPI processes arranged
in a ring formation2 and timing how long it takes for them to reach
back. One MPI process per computing unit is used.

With the peer to peer bandwidth data we calculate the cost of
communication in the following way:

2The tool available in https:⁄⁄github.com⁄LLNL⁄mpiGraph is used for proiling
bandwidth

https://github.com/cfmusoles/hyperPraw
https://github.com/LLNL/mpiGraph
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C(i, j) = 2 −
bi j − bmin

bmax − bmin

where i and j represent two cores, bi j is the bandwidth between
core i and core j, and bmin and bmax are the maximum and min-
imum bandwidth between any two cores in the network. This
normalises the costs to 1 for the fastest link, and 2 for the slowest.
When i == j, C(i, j) = 0. The normalisation step helps Hyper-
PRAW to be independent of the magnitude of bandwidth values.
Since diferent hardware architectures can have diferent orders of
magnitude bandwidths, the magnitude afects the balance between
workload and communication cost used in the vertex assignment
function (equation 1), potentially resulting in slower performance
(if the cost values are too high) or sub-optimal solutions (if the
cost values are too low, the stream can end underestimating the
communication cost)

To accurately model the underlying architecture, the cost matrix
must be calculated every time a new allocation of computing nodes
is presented. In typical HPC jobs, this requires us to proile the
architecture of the allocated cluster of nodes each time a job is
started (since potentially new nodes are given).

4.3 Metric monitored during reinement:
partitioning communication cost

To improve the quality of partitioning, we propose a reinement
phase to the restreaming algorithm after the workload imbalance
has reached values below the desired imbalance tolerance. During
the reinement phase, the restreaming continues (i.e., further itera-
tions are run) until a monitored quality metric ceases to improve.
The metric selected is the partitioning communication cost. For a
partitioning P , the partitioning communication cost PC(P) is:

PC(P) =
k
∑

i=0

∑

v

Ti (v), for all v ∈ Pi (5)

This uses the cost of communication Ti (v) in equation 4 for all
vertices and any partition i and aggregates it. Intuitively, this metric
measures both the number of neighbours per vertex that live in
diferent partitions to the vertex and the cost of communication
between those partitions. This closely represents the volume and
cost of communication in parallel applications that can be modelled
with a hypergraph.

5 EXPERIMENTAL EVALUATION

5.1 Experimental design

To evaluate the performance ofHyperPRAW, we use a public dataset3

[17]. It includes a wide collection of hypergraphs used in various
competitions (routability placement, circuit benchmark, SAT com-
petition) and sparse matrices repositories. To test our approach we
have selected 10 instances from within this collection that range in
size, average cardinality and ratio number of hyperedge⁄vertexÐsee
table 1.

We run all experiments in ARCHER, the UK National Supercom-
puting system. To ensure there is enough architecture heterogeneity,

3Dataset is accessible via Zenodo at https:⁄⁄zenodo.org⁄record⁄291466

the job size is set to 576 cores. With 24 computing units per node
this ensures we are using 24 diferent nodes in 6 blades.

Three experiments are carried out: the impact of reinement
in restreaming (in section 6.1), partitioning quality evaluatio (in
section 6.2), and runtime performance of hypergraphs on a synthetic
benchmark (in section 6.3).

For both quality and runtime experiments we use a state-of-the-
art multilevel recursive bisection partitioning algorithm (Zoltan im-
plementation [10]) as a benchmark. To understand the impact of us-
ing the physical architecture cost of communication in our restream-
ing approach we use two versions of the algorithm: HyperPRAW-

basic (where uniform cost of communication matrix is used) and
HyperPRAW-aware (where cost of communicationmatrix from band-
width proiling is used).

5.2 Quality and runtime metrics

Hypergraph partitioning algorithms traditionally optimise one of
the twometrics: hyperedges cut (number of hyperedges that contain
vertices that are allocated to more than one partition); Sum Of
External Degrees (for each partition, sum of the hyperedges that
are incident on the partition but not fully contained in it).

Formally, the Sum Of External Degrees (SOED) is
∑k
i=0 |E(Pi )|

for k partitions, where E(Pi ) is the number of hyperedges that are
incident but not fully inside partition i . Intuitively, high values of
SOED indicate hypergraphs are being cut across several partitions,
representing more volume of communication.

Both hyperedge cut and SOED are cut-based metrics (calculated
on the basis of hyperedges cut across partitions) and give an indica-
tion of the static quality of the partition. They are used in this work
to report the quality of HyperPRAW. In addition, the partitioning
communication cost deined in equation 5 is also used as a metric
that combines cut information and physical cost of communication.

Quality of hypergraph partition only describes the results on the
hypergraph itself. The hypergraph in this work is used as a model
for a parallel application to improve performance. To measure the
improvement that HyperPRAW can bring to these parallel applica-
tions, we use time execution on a synthetic benchmarkÐsee section
5.3.

5.3 Synthetic runtime benchmark

Hypergraph partitioning is used in domains such as VLSI circuit
design and boolean satisiability problems. However those are static
problems, that is once a solution has been found, there is no further
problem. Hypergraphs can also model dynamic parallel applications
to reduce total volume of communication in scientiic simulations
[12] and in sparse matrix multiplication [2]. In these cases, a good
partitioning results in runtime improvements of the applications.

Tomeasure the impact that our proposed strategy has on runtime
communication, we design a synthetic benchmark. The benchmark
is a null-compute simulation based on the input hypergraph and
using a vertex allocation determined by the partitioning strategy
selected. Since the simulation does not have any compute, it is
purely communication-bound. The communication is proportional
to hyperedge cut and SOED of the hypergraph and it is generated
as follows: for each hyperedge on a given hypergraph, a message
is sent to and from each vertex in the hyperedge if the vertices are

https://zenodo.org/record/291466
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Table 1: Hypergraphs used in this work

Hypergraph Vertices Hyperedges Total NNZ Avg cardinality hyperedge⁄vertex

sat14 itox vc1130 dual 441729 152256 1143974 7.51 0.34
2cubes sphere 101492 101492 1647264 16.23 1.00

ABACUS shell hd 23412 23412 218484 9.33 1.00
sparsine 50000 50000 1548988 30.98 1.00
pdb1HYS 36417 36417 4344765 119.31 1.00

sat14 10pipe q0 k primal 77639 2082017 6164595 2.96 26.82
sat14 E02F22 27148 1301188 11462079 8.81 47.93
webbase-1M 1000005 1000005 3105536 3.11 1.00
ship 001 34920 34920 4644230 133 1.00

sat14 atco enc1 opt1 05 21 dual 561784 59517 2167217 36.41 0.11

located in diferent partitions (computing units). This is repeated
for all hyperedges in the hypergraph.

Although the synthetic benchmark is an extreme case of paral-
lel application (no compute and communication of all connected
compute elements on every time step) it adequately models a
communication-bound distributed application (such as certain Spik-
ing Neuronal Network simulations [12]). It allows us to compare
the impact of diferent partitioning algorithms and understand how
they improve communication in communication-bound distributed
applications, in which scaling is limited by the overheads imposed
with increased communication.

To account for variable network traic and diferent nodes con-
igurations provided by the job scheduler, the runtime experiments
are run on three diferent jobs (hence diferent node placement and
communication costs), with each job doing two iterations. There-
fore the total number of simulations run per experiment is 6.

6 RESULTS

6.1 Reinement phase

To understand the efect of the reining phase, we compare the
partition history of HyperPRAW for alternative stopping conditions
of the restreaming process: no reinement (stop restreaming when
the imbalance tolerance has been reached), reinement 1.0 and
reinement 0.95 (continue restreaming until the partitioning quality
is no longer improved). The number in the reinement alternatives
refers to the update of the tempering parameter used once the
imbalance tolerance is reached (1.0 results in the α parameter not
being updated, whereas 0.95 decreases the value of α , and hence
the importance of workload imbalance, instead of increasing it).

Figure 3 shows the partitioning history for 4 hypergraphs. The
igure demonstrates howpartitioning communication cost decreases
with more iterations; this is the metric that is used to monitor and
stop reinement and directly correlates with the amount of com-
munication modelled by the hypergraph. Comparatively, both re-
inement strategies perform better than not reining at all. Using
an update value for the tempering parameter that decreases the
importance of workload balance (by a factor of 0.95 at each itera-
tion) reaches the lowest levels of partitioning communication cost,
therefore improving the restreaming quality.

6.2 Quality of partitioning

The quality of the partitioning of both versions of HyperPRAW and
Zoltan is shown in Figure 4. In terms of standard hyperedge cut,
HyperPRAW shows results that are below but comparable to Zoltan
(from the 10 hypergraphs, the hyperedge cut is worse in 4, better in
2 and about the same in the other 4). When measuring the SOED, a
metric that better models total volume of communication in parallel
applications, the results are slightly better for HyperPRAW (3 worse
instances, 1 about the same and 6 where it is better).

Neither the SOED nor the hyperedge cut include the physical
cost of communication. The partitioning communication cost met-
ric considers it and it is where HyperPRAW obtains the best results,
with both versions versions improving over Zoltan on all hyper-
graphs and HyperPRAW-aware outperforming the basic alternative.
Note that HyperPRAW-aware is the only one that uses the cost of
communication matrix during the partitioning. Both Zoltan and
HyperPRAW-basic assume uniform costs and only use the physical
cost of communication to calculate the inal partitioning cost.

6.3 Runtime performance on benchmark

Figure 5 shows the overall runtime for 10 hypergraphs on our syn-
thetic benchmark. The results show that HyperPRAW-basic reduces
the simulation runtime with respect to Zoltan and HyperPRAW-

aware further improves that signiicantly. The speed up factors of
HyperPRAW-aware over Zoltan range from 1.3x to 14x.

7 DISCUSSION

In other restreaming partitioning algorithms, the iterative streams
are halted when the workload imbalance tolerance is reached [3].
Nonetheless it is possible that the partitioning quality could improve
if streams are allowed to continue despite being within acceptable
imbalance. Figure 3 demonstrates the efectiveness of a reinement
phase, where the streams continue until a partitioning metric ceases
to be improved. Although the restreaming goes for longer (more
iterations), this results in a higher quality partition (as measured
by the total partitioning communication cost, a suitable metric for
hypergraphs that model parallel communication). The best alterna-
tive is found to be when during the reinement phase, the workload
imbalance weight parameter α is reduced (reinement 0.95), instead
of increased as it is done when outside of workload imbalance toler-
ance (update value of 1.7). The value 0.95 was found experimentally,
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Figure 3: Partition history of the HyperPRAW algorithm

comparing diferent reinement strategies: no reinement

(black), reinement 1.0 (red dashed) and reinement 0.95

(blue dotted). A: 2cubes sphere hypergraph. B: sat14 itox

vc1130 dual hypergraph. C: sparsine hypergraph. D: ABA-

CUS shell hd hypergraph.
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partitioning algorithms: Zoltan (black), HyperPRAW-basic
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zontal lines). A: Hyperedge cut. B: Sum of External Degrees

(SOED) in logarithmic scale. C: Partitioning communication
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Figure 5: Runtime performance (in logarithmic scale) on a

synthetic benchmark for 10 hypergraphs comparing the par-

titioning algorithms: Zoltan (black), HyperPRAW-basic (or-

ange vertical lines) and HyperPRAW-aware (yellow horizon-

tal lines). The speedup factors of HyperPRAW-aware over

Zoltan are annotated in the igure.
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since lower values may force the algorithm to luctuate in and
out of the acceptable load balance range, degrading performance.
Nonetheless, the intuition is that the best partition is found when
the balance constraints are relaxed (an extreme case is when all
workload is assigned to one partition; there is no cut or communi-
cation in such an assignment, but we have maximum imbalance).
Once the algorithm is within the range of acceptable partitions (i.e.,
within the imbalance tolerance), we can search for slightly more
imbalanced solutions in an attempt to ind an acceptable solution
that is maximally imbalanced.

Figure 3 also shows that the efectiveness of the reinement
phase varies with the hypergraph, indicating that some types of
hypergraphs do beneit more from a reinement than others. The
reinement factor is therefore a candidate parameter to tune empir-
ically.

Figures 4A and 4B show the cut-based metrics. In hyperedge
cut, HyperPRAW underperforms Zoltan in 4 of the 10 hypergraphs,
but in SOED the Zoltan benchmark is outperformed in 6 hyper-
graphs, resulting in an overall comparable performance. When
physical communication cost matrix is considered, as is the case
with partitioning communication cost (Figure 4C), the quality met-
ric shows HyperPRAW being consistently superior than Zoltan in
all hypergraphs. This work attempts to improve the performance
of distributed applications, for which we model the application as a
hypergraph that is partitioned using our proposed restreaming ap-
proach. The output from the restreaming algorithm is a scheme that
is used to distribute workload in a heterogeneous environment and
its quality is ultimately evaluated indirectly by timing how long the
application runs for under the new scheme. Therefore our focus is
on end runtime performance improvement, and although we report
traditional partitioning quality metrics, this is done descriptively
and not as a target metric. This is the reason to report the partition
quality with the partitioning communication cost, since it relects
more accurately the needs of the target to optimise (peer to peer
communication in a heterogeneous environment). Therefore, the
resulting quality of the restreaming partitioning shown in Figure
4C indicates a net improvement over Zoltan.

The runtime performance on the synthetic benchmark in Figure
5 conirms the results obtained in the partitioning communication
cost quality metric. In 9 hypergraphs, both versions of HyperPRAW
outperform Zoltan, showing the efectiveness of the proposed re-
streaming approach. The results also show that the restreaming
approach beneits from using the physical communication cost
matrix, where in all cases HyperPRAW-aware achieves faster simu-
lation times than the basic counterpart and Zoltan. When compared
with Zoltan, HyperPRAW-aware reaches signiicant speedup factors
ranging from 1.3x to 14x (with 3 hypergraphs reaching speedups
above 4x).

A paradigmatic case of the importance of the partitioning com-
munication cost metric over the cut-based ones is found on two
hypergraphs: sat14 itox vc1130 dual and sat14 atco enc1 opt1. In both
cases, the hyperedge cut and the SOED metrics are worse on the
restreaming approach than in Zoltan. However, the partitioning
communication cost is better in HyperPRAW, with an outstand-
ing runtime speedup on the synthetic benchmark of 8.1x and 14x
respectively.

HyperPRAW relies on the information built through proiling
to construct the communication cost matrix. Using a simple MPI
send-receive ring protocol is empirically seen to be suicient to
successfully map the known hardware topology in ARCHER. Fig-
ures 1A and 6A show the characteristic 24 process clusters of high
speed communication in ARCHER, which map to cores within a
single computing node. Within a 24 process cluster we also see two
tiers, corresponding to the two 12 cores Intel Ivy Bridge processors.

Earlier we evidenced the issue of running parallel applications
in heterogeneous HPC systems by proiling the communication
pattern of distributed application and the peer to peer bandwidth
of a group of computing units.. Figure 6A shows the peer to peer
bandwidth for a job allocation in ARCHER where we run the syn-
thetic benchmark. As expected from its architecture, the fastest
communication links are on neighbouring units (each group of 24
units belonging to the same computing node), thus the pattern of
high bandwidth in the central band. For an optimal utilisation of
the hardware architecture, the patterns of activity of the parallel
application should resemble that of the bandwidth proile. This is
what we see when showing the pattern of activity of our synthetic
benchmark for sparsine hypergraph partitioned with Zoltan (6B),
HyperPRAW-basic (6C) and HyperPRAW-aware (6D). For the irst
two, since they do not use the physical communication cost matrix,
the pattern of communication is uniformly random. However, for
HyperPRAW-aware, using the communication cost matrix makes
the restreaming distribute the communication pattern to closely re-
semble the peer to peer bandwidth. Therefore our approach is able
to better exploit fast interconnections between computing units.

8 CONCLUSION AND FURTHERWORK

8.1 Conclusion

This work demonstrates the importance of being architecture-aware
when distributing workload in HPC systems in parallel applications.
We propose HyperPRAW, an architecture-aware restreaming parti-
tioning algorithm that optimises communication by understanding
the underlying network bandwidth. In conclusion:

(1) architecture-aware restreaming algorithm increases parallel
application performance on a synthetic benchmark up to
14x compared to multilevel recursive bisection.

(2) HyperPRAW is able to better exploit fast interconnections
between computing units, which make a small percentage
of the total interconnections on HPC systems.

(3) Reinement after reaching workload imbalance tolerance
improves the quality of the partitioning.

8.2 Further work

The current work shows there is scope to improve the performance
of parallel applications in HPC systems, where architecture het-
erogeneity is unavoidable. One limitation of this work is that the
restreaming partitioning is performed sequentially on a single pro-
cessor. This limits the applicability on larger scales (high number
of partitions and larger hypergraphs). This limitation can be re-
moved if the restreaming algorithm were to be adapted to parallel
execution. Battaglino et al. [3] demonstrate that parallel streaming
with minimal quality loss is possible by creating one stream per
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Figure 6: Architecture bandwidth compared to peer to peer communication pattern on the synthetic benchmark. A: peer to

peer bandwidth of a 576 computing units job in ARCHER. The bottom part of the igure represents the peer to peer commu-

nication pattern on the synthetic benchmark run of the sparsine hypergraph: B: communication pattern after using Zoltan;

C: Communication pattern using HyperPRAW-basic; D: Communication pattern using HyperPRAW-aware.

partition and periodically synchronising workload and partition
assignments. This is identiied as an area of future work.

We have assumed that the communication costs remain constant
throughout the lifespan of the distributed application. If the costs
vary (for instance due to network contention or other competition
for resources in HPC systems) then the efectiveness of the strategy
may diminish. In scenarios where this contention is likely to impact
performance, it may jsutify doing dynamic proiling to update the
communication cost.

We have proven the applicability of the restreaming approach
on a synthetic benchmark. Future work should attempt to apply
HyperPRAW on applications which have the potential to beneit
from better communication distribution in large systems. Two iden-
tiied domains are the simulation of Spiking Neuronal Networks
and sparse matrix multiplications. Both of them have been modelled
as hypergraphs to improve parallel performance ([2, 12]) and Hy-

perPRAW could further improve it by optimising communication.
For simplicity, we do not attempt to model dynamic communica-

tion patterns or asymmetric communication patterns (where some
hyperedges may communicate more than others). Both can be tack-
led by weighing hyperedges and consider the cost of partitioning
accordingly. This can be accommodated into HyperPRAW by weigh-
ing the cost of communications in the vertex assignment objective
function with the hyperedge weight. This is an interesting area
of future work that may impact performance in highly dynamic
asymmetric parallel applications.
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