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ABSTRACT
Field’s linear analysis of thermal instability is repeated using methods related to Whitham’s
theory of wave hierarchies, which brings out the physically relevant parameters in a much
clearer way than in the original analysis. It is also used for the stability of non-equilibrium
states and we show that for gas cooling behind a shock, the usual analysis is only quantitatively
valid for shocks that are just able to trigger a transition to the cold phase. A magnetic field
can readily be included and we show that this does not change the stability criteria. By
considering steady shock solutions, we show that almost all plausible initial conditions lead
to a magnetically dominated state on the unstable part of the equilibrium curve. These results
are used to analyse numerical calculations of perturbed steady shock solutions and of shocks
interacting with a warm cloud.
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1 IN T RO D U C T I O N

It is very common for astrophysical plasmas to be subject to heating
and cooling processes. If these are sufficiently rapid compared
to other relevant time-scales, then the plasma will be in thermal
equilibrium and if this is unstable, then we have a possible
mechanism for generating density inhomogeneities that does not
rely on self-gravity. This motivated Field (1965) to consider the
linear stability of such equilibrium states and to apply his results to
the solar chromosphere and corona, planetary nebulae, the galactic
halo, and galaxy formation. As discussed in Field, Goldsmith &
Habing (1969) and McKee & Ostriker (1977), thermal instability is
also a key ingredient in multiphase models of the ISM. Since then
there have been numerous papers that have considered the effect
of thermal instability in a diverse range of situations, such as solar
prominences, e.g. Xia & Keppens (2016), star-forming regions,
e.g. Kim, Kim & Ostriker (2008), broad-line regions in active
galaxies, e.g. Begelman & McKee (1990) and the circumgalactic
medium, e.g. Stern et al. (2016). The analysis has also been extended
to include perturbations of non-equilibrium states (e.g. Schwarz,
McCray & Stein 1972; Balbus 1986; Koyama & Inutsuka 2000).

Recently, Waters & Proga (2019) have revisited Field’s analysis
and written the dispersion relation in a somewhat different form.
Their paper includes a discussion of the various modes of instability,
together with numerical calculations of the non-linear evolution of
the condensation mode. They also consider non-equilibrium initial
states.
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(CJW); J.M.Pittard@leeds.ac.uk (JMP)

In view of the above, one might suppose that there is little point
in revisiting the linear analysis of either the equilibrium or non-
equilibrium states. However, there is a more modern method of
analysing such a linear dispersion relation based on ideas from con-
trol theory and the Whitham theory of wave hierarchies (Whitham
1974). Although this yields few new results, it does illuminate the
physics rather more clearly than the traditional approach.

The analysis is described in Section 2 and it is applied to the
energy source function proposed by Koyama & Inutsuka (2002) in
Section 3. In Section 4, these results are used to analyse numerical
calculations of shock interactions and the work is summarized in
Section 5.

2 H Y P E R B O L I C BA L A N C E L AW S

A system of hyperbolic balance laws in one space dimension is of
the form

∂t u + ∂x f (u) = s(u), (1)

where u = (u1, ···un)t are a set of n conserved quantities, f(u) =
(f1, ···fn)t are the associated fluxes and s(u) = (s1, ···sn)t are source
terms depending upon u. Here, the superfix t denotes the transpose.

For sufficiently short wavelengths, the derivatives dominate over
the source terms and we have a frozen system in which s can be
neglected. For long wavelengths, the source term dominates and we
have

s = 0. (2)

This imposes r conditions on u where r is the rank of s. The
system is then reduced to an equilibrium system with n − r variables
described by ue = ue(u). The Whitham theory only considers the
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case r = 1, but it is possible to extend it to r > 1 (Falle & Williams
2019).

2.1 Gas dynamics with an energy source

For gas dynamics with an energy source term, we have

u = [ρ, ρv, e]t , f = [ρv, p + ρv2, v(e + p)]t ,

s = [0, 0,−ρL]t , (3)

where ρ, v, and p are the density, velocity, and pressure, respec-
tively.

e = p

(γ − 1)
+ 1

2
ρv2 (4)

is the total energy per unit volume and L(ρ, T) is the energy loss
rate per unit mass. Clearly, r = 1 in this case.

It is more convenient to write these in the form

∂t p + A∂x p = (γ − 1)s, (5)

where

p = [ρ, v, p]t , (6)

are the primitive variables and

A =
⎛
⎝ v ρ 0

0 v 1/ρ

0 γp v

⎞
⎠ . (7)

We now assume a solution of the form

p = p0 + p1 exp(iωt − ikx), (8)

where p0 is an equilibrium state with v = 0, L(ρ0, T0) = 0, and p1

is a small perturbation. The linearized equations then give

iω p1 − ikA0 p1 = D0 p1, (9)

where A0 = A(ρ0, T0) and

D0 =
⎛
⎝ 0 0 0

0 0 0
−ρ0Gρ + p0GT /ρ0 0 −GT

⎞
⎠ , (10)

with

Gρ = (γ − 1)Lρ = (γ − 1)

(
∂L

∂ρ

)
T

,

GT = (γ − 1)LT = (γ − 1)
m

kB

(
∂L

∂T

)
ρ

, (11)

where kB is Boltzmann’s constant and m is the mean particle mass.
The eigenvalues of D are 0, 0, and −GT, so that we have isochoric
instability if

GT < 0 ⇒ LT < 0, (12)

which is equation (4a) in Field (1965). From now on, we will assume
that GT > 0.

The dispersion relation associated with (9) is

|ωI − kA0 + iD0| = 0, (13)

where I is the identity matrix. This can be written

P = P0 − i

k
P1 = 0, (14)

where

P0 = μ(μ2 − a2
f ), P1 = GT (μ2 − a2

e ), μ = ω

k
. (15)

Here, the frozen sound speed, af, applies in the adiabatic case and
the equilibrium sound speed, ae, when the system is in thermal
equilibrium, i.e. equation (2) is satisfied. These are given by

a2
f = γp0

ρ0
, a2

e =
(

∂p0

∂ρ0

)
L=0

= GT a2
f − ρ0γGρ

γGT

. (16)

P0 describes the frozen system since its roots are the wave speeds
of the frozen system, 0, ±af, whereas P1 describes the equilibrium
system since its roots, ±ae, are the wave speeds of the equilibrium
system. If we define the acoustic or thermal wavenumber by

kT = GT

af
= (γ − 1)mLT

kBaf
, (17)

then the source term is negligible for k � kT and we have the frozen
system whereas the source term dominates and enforces equilibrium
for k � kT. This is the same as kT in equation (16) in Field (1965).
The corresponding wavelength is

λT = 2π

kT

= 2πkBaf

(γ − 1)mLT

. (18)

This separation of the dispersion relation into polynomials
corresponding to the frozen and equilibrium systems was first used
by Whitham (1974) in his theory of wave hierarchies. As he shows,
it can be applied to many different systems, but to our knowledge has
only been used in an astrophysical context by Tytarenko, Williams &
Falle (2002).

The Hermite–Biehler theorem (e.g. Bhattacharyya, Chapellat &
Keel 1995; Tytarenko et al. 2002; Falle & Williams 2019) tells us
that if the coefficients of the highest power of μ in P0 and P1 have
the same sign, the roots of P0 and P1 are real and the roots of
P1 interleave with those of P0, then the roots of equation (14) all
have positive imaginary parts and the system is stable. This stability
condition is both necessary and sufficient.

The system will certainly be unstable if a2
e is imaginary, which

requires

a2
e = GT a2

f − ρ0γGρ

γGT

< 0 ⇒ 1 − ρ0

T0

Lρ

LT

< 0, (19)

from equation (16). This is the isobaric instability condition,
equation (4b) in Field (1965) when LT > 0.

For real ae, the roots of P0 and P1 do not interleave if

ae > af ⇒ a2
f − a2

e = (γ − 1)
p0

ρ0
+ ρ0Gρ

GT

= (γ − 1)
p0

ρ0
+ kBρ0Lρ

mLT

< 0. (20)

This is the isentropic instability condition for sound waves, equa-
tion (5) in Field (1965) when LT > 0.

In the absence of conduction, the only dimensionless parameter
is

α = a2
e

a2
f

. (21)

This plays the same role as the dimensionless parameter, α, in Field
(1965), but has a more obvious physical significance. In particular,
the stability conditions take the simple form

α < 0 isobaric instability,
0 ≤ α ≤ 1 stable,
α > 1 isentropic instability.

(22)
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Now consider the behaviour of the root, μ = −ae, for small k.
We get

ω = −aek + ik2 (a2
f − a2

e )

2GT

+ k3 5a4
e − 6a2

e a
2
f + a4

f

8G2
T af

+ O(k4), (23)

which corresponds to instability when a2
e < 0.

Similarly, for large k, the root μ = 0, which corresponds to the
non-propagating condensation mode, is given by

ω = ia2
e GT

a2
f

+ ia4
e G

3
T (a2

f − a2
e )

k2a8
f

+ O(1/k4). (24)

Again, we have instability if a2
e < 0. The first term agrees with

equation (31) in Field (1965). This tells us that the growth rate
tends to a constant as k → ∞ and that the largest wavenumber
modes are the most unstable.

2.2 Thermal conduction

If thermal conduction is important, then the pressure equation (5)
becomes

∂tp + γp∂xv + v∂xp = (γ − 1)∂xκ∂xT , (25)

where κ is the thermal conductivity. Equation (13) then becomes

|ωI − kA0 + iD0 − ik2C0| = 0, (26)

where

C0 =
⎛
⎝ 0 0 0

0 0 0
−κ ′p0/ρ

2
0 0 κ ′/ρ0

⎞
⎠ , (27)

with

κ ′ = (γ − 1)
m

kB
κ. (28)

Equation (14) becomes

P = P0 − i

k
P1 − ikP2 = 0, (29)

where

P2 = κ ′

ρ0
(μ2 − a2

f /γ ) = κ ′

ρ0
(μ2 − c2

T ), (30)

and

cT =
(

p0

ρ0

)1/2

(31)

is the isothermal sound speed. One would expect P2 to have this form
since it describes the behaviour when k is large enough for thermal
conduction to ensure a uniform temperature. We now have three
polynomials each associated with a different physical process: P0

for the adiabatic system, P1 when the energy source term dominates,
and P2 when thermal conduction dominates. Liubarskii (1961) calls
these the auxiliary polynomials.

For γ > 1, the roots of P2 interleave with those of P0 and thermal
conduction is stabilizing. If the system is subject to the isobaric
instability, then a2

e < 0 and conduction stabilizes wavenumbers for
which

GT a2
e

k
+ kκ ′a2

f

ρ0γ
> 0,

i.e.

k > kF =
(−a2

e γρ0GT

a2
f κ

′

)1/2

=
(−αγρ0LT

κ

)1/2

. (32)

The corresponding Field length is then

λF = 2π

kF
= 2π

(
κ

−αγρ0LT

)1/2

, (33)

which agrees with equation (26) in Field (1965) and the expressions
in Begelman & McKee (1990) and Kim et al. (2008). On the other
hand, Koyama & Inutsuka (2004) define

λF =
(

T0κ

ρ0Lc

)1/2

, (34)

where Lc is the magnitude of the cooling term in L. The advantage of
equation (33) is that it really is the linear stability limit. Equations
(33) and (34) are in fact very different since the λF defined by
equation (33) goes to infinity at the boundaries of the unstable
region, (ae = 0), as it should.

The effect of conduction is determined by the dimensionless
parameter

β = GT κ ′

ρa2
f

= (γ − 1)2m2LT κ

k2
Bρ0a

2
f

. (35)

The Field wavenumber is then given by

kF = kT

(−γα

β

)1/2

. (36)

Again, this seems to be a more natural choice than the corresponding
dimensionless parameter, β, in Field (1965).

If we define the dimensionless variables

μ̄ = μ

af
, k̄ = kaf

GT

= k

kT

, (37)

then equation (29) becomes

μ̄(μ̄2 − 1) − i

k̄
(μ̄2 − α) − iβk̄(μ̄2 − 1/γ ) = 0. (38)

If we put

μ̄ = −iy, (39)

then equation (38) becomes

y(y2 + 1) + 1

k̄
(y2 + α) + βk̄(y2 + 1/γ ) = 0, (40)

which is our version of equation (18) in Field (1965). Note that
equation (36) tells us that this has a zero root when k̄ = kF/kT , as
expected.

2.3 Magnetic field

The analysis can readily be extended to include an oblique magnetic
field with components Bx, By. We have the fast and slow magne-
tosonic speeds,

c2
f,s = 1

2

[
a2 + B2/ρ ± √{

(a2 + B2/ρ)2 − 4Bxa
2/ρ

}]
, (41)

where a = af for the frozen system and a = ae for the equilibrium
system.

In the absence of conduction, the dispersion relation must now
be

μ(μ2 − c2
ff )(μ

2 − c2
fs) − i

k
GT (μ2 − c2

ef)(μ
2 − c2

es) = 0, (42)

where cff, cfs are the frozen fast/slow speeds and cef, ces are the
equilibrium ones. Since the equilibrium slow speed is imaginary
when ae is imaginary, the isobaric instability is still given by
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equation (22). Furthermore, the interleaving also fails when ae >

af, so that isentropic instability is also governed by equation (22),
i.e. the stability conditions are unchanged. More surprisingly, the
growth rate for large k is now

ω = iGT c2
efc

2
es

c2
ffc

2
fs

+ O(1/k2) = ia2
e GT

a2
f

+ O(1/k2) (43)

i.e. exactly the same as (24) for the non-magnetic case. It agrees with
the result in Dudorov et al. (2019). Note that for a purely transverse
field the slow speed is zero and it is possible for the magnetic field
to stabilize the isobaric mode. However, this is a singular case that
has a vanishingly small probability of occurring in reality.

This is another illustration of the power of the method: the physics
tells how to write down the adiabatic and equilibrium polynomials
from what we already know about the wave speeds of the frozen
and equilibrium MHD systems. As we have already pointed out,
we could also have done this for thermal conduction. The only
difficulty is in obtaining the coefficient multiplying the polynomials,
but these can often be obtained by inspection of the relevant matrix.
This is certainly true for the energy source, thermal conduction, and
magnetic field.

2.4 Stability of non-equilibrium states

Field (1965), Schwarz et al. (1972), Balbus (1986), and Koyama &
Inutsuka (2000) extend the thermal instability analysis to gas that
is not in thermal equilibrium. Schwarz et al. (1972) assume that the
unperturbed density is constant; Koyama & Inutsuka (2000) that
the unperturbed pressure is constant and Balbus (1986) consider a
general unperturbed state. Balbus (1986) and Schwarz et al. (1972)
go somewhat further than Koyama & Inutsuka (2000) in that they
use a JWKB approximation to take account of the time variation of
the unperturbed state. However, in all cases the analysis is local i.e.
only valid in the short wavelength limit.

Koyama & Inutsuka (2000) assume that the gas is contracting
uniformly so that lengths scale like R(t). They introduce a scaled
coordinate

x̄ = x

R
, (44)

with R(0) = 1. The primitive equations, (5), become

∂t p + 1

R
A∂x̄ p = 1

R2
∂x̄ c + s, (45)

with

c = [0, 0, (γ − 1)κ∂x̄T ]t , (46)

and

s =
[
− Ṙ

R
ρ, −R̈x̄ − Ṙ

R
v, − Ṙ

R
γp − (γ − 1)ρL

]t

. (47)

The velocity, v, in s and A is now the velocity in the co-moving
frame v → v − Ṙx̄.

They then consider a spatially uniform unperturbed state, p0(t),
with constant pressure, p0, and zero velocity in the contracting
frame. This satisfies

p0(t) = p0(0), ρ0(t) = ρ0(0)

R(t)
, v(t) = 0,

Ṙ

R
= − (γ − 1)

γ

ρ0L

p0
.

(48)

Integrating the last of these equations gives R(t) and hence the
solution. Note that this is only valid for regions small enough for
the term R̈x̄ to be negligible, which requires short wavelengths.

We assume a perturbation of the form

ρ(x, t) = ρ0(t)[1 + ρ1 exp(iωt − ikx̄)],

p(x, t) = p0[1 + p1 exp(iωt − ikx̄)],

v(x, t) = v1 exp(iωt − ikx̄), (49)

where ρ1, p1, and v1 are constants, which is equivalent to that
used by Koyama & Inutsuka (2000). Putting this into equation (45),
linearizing and neglecting R̈x̄ gives

iω p1 − i
k

R
Ac p1 = Dc p1 − k2

R2
Cc p1, (50)

where p1 = (ρ1, v1, p1)t,

Ac =
⎛
⎝ 0 1 0

0 0 p0/ρ0

0 γ 0

⎞
⎠ , (51)

Dc =
⎛
⎝ 0 0 0

0 −σc 0
(−ρ0G − ρ2

0Gρ + p0GT )/p0 0 −γ σc − GT

⎞
⎠ ,

(52)

and

Cc =
⎛
⎝ 0 0 0

0 0 0
−κ ′/ρ0 0 κ ′/ρ0

⎞
⎠ . (53)

Here,

G = (γ − 1)L (54)

and

σc = Ṙ

R
. (55)

We can set R = 1, since we are only interested in the stability of
the original state. The dispersion relation is then

|ωI − kAc + iDc − k2iCc| = 0, (56)

which we can write as

P = Pr − iPi . (57)

In the previous subsections, we showed that it is useful to split the
dispersion relation into polynomials associated with the different
physical processes, the adiabatic system, the energy source, and
thermal conduction. There are now four different processes: adia-
batic, energy source, thermal conduction, and the source due to the
isobaric contraction.

We therefore write equation (57) as

Pr = P0 − 1

k2
(P13 + P33) − P23, Pi = 1

k
(P1 + P3) + kP2,

(58)

with P0, and P2 given by equations (15) and (30) and

P1 = GT (μ2 − a2
e ) + G, P3 = σc(γ + 1)μ2,

P13 = σcGT μ, P23 = σcκ

ρ0
μ, P33 = γ σ 2

c μ. (59)

Here, the suffices 1, 2, 3 are associated with the energy source,
thermal conduction, and the isobaric contraction, respectively. The
dispersion relation is split into auxiliary polynomials P1, P2, P3 due
to each process in isolation, P13, P23 due to interactions between
them, and P33 due to self-interaction of the isobaric contraction.
Note that the isobaric contraction has a self-interaction because it
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affects both the velocity and pressure equation, whereas the other
processes only appear in the pressure equation.

If we ignore conduction, then for the condensation mode at large
k we get

ω = iGT

(a2
e − G/GT )

a2
f

+ O(1/k2). (60)

This also clearly applies to the magnetic case if the field is not
exactly perpendicular. It is a reasonable approximation to the growth
rate of the most unstable short wavelength mode whenever the Field
length is significantly smaller than the acoustic wavelength. We
therefore have short wavelength instability when

a2
e GT − G < 0, (61)

which is just the isobaric instability condition for non-equilibrium
states given by Balbus (1986).

In order to determine when equation (60) is a good approximation
to the maximum growth rate, we need the Field length for this case.
The coefficient of μ2 in Pi is

1

k
[GT + σc(γ + 1)] + kκ ′

ρ0
, (62)

and this must be positive for stability. Pi has real roots if

k2 >
ρ0

κ ′c2
T

(G − GT a2
e )GT . (63)

In combination, equations (62) and (63) tell us that we have stability
if

k > kf =
[

ρ0

κ ′ max

{
−GT − σc(γ + 1),

(G − GT a2
e )

c2
T

}]1/2

. (64)

This replaces the expression (32) for the Field wavenumber. It
is everywhere much larger than the thermal wavenumber for any
plausible form of L, such as the one considered in the next section.

Although Koyama & Inutsuka (2000) only considered an isobaric
unperturbed state, their analysis is valid for short wavelengths and
any unperturbed state, provided the growth rate is large compared
to |σc| = |Ṙ/R|. In particular, for the isochoric state considered by
Schwarz et al. (1972), the equations are the same with σ c = 0, R =
1, p0 = p0(t), and ρ0 = const. Since (60) is independent of σ c, the
condition (61) also applies in this case.

3 KOYA M A A N D I N U T S U K A E N E R G Y S O U R C E

Koyama & Inutsuka (2002) used a thermal energy loss function of
the form

L(ρ, T ) = ρ

m2
H

�(T ) − 1

mH

, (65)

where T is in Kelvin,  = 2 × 10−26 erg s−1 and

�


= 107 exp

(−1.184 × 105

T + 1000

)
+1.4 × 10−2T 1/2 exp

(−92

T

)
,

(66)

This has been used by a number of authors (e.g. Vázquez-Semadini
et al. 2007; Kim et al. 2008; Wareing et al. 2016a, 2018; Wareing,
Pittard & Falle 2016b, 2017, 2019).

Koyama & Inutsuka (2004) include a thermal conductivity

κ = 2.5 × 103 T 1/2, (67)

0.01 1.0 100.0
n cm

-3

0.0

0.5

1.0

1.5

2.0

p/k
B

x104

Figure 1. The pressure divided by the Boltzmann constant, kB, on the
equilibrium curve as a function of particle density.

0.01 1.0 100.0
n cm

-3

-0.4

-0.2

 0.0

 0.2

 0.4

α

Figure 2. The dimensionless parameter, α, defined by equation (21) as a
function of particle density.

which is appropriate for T < 4.5 ×104 K (Parker 1953). The
kinematic viscosity is given by

ν = (γ − 1)

γ

m

kB

κ

ρ
Pr, (68)

where Pr is the Prandtl number, which is two-thirds for a monotomic
gas.

3.1 Equilibrium states

The unstable temperature and density ranges for the isobaric
condensation mode are 184 K ≤T ≤ 5039 K and 0.9936 ≤ n ≤
8.6818. The equilibrium pressure is shown in Fig. 1. From Fig. 2,
we can see that α < 1 everywhere, so that equation (22) tells us
that the isentropic modes are always stable. Fig. 3 shows the Field
length from equations (33) and (34) in the unstable region, from
which it can be seen that they are indeed very different. We can
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1 2 3 4 5 6 7 8 9 10
n cm

-3

0.0

0.2

0.4

0.6

0.8

λF pc

Figure 3. The Field length as a function of particle density from (33) (solid
line) and from (34) (dashed line).

Figure 4. The thermal length as a function of particle density from (18).

see from Fig. 4 that the thermal wavelength is rather large in most
of the unstable region, varying between the typical size of giant
molecular clouds and that of the translucent clumps. Although Fig. 5
shows that the growth rate of the condensation mode as a function
of wavelength does have a maximum, it is not so sharp that one
particular wavelength is strongly favoured.

3.2 Non-equilibrium states

A number of authors have considered instability occurring behind
shocks generated by colliding flows that drive the gas into an
unstable non-equilibrium state (e.g. Hennebelle & Pérault 2000;
Koyama & Inutsuka 2000, 2002; Inoue & Inutsuka 2008, 2009;
Heitsch, Stone & Hartmann 2009; Fogerty et al. 2016). Fig. 6
shows the region in the n–p plane in which equation (61) indicates
instability and agrees with fig. 4 in Inoue & Inutsuka (2008). Note
that the unstable region at low densities is unphysical, since it
corresponds to temperatures above 104 K, for which the energy
source function (65) is not valid. A more realistic model of the
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Figure 5. The growth rate of the condensation mode as a function of
wavelength. (a) n = 1.1 and (b) n = 6.2517 (the density at which the
Field length is a minimum).

interstellar cooling curve above 104 K, such as that in Gnat &
Ferland (2012), gives isochoric instability for T > 105 K.

Koyama & Inutsuka (2000) applied the analysis in Section 2.4 to
thermally unstable gas cooling behind a shock, but it is only valid
when the growth rate given by equation (60) is large compared to the
rate of contraction, |σc| = |Ṙ/R|. Gas cooling behind shocks that
lead to a phase change must indeed pass through the unstable region
above the equilibrium curve, but Fig. 7 shows that the maximum
growth rate is not large compared to |σ c| in most of this region.
In fact, the analysis only gives reasonable quantitative results for
shocks that are not much stronger than that required to trigger a
transition to the cold phase.

3.3 Steady shocks

Fig. 7 also shows the path in the n–p plane for a steady shock and
Fig. 8 the structure of its cooling region. It can be seen from Fig. 8(b)
that the flow is indeed approximately isobaric in the unstable region.
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4490 S. A. E. G. Falle, C. J. Wareing and J. M. Pittard

Figure 6. The unstable region in the n–p plane according to the Balbus
criterion (61). The line is the equilibrium curve.

Figure 7. Linear plot of the ratio of the maximum growth rate given by
equation (60) to |σ c|. The solid line is the equilibrium curve. The dashed
line is the track of gas passing through a Mach 2 hydrodynamic shock
propagating into gas in thermal equilibrium with n = 0.1. The dotted line
is the track for an oblique MHD fast shock with a thermal Mach number
of 2 propagating into an equilibrium state with n = 0.1, equal parallel and
perpendicular fields and plasma β = 200 (shock 2 in Table 1).

From Fig. 8(d), we can see that it is unstable for −29.934 < x <

−13.742, but that −�(ω)/|σ c| < 5.5. The analysis is therefore only
marginally valid even for a shock such as this that only just triggers
a phase change. Note that the cooling lengths for this shock and the
magnetic version shown in Fig. 9 are very large because the path in
the n–p plane passes very close to the equilibrium curve at n = 1
where the cooling time is long.

The effect of pure thermal instability in shocks that drive the
gas to the cold stable state is not very interesting. Although the
gas must pass through the unstable region in which the instability
can grow, we will see this does not have a dramatic effect on

the overall structure of cooling region. Since the gas ends up in
a stable region in which a two-phase medium is impossible, any
density inhomogeneities generated by the instability must decay.
Colliding flows that lead to such shocks do produce interesting
density structures, but these are due to other effects such as the thin-
shell instability, Rayleigh–Taylor instability, or self-gravity (e.g.
Koyama & Inutsuka 2002; Heitsch et al. 2008a,b; Fogerty et al.
2016).

Thermal instability can only produce persistent density variations
if the gas remains in the unstable region, as it cools towards the
equilibrium state, which cannot happen behind a shock unless there
is a magnetic field. Fig. 7 also shows the path of an oblique MHD
fast shock, from which we can see that even a small initial magnetic
field can lead to a final state on the unstable part of the equilibrium
curve. This is because there is enough compression to increase the
magnetic field to the point where the magnetic pressure dominates,
as can be seen from Fig. 9(b). Fig. 9(d) also tells us that it is unstable
for x < −37.4 and the linear analysis is reasonably accurate since
the growth rate is significantly larger than |σ c|. Note that the growth
rate is positive in the final state, unlike the shock with a stable final
state shown in Fig. 8.

Such steady shock solutions in which the gas reaches the unstable
part of the equilibrium curve will obviously not occur in nature
and indeed simulations (e.g. Koyama & Inutsuka 2002; Audit &
Hennebelle 2005) show that they are unstable. The only possibility
is that the gas separates into stable warm and cold phases if the gas
pressure is in the range for which these phases can coexist (Inoue &
Inutsuka 2009). This also happens if one perturbs gas on the unstable
part of the equilibrium curve (e.g. Wareing et al. 2019). The most
interesting shocks are therefore those for which the density in the
final state is in the unstable region of the equilibrium curve. The
largest density contrast between the phases occurs when the density
in the final state is near the lower end of the unstable region i.e. n
� 1.

The steady shock solutions are described by four parameters: the
upstream density, Mach number, plasma β, and the angle between
the magnetic field and the shock normal. There is therefore a
threefold infinity of solutions that can reach any given point on
the equilibrium curve. Table 1 gives the properties of a number of
such solutions, for which all of the MHD shocks end up on the
unstable part of the equilibrium curve. Of these, we expect shock 5
to give the largest density contrast between the phases since its final
density is closest to the lower stability limit.

The table also shows the amplification factor of the instability
defined by

A = exp

{∫
max [0, −�(ω)]

dx

vx

}
, (69)

where the integral is from the shock to the intersection with the
equilibrium curve. This definition excludes the damping in the stable
regions, which means that the amplification factor for the purely
hydrodynamic shocks is seriously overestimated.

The cooling region in both the hydrodynamic (shock 1) and
MHD (shock 2) shock is very long because the track in the n–p
plane passes close to the equilibrium curve, but Table 1 shows that
this is exceptional. Stronger shocks have shorter cooling regions
because their track is far from the equilibrium curve and MHD
shocks have lower densities and hence longer cooling regions than
the corresponding hydrodynamic ones. It is also clear from the
difference between the final density in the hydrodynamic and MHD
cases, that it does not require much of an upstream magnetic field
for the magnetic pressure to dominate in the final state.
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Figure 8. The solution for a steady Mach 2 hydrodynamic shock propagating into gas in thermal equilibrium with n = 0.1. (a) Density, (b) pressure, (c)
temperature, and (d) the ratio of the maximum growth rate given by equation (60) to |σ c|. Note that this is infinite in the final state since |σ c| = 0 there.

The fact that even a very small magnetic field has such a large
effect, means that purely hydrodynamic simulations are of little
relevance. This is pretty obvious and has been pointed out by several
authors (e.g. Hennebelle & Pérault 2000; Inoue & Inutsuka 2008,
2009; Heitsch et al. 2009). They all conclude that the immediate
formation of very dense gas in colliding flows is prevented by a
typical magnetic field unless it is very closely aligned with the flow.
Table 1 confirms this: the magnetic field dominates in the final state
for shocks 2, 4, 5, and 7 even though the initial magnetic field is
implausibly small. It also dominates for the more realistic initial
field in shocks 8 to 11, even for small values of the angle between
the field and the shock normal.

4 N U M E R I C A L C A L C U L AT I O N S

In order to find out what happens to steady solutions that reach
the unstable state, we carried out time-dependent numerical calcu-
lations with the same AMR MHD code, MG, as in Wareing et al.

(2016a). To keep things as simple as possible, these were two-
dimensional Cartesian calculations starting with a steady shock so-
lution propagating in the x-direction. This is perturbed by imposing
a periodic shift in the x-position of the shock and hence the whole
solution. The initial solution is then given by

p(x, y) = ps[x + sin(2πy/yd)], (70)

where ps(x) is the steady solution and yd is the width of the domain
in the y-direction. The resulting initial states are shown in Figs 10–
12. The upstream state was imposed at the right x-boundary and on
the left the x-velocity was fixed at that of the end state with zero
gradient for the other variables. The y-boundaries were periodic.

Fig. 10(b) shows the density for the hydrodynamic shock 1 at
20 Myr. The instability has generated corrugations in the boundary
between the warm and cold gas and variations in the cold gas density,
which are then advected towards the left boundary. However, the
density of the cold gas only varies from 100 to 300 cm−3 and
these regions are not in pressure equilibrium as can be seen from
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Figure 9. The solution for a steady oblique MHD fast shock with a thermal Mach number of 2 propagating into an equilibrium state with n = 0.1, Bx = By,
and plasma β = 200 (shock 2 in Table 1). (a) density, (b) gas and magnetic pressure, (c) temperature, and (d) the ratio of the maximum growth rate given by
equation (60) to |σ c|. Note that this is infinite in the final state since |σ c| = 0 there.

Table 1. Properties of steady shock solutions: Mth – thermal Mach number; θ – angle between field and shock perpendicular; n – particle number
density; β – plasma β; B – magnitude of the magnetic field; lc – length of cooling region; A – amplification factor given by equation (69). The
suffices u and f denote the upstream and final values. Shock 10 is the perpendicular shock generated by the collision in Inoue & Inutsuka (2008)
and shock 11 the case (1a) 15◦ shock in Inoue & Inutsuka (2008).

Mth θu θ f nu nf βu βf Bu μG Bf μG lc pc A

1 2.0 (18.56 km s−1) NA NA 0.1 162.5 ∞ ∞ 0 0 30.49 3.5 × 103

2 2.0 (18.56 km s−1) 45◦ 88.7◦ 0.1 4.368 200 0.4764 0.114 3.638 85.04 4.0 × 104

3 3.0 (27.84 km s−1) NA NA 0.1 454.1 ∞ ∞ 0 0 1.928 2.7 × 102

4 3.0 (27.84 km s−1) 45◦ 89.2◦ 0.1 7.212 200 0.1578 0.114 5.954 2.782 9.3 × 101

5 3.0 (27.84 km s−1) 45◦ 85.8◦ 0.1 1.243 10 0.6350 0.510 4.865 66.05 4.4 × 102

6 2.0 (17.02 km s−1) NA NA 0.5 1126 ∞ ∞ 0 0 1.336 2.7 × 102

7 2.0 (17.02 km s−1) 45◦ 85.5◦ 0.5 5.615 12.5 0.0811 0.935 8.502 4.431 5.8 × 101

8 2.0 (17.02 km s−1) 15◦ 63.2◦ 0.5 1.337 1 0.2716 3.305 7.283 52.00 7.6
9 2.0 (17.02 km s−1) 10◦ 64.0◦ 0.5 1.421 1 0.2532 3.305 7.423 37.84 6.05
10 3.2 (26.91 km s−1) 90◦ 90◦ 0.57 3.869 3.035 0.0436 2.000 13.61 7.275 4.6 × 101

11 3.1 (25.74 km s−1) 15◦ 78.5◦ 0.67 5.335 1.542 0.0296 3.000 14.55 4.231 2.2 × 101
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Thermal instability 4493

Figure 10. Log density for the perturbed 2D hydrodynamic shock 1. (a) Initial state, (b) at t = 20 Myr. (c) Log pressure at t = 20 Myr. There were five grid
levels with a finest grid spacing of 0.02 pc. Distances are in pc.
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Figure 11. Log density and magnetic field lines for the perturbed 2D MHD fast shock 2. (a) Initial state, (b) at t = 20 Myr. (c) Log pressure at t = 20 Myr.
There were five grid levels with a finest grid spacing of 0.02 pc. Distances are in pc. The FWHM width of the filaments is � 0.52 pc.

Fig. 10(c). There is also warm gas next to cold gas in the region y <

4 and x < 2, but again these are not in pressure equilibrium and the
warm phase is in the unstable region above the equilibrium curve. It
is clear that the density variations in the cold gas will reduce as the
pressure equilibrates and the unstable warm gas must turn into stable
cold gas since the gas pressure is too high for a stable warm phase
to exist. This is just telling us that such a shock cannot generate a
two-phase medium in pressure equilibrium, which is exactly what
we would expect.

The difference between shocks 2 and 5 shown in Figs 11 and 12
is that shock 5 has a larger pre-shock magnetic field. As a result,
the magnetic pressure dominates for x < 60, whereas in shock 2
this does not happen until x < 15. The disturbances caused by the
instability are therefore able to distort the field in shock 2 to produce
the ripples in the field lines in Fig. 11(b), but not in shock 5.

In both cases, the region near the left boundary consists of cold
gas in pressure equilibrium with the warm gas, as can be seen
from the fact that the filaments are invisible in the plots of the gas
pressure in Figs 11(c) and 12(c). It is also in thermal equilibrium
and is therefore a genuine two-phase medium. In both cases, the

mass fraction of the unstable gas near the left boundary is less than
10 per cent, i.e. the gas has largely separated into stable warm and
cold phases. This separation into warm and cold phase for shock
5 can clearly be seen in the plot of mass fraction in the n–p plane
shown in Fig. 13. Note that the amount of gas in this final state
does not increase systematically since there is outflow from the left
boundary. In reality, the mass in the final state would increase with
time irrespective of whether the shock is externally driven or due to
a collision between two streams. The thickness of the region in the
two-phase state should increase by 0.434 pc Myr−1 for shock 2 and
2.29 pc Myr−1 for shock 5.

The steady shock solutions are not a bad guide to what happens:
the total pressure is close to the ram pressure, as we would expect
from global momentum balance; the mean density is 3.83 compared
to a steady value of 4.37 for shock 2 and 1.32 compared to 1.24 for
shock 5. However, the gas pressures in the numerical calculations
are �3200 in both cases, whereas we would expect 1818 for shock
2 and 4332 for shock 5. As a consequence, the warm density and
cold densities are �0.5 and �80 in both cases instead of 0.27 and
19 for shock 2 and 1.24 and 106 for shock 5 as required by the
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Thermal instability 4495

Figure 12. Log density and magnetic field lines for the perturbed 2D MHD fast shock 5. (a) Initial state, (b) at t = 25 Myr. (c) Log pressure at t = 25 Myr.
There were five grid levels with a finest grid spacing of 0.02 pc. Distances are in pc. The FWHM width of the filaments is � 0.52 pc.
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Figure 13. Distribution of mass fraction in the n–p plane in the region
−10 ≤ x ≤ 15 for the perturbed 2D MHD fast shock 5 at t = 25 Myr. The
integrated mass fractions are 0.3589 for warm gas, 0.5748 for cold gas, and
0.066 for unstable gas.

gas pressures in the steady solutions. These differences in the gas
pressure are not surprising since the final state in the unsteady case
is a two phase medium as opposed to an unstable single phase
medium. Even though the mean density is roughly the same, the
gas pressure in the two phase state depends on the fractions of
warm and cold gas, which in turn depend on the time history of the
instability.

The two-phase medium with high-density filamentary structures
in Figs 11 and 12 is similar to that generated by randomly perturbing
an initially unstable state (Wareing et al. 2016a). Despite being
produced in very different ways, both the separation, 5–10 pc, and
width, �0.5 pc, of the filaments are very similar. In neither case
does the separation seem related to the initial perturbation, but it
is a factor of a few times smaller than the thermal wavelength
at the low-density end of the unstable region. We might expect
this wavelength to be favoured, since Fig. 5(a) shows that this is
the largest wavelength for which the growth rate is close to its
maximum. We have not included thermal conduction, so there is
no physical maximally unstable wavelength, although very short
wavelengths are suppressed by numerical thermal conductivity.

Without self-gravity, this two-phase medium would not evolve
as long as the total pressure remains constant. Self-gravity is not
important on the scale of the filaments: the Jeans length in the
filaments is �12 pc in both cases, which is much larger than their
widths. However, there is the possibility of large-scale gravitational
collapse along the field as in Wareing et al. (2016a). The relevant
time-scale for this is the free-fall time for 1D collapse, 1/

√
πGρ,

which gives 25 Myr for shock 2 and 42.6 Myr for shock 5. Wareing
et al. (2016a) showed that most of the mass collects in a corrugated
sheet perpendicular to the magnetic field, which can then collapse
perpendicular to the field if the mass-to-flux ratio is large enough.

Fogerty et al. (2016) point out that the appropriate critical mass-
to-flux ratio is the one for a field perpendicular to a plane layer in
hydrostatic equilibrium:

�

B
= 1

2π
√

G
= 616.25 cgs, (71)

where � is the surface density of the layer (Nakano & Nakamura
1978). The two-phase region will be supercritical if its width along

the field is greater than

Wc = 100

(
B/106

n

)
pc. (72)

This gives 26 pc for shock 1 and 76 pc for shock 5, so
we clearly need long-lived, large-scale flows for gravitational
collapse.

This all assumes that the two-phase region is constrained from
expanding perpendicular to the inflow. This is true for those
simulations that impose periodic conditions at the boundaries
without inflow (Koyama & Inutsuka 2002; Inoue & Inutsuka 2008,
2009; Heitsch et al. 2009). Audit & Hennebelle (2005) used free
boundary conditions for their purely hydrodynamic calculations,
as did Fogerty et al. (2016) who considered a parallel field with
β = 10. Since the initial shock was effectively hydrodynamic
in both cases, it produced high enough densities for self-gravity
to be significant despite the lack of constraint on the sideways
expansion.

4.1 Slow shocks

So far we have only considered fast MHD shocks, but if they are
due to a collision between two streams, then there must also be
slow shocks. For example, in a plane symmetric collision between
two streams the two fast shocks generate velocities perpendicular
to the shock normal that have opposite signs. At the interface these
velocities must be equal, which can only be accomplished by a slow
shock or a fast rarefaction. In a plane collision, the only possibility
is a slow shock.

Inoue & Inutsuka (2009) find clear evidence of slow shocks in
some of their cases and not in others. In fact, slow shocks must be
present in all cases, but in some of them the shocks move so slowly
that they are hard to resolve. For example, Fig. 14 shows the region
near the interface for a 1D version of their case 1a: a collision with
initial density 0.67, velocity 20 km s−1, field 3 μG at an angle of 15◦

to the flow. Shock 11 in Table 1 is the steady fast shock generated
by this collision if we ignore the slow shock. We can see that there
is a slow shock at x = 0.3 in which the transverse field and velocity
decrease so that the transverse velocity vanishes at the interface.
Note that the oscillations are due to the instabilities in the state
upstream of the slow shock. Although the density behind the shock
is �1.75 × 103, the amount of mass involved is negligible. Since
this is generally true, these shocks are of little significance, which
is just as well since they are very hard to resolve in many cases: this
calculation required seven levels of AMR with a finest resolution
of 4 × 10−3 pc.

4.2 Shock-cloud interactions

Van Loo, Falle & Hartquist (2010) considered a plane fast shock
interacting with a spherical warm cloud with density 0.45 in
pressure equilibrium with a hot medium with density n = 0.01.
The shock sonic Mach number was 2.5 (≡142.5 km s−1), the cloud
radius was 200 pc and the initial magnetic field was uniform with
β = 1. They used the heating and cooling prescription described
Sánchez-Salcedo, Vásquez-Semadini & Gazol (2002) which differs
somewhat from the one in Koyama & Inutsuka (2002) that we have
considered here. For example, it is unstable for n ≥ 0.5, rather n =
1. However, we do not expect this to lead to a qualitative difference
in the results.

They found that a slow shock formed at the boundary between
the cloud and the ambient medium, but it only involved a significant
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Figure 14. Region near the interface for Inoue & Inutsuka (2009) case 1a
(shock 11 in Table 1) at t = 60 Myr. (a) Transverse magnetic field and (b)
transverse velocity. At this time, the fast shock is at x = 88.075.

amount of mass when the incident shock normal was parallel to the
field: its effect was negligible even for an angle as small as 15◦. Slow
shocks can therefore only generate a significant amount of gas at
high densities when the field and the shock normal are very closely
aligned. In the general case with plausible values of the initial β,
slow shocks will be unimportant and most of the material will end
up in the two-phase state.

Fig. 15 shows the density and field lines in a very similar
calculation to these: the density of external medium is n = 0.01,
the thermal Mach number of the shock is 2.5 (≡150.4 km s−1), the
cloud radius, Rc, is 200 pc, the initial pressure is 3150.25kB, the
initial β = 1 (B = 3.3 μG), the field is parallel to the x–y plane at
an angle of 45 deg to x-axis. The shock travels in the x-direction.
The domain is −3Rc ≤ x, y, z ≤ 3Rc, and six grid levels were used
with a finest resolution of 1.25 pc, which is slightly better than the
1.67 pc in Van Loo et al. (2010). The most significant difference
is that the energy source function is given by equations (65)
and (66).

The regions with density �100 are curved sheets about 5 pc thick
and an extent of about 200 pc perpendicular to the x–y plane. There
is a region between these sheets that has β < 0.1 and is in the
unstable density range, but above the equilibrium curve, which we
expect to cool and evolve into a two-phase medium. The sheets
have slightly higher gas pressure than this unstable region and are
accumulating mass. They are on a much larger scale than that of
thermal instability in Figs 11 and 12, which suggests that they are
a result of the large-scale shock propagation rather than thermal
instability.

The Jeans length defined by

LJ =
(
πa2

Gρ

)1/2

(73)

is �10–20 pc in the sheets, so that self-gravity is becoming signifi-
cant. Gravity is likely to bring the sheets and the material between
them together, which would make them close to supercritical
according to equation (71), especially since the field is mostly not
perpendicular to the sheets. They should then be subject to the
gravitational instabilities considered by Van Loo, Keto & Zhang
(2014).

One might have hoped that slow shocks would produce high
densities, but there is no evidence that they play a significant role.
This is consistent with the results in Van Loo et al. (2010) for this
angle between the field and the shock normal.

Although this calculation and those in Van Loo et al. (2010) are
interesting, there are two reasons why they must be regarded as
indicative rather accurate solutions to the problem as posed. The
first is that the resolution is not sufficient to resolve the scales
on which the thermal instability appears in Figs 11 and 12. The
second is that the flow behind the incident shock is sub-fast, which
means that the reflected shock propagates to upstream infinity.
In our calculation, it reaches the upstream boundary at 7.2 Myr,
after which the external flow is incorrect. This might not actually
matter very much since the dynamic pressures in the external flow
are too small to have much effect on the evolution of the cloud.
We tested this by reducing the size of the domain after 12.25
Myr and found that this made little difference to the flow in the
cloud.

5 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have reworked the linear stability analysis in Field
et al. (1969) using a combination of the Hermite–Biehler theorem
and Whitham’s theory of wave hierarchies in Section 2, analysed
its implications for the energy source in Koyama & Inutsuka (2002)
in Section 3 and described appropriate numerical calculations in
Section 4.

Most of the results in Section 2 are already known, but our method
simplifies the calculations considerably as well as establishing a
simple relationship between the dispersion relation and the various
physical processes. For example, we were able to write down the
dispersion relation for MHD simply from a knowledge of the MHD
wavespeeds and hence show that the inclusion of a magnetic field
has no effect on the stability. We also consider the stability of
non-equilibrium states and show that the standard analysis is only
quantitatively valid for shocks that are barely capable of triggering
a transition to the cold phase.

Section 3 discusses the stability properties of both equilibrium
and non-equilibrium states for the widely used energy source func-
tion suggested by Koyama & Inutsuka (2002). We also computed a
number of steady shock solutions, both with and without a magnetic
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Figure 15. Log density and magnetic field lines for the shock-cloud interaction at t = 14.5 Myr. Distance is in units of the initial cloud radius (200 pc).

field. These results confirm that for most plausible parameters, the
final state lies on the unstable part of the equilibrium curve. This
means that such shocks cannot exist, but it is clear that the end
result must be a two-phase medium consisting of warm and cold
phases with the gas pressures in equilibrium. This is confirmed by
the numerical calculations of perturbed steady shock solutions in
Section 4. The main point here is that the steady shock solutions
are useful for analysing numerical calculations, even though they
cannot exist in reality.

We considered a shock-cloud interaction similar to those in Van
Loo et al. (2010). This large-scale shock interaction produces dense
sheets whose scale is determined by the size of the cloud rather
than that of the thermal instability. They are sufficiently dense to
collapse under their own gravity.

Finally, we have shown that slow shocks are unlikely to play a
significant role in these kinds of flow. This is a pity, since they are
the only way of producing high densities in the presence of plausible
magnetic fields.
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