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Modelling lane-changing mechanisms on motorway weaving sections 1 

A motorway weaving section connects a pair of closely spaced entry- and 2 

exit-ramps, where intensive lane-changings of merging and diverging 3 

vehicles take place over a relatively short space. A detailed trajectory data 4 

reveal that a significant proportion of the lane changing at the weaving 5 

section exhibits group lane-changing behaviour, in the forms of a lane-6 

changing platoon and simultaneous weaving behaviour. The acceptable gaps 7 

are different in group lane-changing and weaving, compared to a single 8 

isolated lane-changing. This paper proposes a random utility formulat ion 9 

with explicit representation of these different lane changing mechanisms. 10 

The model parameters are calibrated using Maximum Likelihood Estimation 11 

technique and individual vehicle trajectory data extracted from video 12 

recordings. There are significant differences in behavioural parameter values 13 

for lane changing mechanisms. In particular, the results suggest that the 14 

relative speed with respect to the current and target lane leaders have varying 15 

impacts on the gap acceptance behaviour. 16 

Keywords: Lane changing; weaving section; group behaviour; leader effect; 17 

random utility maximization. 18 

1. Introduction 19 

In weaving sections, multiple traffic streams cross each other to reach their destination 20 

lanes along a relatively short section. In the UK, the typical length of a weaving section is 21 

between 2,000 – 3,000m (DMRB, 2006). In the US, the length is much shorter at between 22 

150 – 762m (HCM, 2010). Traffic coming from the on-ramp merges onto the main- line 23 

traffic, while vehicles taking the next exit diverge to the exit lanes. The extensive lane -  24 

changes of the merging, diverging and through traffic are causes of increased congestion 25 

and high incident rates at weaving sections and lead to special operational problems to 26 

traffic managers (HCM, 2010; Jin, 2010; Skabardonis, 2002). Golob et al. (2004) reported 27 
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that 37% of accidents in the weaving section occur in the middle lanes, out of which 23% 1 

are classified as sideswipes accidents and are attributed to high proportions of lane 2 

changing traffic. Skabardonis (2002) found that because of the complexity of vehicle 3 

interactions, operational problems may occur at weaving areas even when traffic volumes 4 

are well below capacity. 5 

 6 

The complex movements also pose special challenges in modelling driving behaviour in 7 

weaving sections (Liu and Hyman, 2012) and lead to poor performances of the traffic 8 

microsimulation tools (Toledo and Katz, 2009). Consequently, in the study conducted by 9 

the Next Generation Simulation (NGSIM) program of US Federal Highways, driving 10 

behaviour models for weaving sections were identified as the weakness of the traffic 11 

simulation tools (Alexiadis et al., 2004). Better understanding lane-changing behaviour 12 

can, therefore, help in improving the fidelity of the traffic simulation tools, and thereby 13 

help in designing traffic management interventions to reduce accidents and associated 14 

traffic disruptions at weaving sections. 15 

 16 

Wang et al. (1993) were the first to analyse the impact of individual vehicles’ movements 17 

on the capacity of the weaving section. They found that the first 250ft (76m) downstream 18 

from the merge gore was the critical region with very high intensity of merging and 19 

diverging activities. Knoop et al. (2012) reported that the intensity of lane changing 20 

increases with the density of traffic in the origin lane as well as in the target lane. 21 

Analysing the NGSIM vehicle trajectory dataset, Bham (2006) identified that intens ive 22 

lane changing movements (76% of the total lane changes) occur in the first 91m of the 23 

weaving section. Meanwhile, Al-Jameel (2011) studied the traffic characteristics in a 24 
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typical urban weaving section in the UK and found that 70% of the lane changing occurs 1 

in the first 250m. Al-Kaisy et al. (1999) found that the locations of lane changes vary with 2 

the levels of congestion. 3 

 4 

Wang et al. (2014) modelled the vehicle interactions during merging in a congested 5 

weaving section with a particular focus on yield behaviour. Sarvi et al. (2011) developed 6 

acceleration-deceleration models for weaving sections which demonstrate significant 7 

differences in behaviours of weaving and non-weaving traffic. The models presented in 8 

that study are however limited to acceleration-deceleration behaviours related to the 9 

merge rather than the lane changing the decision. Choudhury et al. (2009) looked at 10 

combined models of lane- changing and acceleration decisions in a merging context and 11 

reported significant differences in accepted gaps depending on the merging mechanism 12 

(normal, courtesy and forced). The study was however limited to the vehicles coming 13 

from the on-ramp and excluded other streams of traffic. 14 

 15 

Our recent empirical analyses (Kusuma et al., 2014; 2015) reveal that 42% of the traffic 16 

in a weaving section make at least one lane change and there is significant occurrence of 17 

grouped lane-changing behaviour. For example, in 10.5% of the cases, two vehicles swap 18 

lanes with each other (weave) and in 5.6% of the cases,  drivers change lanes following 19 

the preceding lane- changing vehicle (in a platoon). The lane changing characteristics are 20 

also found to vary for weaving and platoon lane changes. For example, the majority of the 21 

weaving lane changes have been observed to occur earlier on in a weaving section 22 

compared to the other lane changes. 23 

 24 
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The current study, therefore, aims to investigate the effects of the group behaviour in 1 

further detail and proposes a lane-changing modelling framework that explicitly accounts 2 

for the different lane changing mechanisms (i.e. isolated/solo, platoon and weaving 3 

movement).  A random utility maximization approach is used in this regard and the model 4 

parameters are calibrated using the Maximum Likelihood Estimation (MLE) technique. 5 

 6 

The rest of paper is organised as follows: Section 2 briefly explores the state-of-the-art 7 

lane-changing models with particular emphasis on random utility-based approaches. The 8 

proposed model specification is presented next followed by the data description and the 9 

estimation results. The summary of the findings and the directions for future research are 10 

presented in the end. 11 

2. Literature Review and Contributions of the Present Paper 12 

The existing literature on modelling lane-changing behaviour can be generally classified 13 

into three modelling approaches: rule-based simulation models, game theory models and 14 

random utility models of lane changing choices.  15 

 16 

Gipps (1986) was among the first to develop a lane-change modelling framework based 17 

on a ruled based approach. This model captures the safety, necessity and desirability of 18 

the lane-changing movement. In rule-based models, the gap selection, acceleration and 19 

deceleration behaviour play significant roles during the lane-changing process (Zhang et 20 

al. 1998), as well as the lane-changing objectives. Gipps (1986) classified lane-changing 21 

objectives into mandatory lane-changing (MLC) where a vehicle changes lane in order to 22 

avoid an obstacle in front and discretionary lane-changing (DLC) where a vehicle changes 23 
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lane in order to gain speed advantage. Liu (2010) further extended MLC as situations 1 

where a turning vehicle having to get into the correct turning lane, or a bus needing to get 2 

into/out of a bus layby. Most of the microscopic traffic simulation software adopt such 3 

rule-based models (e.g. SITRAS (Hidas, 2002), VISSIM (Fellendorf and Vortisch, 2010), 4 

PARAMICS (Sykes 2010), DRACULA (Liu et al., 2006). Wei et al. (2000) added a pre-5 

emptive lane-changing scenario and identified gap acceptance as a critical factor in the 6 

lane-changing process. The lane-changing occurs if the driver accepts all three gaps: the 7 

lead gap at the current lane, the lead gap at target lane, and lag gap. Kesting et al. (2007) 8 

included a safety aspect, represented as the critical acceleration threshold, in lane-9 

changing. Both driver aggressiveness (or politeness) factor and lane-changing location are 10 

found to affect the lane-changing rate, with lane-changing increasing significantly around 11 

the mandatory lane-changing location (i.e. at the end of a link or at an off-ramp). Such 12 

rule-based models are intuitive and easy to understand, but they have a number of inherent 13 

drawbacks.  They are constrained by the behaviour rules specified a prior and the realism 14 

of these rules. For example, a model specifying an identical gap acceptance threshold for 15 

all drivers would lead to an unrealistic driving situation, since in reality, different drivers 16 

have different preferences on the gap acceptance which may also vary in different 17 

situations.  18 

 19 

A game theory approach was first proposed by Kita (1999) where lane-changing is 20 

modelled as a two-person, non-zero-sum, non-cooperative game. In this approach, the 21 

objective of the game is to choose the safest action and the payoff is a function of the 22 

surrounding variables (i.e. gap to the lead vehicle, time to collision, etc.). Wang et al. 23 

(2005)  and Hidas (2005) adopted the game theory approach to simulate the cooperative 24 
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lane-changing and gap acceptance at the merge where the lag vehicle creates gaps and to 1 

facilitate the merging movement. Liu et al. (2007) improved the game theory approach by 2 

assuming that the vehicle aims to maintain their driving conditions and minimise the speed 3 

variations. Incorporating the cooperation behaviour and accident risk into the gap 4 

acceptance model, Chu et al. (2015) found that the mainline traffic density is the most 5 

important factor in the choice of merging mechanism. The study concluded that in higher 6 

traffic density, drivers tend to chase the gap in front the lead vehicle on the target lane 7 

(chase-merge), while in lower densities (< 40 veh/km/lane), drivers tend to select the 8 

following gap and yield before merging (yield-merge).  However, these models are 9 

expected to perform well only in cooperative (as in weaving conditions) – they inherently 10 

do not have any mechanism for capturing the platoon lane changes and are somewhat 11 

redundant for solo lane changes. Given that the proposed model captures the full variation 12 

of individual driver decisions for different lane changing conditions (platoon and solo in 13 

addition to weaving), it is expected to outperform the game theory based models. 14 

 15 

Yang and Koutsopoulos (1996) first introduced the random utility approach in the context 16 

of lane-changing. The approach provides greater flexibility in capturing the traffic 17 

interaction compared to both the rule-based and game-theory approaches. The lane-18 

changing decision in this method is assumed to be affected by several factors such as 19 

driver impatient factor, relative speed, and appearance of the heavy vehicle. Adopting this 20 

approach, Ahmed et al. (1999) performed an extensive work on modelling lane-change 21 

decisions with discrete choice modelling approach. In this study, lane changing is 22 

modelled as the result of a two-step process: (1) lane selection and (2) gap acceptance. 23 

The probability of lane changing is the joint probability of target lane selection and gap 24 
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acceptance and the parameters of these probability functions are estimated based on 1 

Maximum Likelihood Estimation method. Furthermore, Toledo (2003) and Toledo et al. 2 

(2005) advanced this idea by integrating MLC and DLC  into a single framework and 3 

including all available lanes in the choice set respectively. The models, however, describe 4 

only the solo lane-changing behaviours and do not account for group behaviour that 5 

characterizes the weaving traffic. 6 

 7 

The gap acceptance decision plays a key part in a driver’s lane-changing behaviour. A 8 

substantial number of studies on gap acceptance behaviour have been performed with 9 

various structures and assumptions since the early 1960’s.  Herman and Weiss (1961) 10 

proposed that the gap acceptance follows an exponential distribution while Ashworth 11 

(1970) assumed a normal distribution. Daganzo (1981) proposed a probit model which 12 

acknowledges the correlations among the time-gap acceptance decisions of the same 13 

driver. In this case, the mean value of the gap acceptance model is known as the critical 14 

gap and is modelled as a random variable that is normally distributed across the 15 

population. The assumption of normal distribution in the study, however, raises a problem 16 

for extreme cases where it may yield negative values which prompted the use of a Log-17 

normal distribution (Ahmed 1999). Since then, the Log-normal distribution has been used 18 

widely in the recent development of gap acceptance models, e.g. in Toledo et al. (2005), 19 

Farah et al. (2009), and Choudhury et al. (2010). Bham (2008) studied both time-gap and 20 

lag-gap acceptances under the congested and non-congested traffic. The study compared 21 

the performances between Gamma distributions and Log-normal distributions and found 22 

that Gamma distributions performed better. In the merging context, the critical gaps are 23 

found to be significantly different in congested conditions depending on if the driver is 24 
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merging normally, expecting a courtesy yielding from the mainline driver or forcing in 1 

(Choudhury et al., 2007). The models are however developed for vehicles joining the 2 

mainstream from an on-ramp (Mandatory Lane Changing conditions) and do not involve 3 

any lane choice component. The behaviour of the other traffic streams (e.g. through and 4 

diverging traffic) and the complex interactions among the different streams are also not 5 

considered in that research.  6 

 7 

The review of literature thus reveals a research gap in terms of capturing the effects of 8 

lane-changing mechanisms on weaving sections in the general lane-changing model 9 

structure. This can lead to unrealistic traffic characteristics, especially in weaving sectio ns 10 

where there is a significant presence of group behaviours leading to wider variations in 11 

lane-changing mechanisms. This has been highlighted in the review conducted by the 12 

Next Generation Simulation (NGSIM) program of US Federal Highways, where driving 13 

behaviour models for weaving sections have been identified as weak points of the traffic 14 

simulation tools (Alexiadis et al., 2004).  The current study aims to address this research 15 

gap by extending the state-of-the-art random utility-based models and by explicit ly 16 

capturing the lane-changing mechanism classified based on the movement of the lead 17 

vehicle. A case study of traffic on a weaving section in a UK motorway (M1 J42-43) is 18 

used to calibrate the extended lane-changing model with respect to different type of leader 19 

vehicle movements.  20 
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3. Structure of the Lane-Changing Model for Weaving Traffic 1 

 3.1 Definitions of the different lane-changing mechanisms 2 

Our earlier analysis of video recordings of lane-changes at a weaving section (Kusuma et 3 

al., 2014; 2015) identified several different types of lane-changing (LC) behaviour at 4 

weaving sections. These different lane-changing mechanisms are summarised below and 5 

they form the basis of our proposed new model structure presented later in this section.  6 

 7 

Different to the driving behaviour on normal motorway sections where a driver selects a 8 

target lane and finds a suitable gap to change lanes, on weaving sections, the choices of 9 

the drivers can be significantly affected by the actions of their neighbouring drivers.  For 10 

instance, if the leader vehicle is changing lanes in the same direction, the subject driver 11 

may be inclined to move as in a platoon and accept smaller lead gaps to complete the lane 12 

change manoeuvre. Similarly, the acceptable gaps may be different if there is a weaving 13 

manoeuvre as opposed to a solo lane-change which does not involve any marked 14 

interaction with the neighbouring drivers. The current research, therefore, extends the 15 

state-of-the-art lane-changing models by explicitly incorporating these different types of 16 

lane-changes in the model framework.  17 

 18 

According to the definitions in HCM (2010), a platoon is a group of vehicles from the 19 

same traffic stream travelling together either voluntarily or involuntarily, while weaving 20 

is the crossing of two or more traffic streams in the same traffic direction in a short road 21 

length without any assistance of traffic control devices. With these definitions, this paper 22 

classifies lane-changing mechanisms as follows: 23 
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 Solo (s): this involves a single vehicle making a lane-changing, where its 1 

neighbouring vehicles (those in front on the same lane and those in its target lane) 2 

are nor making a lane-changing move at the same time (Fig 1a);  3 

 Platoon (p): this represents a situation whereby the subject and its preceding 4 

vehicle from the same traffic stream change lanes together (as illustrated in Fig 5 

1b). The preceding vehicle is termed as front vehicle in this paper; 6 

 Weaving (w): this occurs if the subject vehicle and a vehicle from the adjacent 7 

traffic stream (on the left or right) cross each other at the same time (Fig 1c). In 8 

other words, the subject vehicle and the adjacent vehicle swap lanes to follow their 9 

preferred paths. The vehicle initiating the weaving is termed as the lead vehicle in 10 

this paper and the other one (which changes lane after seeing that the lead vehicle 11 

in the target lane has already indicated that he/she is changing lanes) is treated as 12 

the subject vehicle.  13 

 14 

<Figure 1 Diagrammatic illustrations of the three-different lane-changing mechanisms> 15 

 16 

According to Kusuma et al. (2014, 2015), the different lane-changing mechanisms yield 17 

differing sensitivities towards the positions and speeds of the front vehicle in the platoon 18 

and the lead vehicle in the target lane and lead to variations in the acceptable gaps for the 19 

lane change. It may be noted that, in very congested conditions, drivers on the mainline 20 

carriageway may slow down to assist the vehicles entering from the on-ramp or exiting to 21 

the off-ramp (Wang et al., 2006). This research deals with driving behaviour in moderately 22 

congested situations in correspond to HCM 2010 weaving section analysis algorithm. 23 

Moreover, the cooperative merging is beyond the scope of the current research. 24 
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3.2. A new lane-changing model structure for weaving traffic 1 

Given the choice of the target lane and the lane changing mechanism, the subject driver 2 

may accept or reject an available gap. The acceptable gap can vary depending on the lane-3 

changing mechanism. The acceptable gap is, however, unobserved in the data and only 4 

the final decisions of the driver: Change Left (CL), Change Right (CR) or No Change 5 

(NC) are observed.  We propose a random utility modelling framework to model the lane-6 

changing decisions at weaving. The model framework is illustrated in Fig. 2, where the 7 

observed decisions are shown in rectangles and the unobserved ones are shown in ovals. 8 

The proposed model structure is an extension of the generic freeway lane-changing model 9 

of Toledo et al. (2005). Different to Toledo et al. (2005), the new model structure has an 10 

added decision layer, the ‘mechanism’ (in Fig. 2), in which the different lane-changing 11 

mechanisms, including the two new mechanisms on platoon lane-changing and weaving, 12 

are explicitly represented.  13 

 14 

An example of lane-changing structure for a subject driver in lane 3 of a 4 lanes road is 15 

shown in Fig 2. The driver first selects a target lane, which is the most preferred lane 16 

considering the traffic conditions and his/her path plan. The choice of the target lane 17 

indicates the preferred direction of a lane change. For example, for the subject driver in 18 

lane 3, lanes 2 and 1 are on the left-hand side and lane 4 is on the right- hand side (for UK 19 

driving regulations). If the target lane is the same as the current lane, the lane-changing is 20 

not required (the observed action is therefore NC). If the target lane is 1 or 2, the driver 21 

looks for suitable gaps on the left. If the target lane is lane 4, the driver seeks suitable gaps 22 

on the right. A lane change is observed when the driver finds an acceptable gap in the 23 

desired direction and moves to the left (CL) or to the right (CR). Otherwise, he/she stays 24 
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in the current lane. It may be noted that the choice of target lane is unobserved in the 1 

trajectory data since the driver may or may not be successful in moving to the target lane.  2 

 3 

<Figure 2 The lane-changing framework for a driver on lane 3 of a four-lane road.> 4 

 5 

The driver looks for suitable gaps in the adjacent target lane in the direction of the target 6 

lane and executes a lane change if he/she finds an acceptable gap. The acceptable gap can 7 

be different depending on the lane-changing mechanism (i.e. solo, platoon or weaving). 8 

The observed actions of the front vehicle in the current lane and the lead vehicle in the 9 

target lane (see Fig 1) define the lane-changing mechanism. If the front vehicle is also 10 

changing lanes in the same direction, the subject driver has the option to execute (or not 11 

to) a platoon lane-change; whereas if the front vehicle in the current lane is not changing 12 

lanes in the same direction, but an adjacent vehicle in the target lane is making a change 13 

to the current lane, the subject driver has the option to execute (or not to) a weaving lane-14 

change. The lane-changing mechanism is therefore explicitly represented in the model. 15 

3.3. Model Formulations 16 

In this section, we describe the detailed formulations of the target lane choice and gap 17 

acceptance model components. These are followed by the likelihood function for the 18 

trajectory that builds upon these model components. 19 

3.3.1 The target lane choice model 20 

We formulate the target lane choice as a utility-maximisation problem whereby a driver 21 

chooses the lane with the highest utility.  The utility function of a driver (n) for choosing 22 

lane (l) at a specific time (t) can be written as follows:  23 
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𝑈𝑛𝑙 (𝑡) = 𝑉𝑛𝑙(𝑡) + 𝜀𝑛𝑙 (𝑡) 

(1)         = 𝛽𝑙𝑋𝑛𝑙 (𝑡) + 𝛼𝑙 𝜗𝑛 + 𝜀𝑛𝑙 (𝑡), 𝑙 ∈ {1,2,3, … , 𝐿} 

where: 1 𝑈𝑛𝑙 (𝑡) : Target lane utility of driver n at time t; 2 𝑉𝑛𝑙(𝑡) : Systematic component of the target lane utility of driver n at time t; 3 𝜀𝑛𝑙 (𝑡) : Random error term associated with target lane l for driver n at time t; 4 𝑋𝑛𝑙 (𝑡)   : Vector of explanatory variables associated with driver n for lane l at time t; 5 𝛽𝑙 : Vector of estimated parameters associated with target lane l; 6 𝜗𝑛  : Individual specific random error term (representing driver’s aggressiveness) to 7 

account for unobserved driver characteristics, and is assumed to follow a normal 8 

distribution ϑn~N(0,1) 9 𝛼𝑙 : Estimated parameters of individual specific random term 𝜗𝑛  for lane l; 10 

L : Total number of available lanes in the section. 11 

We assume that the trade-off between the Mandatory (MLC) and Discretionary lane 12 

changing (DLC) considerations is captured through the model variables and that the 13 

choice set of the driver includes all lanes over the road stretch (as in Toledo et al., 2005). 14 

The candidate variables affecting the choice of the target lane may include general traffic 15 

conditions (e.g. traffic density, average speed, orientation, etc. of each lane), surrounding 16 

vehicle attributes (e.g. relative speeds, types of surrounding vehicles, etc.), path-plan 17 

impact (e.g. whether or not the driver needs to take an exit or make a mandatory lane 18 

change in order to follow the path and if yes, what is the remaining distance to the exit), 19 

and driver characteristics (e.g. age, experience, stress level, aggressivene ss, etc.). The 20 

driver characteristics are however generally unobserved directly from traffic surveillance 21 
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(such as video recording or other sensor data) and are represented instead by statistica l 1 

distributions (Choudhury, 2007; Toledo et al., 2005). 2 

 3 

The choice model presumes that the random error term 𝜀𝑛𝑙 (𝑡) is independently and 4 

identically distributed (IID). Therefore, the probabilities of lane choice l conditional on 5 

individual specific random term 𝜗𝑛  can be written as: 6 

𝑃(𝑙𝑛(𝑡)|𝜗𝑛) = exp(𝑉𝑛𝑙(𝑡)|𝜗𝑛 ) / ∑ exp(𝑉𝑛𝑘(𝑡)|𝜗𝑛 )𝐿
𝑘=1  𝑙,𝑘 ∈ {1,2,3, … , 𝐿} (2) 

3.3.2 The gap acceptance model 7 

Gap acceptance is the second level of lane-changing decision-making process as shown 8 

in Fig.2. It is a result of interaction between the subject drivers and the traffic in the 9 

adjacent lane in the direction of the target lane. The interaction can be represented by 10 

variables such as relative speed between the subject vehicle and lead and/or lag vehicle at 11 

the target lane, the relative speed between the subject vehicle and the front vehicle in the 12 

current lane, types of vehicle, distance to exit etc. 13 

 14 

The driver evaluates both lead and lag gaps against his/her acceptable gaps threshold, 15 

known as critical gaps. The lead and lag gaps are accepted if both are greater than the 16 

corresponding critical gaps. The critical gap of a driver is not constant or static; rather it 17 

can vary among drivers and for the same driver across observations depending on the 18 

surrounding conditions. In the existing utility-based models (e.g. Ahmed et al., 1996; 19 

Choudhury, 2007; Toledo and Katz, 2009; Toledo et al., 2005), critical gaps are assumed 20 

to follow Log-normal distributions (since the gaps have non-negative values) where 21 
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explanatory variables represent the mean of the distribution. These models, however, do 1 

not address the effects of lane-changing mechanism on the critical gap values.  We 2 

propose the following formulation, to explicitly incorporate the effects of lane-changing 3 

mechanisms in the choice process: 4 𝐺𝑛𝑐𝑟,𝑗,𝑙 ,𝑚 (𝑡) = exp ( 𝛽𝑗,𝑚𝑋𝑛𝑗 ,𝑙 ,𝑚 (𝑡) + 𝛼𝑗,𝑚  𝜗𝑛 + 𝜀𝑛𝑗,𝑙,𝑚 (𝑡)) ;  𝑗 ∈ {𝑙𝑒𝑎𝑑, 𝑙𝑎𝑔}, 𝑚 ∈{𝑠, 𝑝, 𝑤}  

(3) 

where; 5 𝐺𝑛𝑐𝑟,𝑗,𝑙 ,𝑚 (𝑡) : Critical gap j in the direction of target lane l of driver n at time t 6 

associated with the lane-changing mechanism 7 𝑋𝑛𝑗 ,𝑙 ,𝑚 (𝑡)    : Vector of explanatory variables associated with driver n at time t looking 8 

for critical gap j, target lane l and lane-changing mechanism 𝑚 9 𝛽𝑗,𝑚           : Vector of estimated parameters for critical gap j and lane-changing 10 

mechanism 𝑚 11 𝛼𝑗,𝑚 : Estimated parameters of individual-specific random effect  𝜗𝑛 for critical 12 

gap j and lane-changing mechanism m 13 𝜀𝑛𝑗,𝑙,𝑚 (𝑡)   : Random error term associated with critical gap j and lane-changing 14 

mechanism m for driver n at time t, assumed to follow a normal 15 

distribution 𝑁(0, (𝜎 𝑗,𝑚 )2)  16 

Lane change at time t occurs if the driver accepts both the corresponding lead and the lag 17 

gaps. The probability of accepting available gaps in the direction of lane 𝑙 at time 𝑡 18 

conditional on individual-specific random term  𝜗𝑛 can, therefore, be expressed as 19 

follows: 20 
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𝑃(𝑙𝑐𝑛(𝑡)|𝑙𝑛(𝑡),𝑚𝑛(𝑡), 𝜗𝑛 ) 

 

= 𝑃((𝑎𝑐𝑐𝑒𝑝𝑡 𝑙𝑒𝑎𝑑 𝑔𝑎𝑝|𝑙𝑛(𝑡), 𝑚𝑛(𝑡),𝜗𝑛 ))∗ 𝑃((𝑎𝑐𝑐𝑒𝑝𝑡  𝑙𝑎𝑔 𝑔𝑎𝑝|𝑙𝑛(𝑡), 𝑚𝑛(𝑡),𝜗𝑛 )) = 𝑃 ((𝐺𝑛𝑙𝑒𝑎𝑑,𝑙,𝑚 |𝑙𝑛(𝑡),𝑚𝑛(𝑡), 𝜗𝑛)) ∗ 𝑃 ((𝐺𝑛𝑙𝑎𝑔,𝑙 ,𝑚|𝑙𝑛(𝑡), 𝑚𝑛(𝑡),𝜗𝑛 ))          (4) 
       

where: 1 𝐺𝑛𝑙𝑒𝑎𝑑,𝑙 ,𝑚, 𝐺𝑛𝑙𝑎𝑔,𝑙 ,𝑚  : Available lead and lag gaps at target lane l with mechanism m. 2 

 3 

A Log-normal distribution of the gap acceptance probability can be written as follows: 4 𝑃(𝐺𝑛𝑗,𝑙,𝑚(𝑡) ≥ 𝐺𝑛𝑐𝑟,𝑙 ,𝑚 (𝑡)|𝑙𝑛(𝑡),𝑚𝑛(𝑡),𝜗𝑛 ) 

 
= 𝑃[𝑙𝑛(𝐺𝑛𝑗,𝑙,𝑚 (𝑡) ≥ 𝐺𝑛𝑐𝑟,𝑙,𝑚(𝑡)|𝑙𝑛(𝑡),𝑚𝑛(𝑡), 𝜗𝑛 )]                                        (5) 

= Φ [𝑙𝑛(𝐺𝑛𝑗,𝑙 ,𝑚(𝑡) − 𝑋𝑛𝑗 ,𝑙,𝑚𝛽𝑗,𝑙,𝑚 + 𝛼𝑗,𝑚𝜗𝑛 )𝜎𝑗,𝑚 ] 

where: 5 Φ[∙] : Cumulative standard normal distribution 6 

3.3.3 The likelihood function 7 

The model is estimated using detailed trajectory data that consists of second by second 8 

positions of all drivers in the section. The likelihood function is applied to estimate the 9 

parameters of the lane-changing model. As mentioned in the target lane section, the lane-10 

changing model consists of two components: (1) target lane selection and (2) gap 11 

acceptance. The joint probability of observing a lane change at time 𝑡, 𝑃 (𝐿𝐶𝑛𝑙′ 𝑛(𝑡)) is a 12 

joint probability of choosing target lane 𝑙 and accepting the available gap at the direction 13 

of lane 𝑙 and can be expressed as follows: 14 
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𝑃(𝐿𝐶𝑛𝑙′ 𝑛(𝑡)|𝜗𝑛 )  

                     = ∑ ∑[𝑃(𝑙𝑛(𝑡)|𝜗𝑛)] [𝑃(𝑙𝑐𝑛(𝑡)|𝑙𝑛(𝑡),𝑚𝑛(𝑡),𝜗𝑛 )]𝑚𝑙∈𝑙′                           

𝑙′ ∈ {𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡}                                  (6) 1 

where 𝑃 (𝐿𝐶𝑛𝑙′ 𝑛(𝑡)) is the probability of lane change in direction 𝑙’. 2 𝑃(𝑙𝑛(𝑡)|. ) and 𝑃(𝑙𝑐𝑛(𝑡)|. ) are given by Equations 2 and 4 respectively. The trajectory 3 

data consists of a sequence of observations of the same driver over the study area. 4 

Assuming that the observations from different drivers are independent over time, the joint 5 

probability of the sequence observations can be specified as follows: 6 [𝑃(𝐿𝐶𝑛𝑙′(1)|𝜗𝑛)][𝑃(𝐿𝐶𝑛𝑙′(2)|𝜗𝑛)][𝑃(𝐿𝐶𝑛𝑙′(3)|𝜗𝑛)] … [𝑃(𝐿𝐶𝑛𝑙′(𝑇𝑛)|𝜗𝑛)] 

             

(4) =  ∏ ∑ ∑[𝑃(𝑙𝑛(𝑡)|𝜗𝑛)] [𝑃(𝑙𝑐𝑛(𝑡)|𝑙𝑛(𝑡),𝑚𝑛(𝑡), 𝜗𝑛)]𝑚𝑙
𝑇𝑛

𝑛=1  

where  𝑇𝑛 is the number of observed time period for each nth driver (1, 2, 3, …., Tn) 7 

Integrating Equation 7, the unconditional likelihood function (𝐿𝑛) of the observed lane-8 

changing behaviour over the distributions can be written as follows: 9 

𝐿𝐶𝑛 =  ∫ ∏ ∑ ∑[𝑃(𝑙𝑛(𝑡)|𝜗𝑛)] 𝑚𝑙
𝑇𝑛

𝑛=1 𝑓(𝜗)𝑣 𝑑ϑ      (5) 

Note that f(ϑ) is a standard normal probability density function representing the 10 

distribution of aggressiveness of the drivers in the sample. Following the IID distribution 11 

of the error terms, the log-likelihood function for all N individual observation denotes: 12 

𝐿 = ∑ ln 𝐿𝐶𝑛𝑁
𝑛=1         (9) 
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The maximum likelihood estimates of the model parameters are found by maximizing this 1 

function. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimisation algorithm is used 2 

for the maximization.  3 

4. Model Estimation 4 

The data used for the model estimation was collected in 2013 from the weaving section 5 

between Junction (J) 42-43 of the M1 motorway network in the UK (between Wakefield 6 

and Leeds). The level of congestion was moderate with a total traffic flow rate around 7 

6586 vehicle/hour. The empirical observations and analysis were reported in Kusuma et 8 

al. (2014, 2015). In this section, we first summarise briefly the empirical findings. We 9 

then describe how the data extracted from the video recording are used for generating the 10 

variables of interest for the estimating the proposed model and present the model 11 

estimation results.    12 

4.1  The Observation 13 

The observation was made on a weekday afternoon (17:15-17:45) when the motorway 14 

traffic was moderately congested. The traffic movement analysis showing that, it indicates 15 

the traffic at the observation area is moderately congested with level of service C based 16 

on HCM 2010 algorithm. Fig. 3 shows a schematic drawing of the weaving section from 17 

J42 to J43. It is a five-lane dual-carriageway, with three lanes for through traffic (denoted 18 

as lanes 3, 4 and 5) and two auxiliary lanes (lanes 1 and 2) for merging and diverging 19 

traffic. The distance between J42-43 is 1,265m, which is slightly shorter than the 2,000m 20 

recommended by DMRB (2006) for a weaving section.  21 

The video recording was made from an over-bridge located 620m downstream from J42 22 

and was made in both directions. The first camera faced the traffic from J42 and recorded 23 
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all five lanes of traffic. A second camera faced J43 and recorded the traffic between the 1 

overbridge and the exit ramp. The trajectory data was extracted using a semi-automated 2 

vehicle trajectory extractor application by Lee et al. (2008). The trajectory extraction 3 

software could however only process video recordings of ‘front-views’ of the cars. 4 

Therefore, the detailed trajectory data was available only for the first 320 m from J42 5 

(between points M and N in Fig. 3). The data from the second camera (downstream of the 6 

over-bridge which provided ‘back view’ of the cars) was, however, useful for the creation 7 

of a local origin-destination (presented in Table 1) and for recording the total number of 8 

lane changes. This was done manually observing the videos rather than using any 9 

software.  10 

 11 

The potential spatial inaccuracies in the data have been a concern in this case and in spite 12 

of best efforts, the data are likely to have errors due to the limitations of the video 13 

recording tool, pixel resolution, frame rate, camera vibration, camera synchronization and 14 

longitudinal and lateral angles. The trajectory data, therefore, was smoothed using the 15 

locally weighted regression technique and validated using the aggregate speed and flow 16 

information of the same time period obtained from the MIDAS database. The details of 17 

the extraction procedure are discussed in Kusuma et al. (2014, 2015).  The final dataset 18 

includes 17,981 trajectory data points from 1,386 vehicles. 19 

 20 

<Figure 3 The observation site > 21 

 22 

The observed weaving section has two origin nodes: A from the main carriageway and B 23 

from J42 on-ramp, and two destination nodes: C to the exit at J43 and D continue on the 24 
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motorway. The local origin-destination traffic volumes are obtained from the video survey 1 

data and listed in Table 1 below. 2 

 3 

<Table 1 The 15-min origin-destination traffic volumes (vehicles) over the survey site> 4 

Detailed descriptions of the extraction process and analysis of the extracted vehicle 5 

trajectory data have been presented in Kusuma et al. (2015). They found that the traffic 6 

speed in the observation area varies between 19m/sec and 38 m/sec, with mean value 26 7 

m/sec (93.6 km/h). In this case, 19.5% of the traffic moves over the speed limit (112km/h). 8 

Moreover, the mean relative speed values between the subject and the current lane front 9 

vehicle and target lane lead and target lane lag vehicles are -0.76, -1.91 and 1.35 m/sec 10 

respectively. The distributions of the relative speeds and time gaps of the vehicles are 11 

presented in Fig. 4. 12 

 13 

<Figure 4 Relative speed between the subject vehicle and (a) front vehicle on current 14 

lane, (b) lead vehicle* and (c) lag vehicle* at the target lane, and gap between the subject 15 

vehicle and (d) front vehicle, (e) lead vehicle* and (f) lag vehicle*.> 16 

 17 

The accepted gap at target lane varies between 0.041 sec and 10.98 sec with a mean value 18 

3.27 sec and median value 2.71 sec, while the accepted lag distributes between 0.59 sec 19 

                                                 

1 The gaps in this study are measured when the observed vehicle initiates the lane-changing 

process (starts to change the direction). 0.04 sec is actually not the size of the gap during the 

actual execution. In this case, the observed lane-changing vehicles may expect that the gap 

size will increase and become larger during the execution of the lane change. 
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and 14.16 sec with mean value 5.23 sec and median value 4.15 sec. The accepted gap and 1 

lag distributions fit very well with a Log-normal distribution (as shown in Fig. 4 d, e, and 2 

f). The distributions are heavily skewed to the left implying that most of the drivers accept 3 

smaller lead and lag gaps during the lane-changing movement.    4 

4.2 Lane-changing characteristics 5 

Kusuma et al. (2015) examined the detailed individual vehicle trajectory data extracted 6 

from the first 320m of the weaving section (between location M and N on Fig. 3). We 7 

summarise below the key findings from their study on the observed lane-changing 8 

behaviour at the weaving section:  9 

 731 (53%) of the vehicles observed in the video data made at least one LC 10 

move. 458 of these lane changes were MLC movement - that is the lane 11 

change was essential either to exit from the motorway (O-D pair A-C, 185 12 

vehicles) or to merge into the mainline traffic (O-D pair B-D, 273 vehicles). 13 

The remaining lane changing vehicles performed DLC movement.   14 

 Most of the lane changing vehicles performed a single lane change (73.8% 15 

of total lane-changing traffic).  16 

 The maximum number of lanes changed was three. This situation occurred 17 

for vehicles merging or diverging to or from the main traffic.  18 

 Majority of the vehicles making more than one lane change performed 19 

staggered lane-changing strategy (18.6%) rather than direct one. For the 20 

staggered lane changes, the average driving time in transit lane was 2 sec. 21 
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 95% of the total lane changes took place in the upstream section before the 1 

over-bridge. The remaining 5% took place after the over-bridge and is 2 

excluded from further analysis and modelling in the rest of the paper. 3 

<Figure 5 Percentage distribution of vehicles in each lane at the start of the weaving 4 

section (location M in Fig. 3) and 320m downstream at location N > 5 

<Figure 6 Lane-changing frequencies by origin lane - destination lane> 6 

Fig. 5 shows the lateral distribution of all vehicles at the start and the end of the section 7 

(at locations M and N in Fig. 3 respectively), while Fig. 6 shows the lateral distribution 8 

pattern of lane changes. It can be seen that, whilst the lateral distributions of vehicles over 9 

the 320m section do not change significantly (Fig. 5), there are significantly different 10 

amount of lane-changing activities between lanes. Fig. 6 shows that Lanes 2 and 3 have 11 

the highest proportions of total lane changing, at 31% and 33.4% respectively, and the 12 

majority of which are making MLC (e.g. 26.8% from the merging Lane 2 to Lanes 3 – 5 13 

on the main carriageway, and 31.9% from Lane 3 to the exit Lanes 1 and 2). Lane 4 also 14 

has a high proportion (at 18.8%) of lane changes. In total, 83.2% of the total lane changes 15 

are made by vehicles entering the weaving section in the middle three lanes, either as 16 

MLC to enter or exit the motorway, or as DLC perhaps to facilitate or be influenced by 17 

other lane changes nearby. 18 

 19 

The vehicle trajectory dataset was also used to identify the location of lane changes and 20 

the different types of lane-changing behaviour. It is found that 76% of lane changes occur 21 

over the first 250m, as measured from the starting point of the weaving section (location 22 𝑀 in Fig. 3). The trajectory data has revealed a significant amount of group lane changing 23 
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behaviour (as either in a platoon or weaving). The proportions of different types of lane 1 

changes are: (1) solo: 76.6%; (2) platoon: 10.7%; and (3) weaving: 12.7%.  2 

 3 

In total, 23.4% of the lane changing traffic are found to be involved in group behaviour 4 

(as either platoon or weaving), most of which are between Lane 3 and Lane 2. The 5 

substantial share of such group behaviour reinforces the need to incorporate the effect of 6 

different lane-changing mechanisms in lane-changing models and subsequently in traffic 7 

simulation models. 8 

4.3. Model estimation results 9 

The target lane and gap acceptance of the proposed lane change model are estimated 10 

jointly using a maximum likelihood approach as described in Section 3. The explanatory 11 

variables found to be statistically significant in the target lane model include lane 12 

characteristics (average speed and occupancy), relative speed with the vehicle in the front 13 

and path-plan variables (remaining distance to MLC point and the number of required lane 14 

changes) while those for the gap acceptance model are relative speed with the vehicle in 15 

the front and lead and lag vehicles in the target lane. 17,891 data points on individua l 16 

vehicles’ speeds and gaps extracted from video recordings (Kusuma et al., 2014), as well 17 

as the 1-minute averaged traffic speed and occupancy data are from the MIDAS loop 18 

detector, are used in the model estimation. Table 2 summarises the estimation results of 19 

the proposed lane-changing model. The description of the variables in the final model is 20 

presented in Table 3 along with the model components where they are used. The estimated 21 

model functions and their implications are presented below.  22 

<Table 2 Lane-changing model estimation result> 23 
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<Table 3 Summary of Explanatory Variables> 1 

4.3.1 Results for the target lane model 2 

The probability of selecting a particular lane as the desired lane is affected by several 3 

attributes such as the average speed, occupancy and path-plan impact.  4 

 5 

The lane specific constants denote that, with the other attributes being equal, a driver 6 

prefers Lane 3 the most as this lane provides ease of merging or diverging from the main 7 

traffic within and beyond the study area.  Lane 2 is the next preferred lane. In contrast, all 8 

else being equal, the driver tends to avoid lane 5 which is further away from the entry and 9 

exit ramps and is the fastest lane.  10 

 11 

As expected, the drivers prefer lanes with higher average speeds, faster front/lead vehicles 12 

and lower lane occupancies. The relative speed captures the interaction between the 13 

subject and lead vehicle. The positive sign of this attribute implies that the utility of a lane 14 

increases with the increase in relative speed to front/lead vehicle. It may be noted that the 15 

occupancy variable has been retained in the model in spite of the low t-stat which in this 16 

case is attributed to the small range of variation of the occupancy levels in the data. The 17 

coefficient has been retained because in an application scenario, the occupancy levels may 18 

vary more and the effect of this variable may not be trivial. 19 

 20 

Rather than deterministically differentiating between DLC and MLC, the effects of path-21 

plan are captured by the interaction of the required number of lane changes and the 22 

remaining distance to reach the MLC point. The magnitude of this effect amplifies as the 23 
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vehicle approaches the MLC point (e.g. off-ramp location).  This effect is represented by 1 

the negative power of remaining distance to the off-ramp (δndist .exit = -0.135). For 2 

example, if a driver needs to take the exit at 1m away from the off-ramp 
  1exit

n
d t  , Lane 3 

3
  1

n
c t 

 has an additional disutility of 10.2*(1-0.135) units, Lane 4 cn(t) = 2)has an 4 

additional disutility of 20.4*(1-0.135) units, etc.  At 0.5m away from the off-ramp, the 5 

disutilities are 10.2*(0.5-0.135) units and 20.4* (0.5-0.135) units, respectively. This is 6 

shown schematically in an example in Fig. 7, where the disutility of being on the incorrect 7 

lane amplifies significantly as he/she approaches the end of weaving section. In terms of 8 

probabilities, this translates to the fact that the drivers have higher probabilities of making 9 

pre-emptive lane changes if they are multiple lanes away from the ‘correct’ lane. 10 

 11 

<Figure 7 Impact of the distance to exit on the lane utility, for requiring one, two or three 12 

lane changes>  13 

The heterogeneity term ϑn(t)captures the driver aggressiveness with respect to the target 14 

lane location either left or right of the current lane location. A positive sign on the left 15 

lane-changing direction implies that left lane changing drivers are more likely to choose 16 

a left lane over a right lane. The parameters are statistically insignificant though. However, 17 

they have been retained as they capture the correlation between the lane choice and the 18 

gap acceptance decisions of the same driver. 19 

 20 

Giving the estimation result in Table 2, the target lane utility can be written as follows: 21 
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𝑈𝑛𝑙 (𝑡) = 𝛽𝑙 + 0.0174 V̅𝑛𝑙 (𝑡) − 0.00185 occ𝑛𝑙 (𝑡) + 0.0487 ∆𝑉𝑛𝑙(𝑡)
− 10.223𝑐𝑛(𝑡) (𝑑𝑛𝑒𝑥𝑖𝑡(𝑡))−0.135 + 𝛼𝑙𝜗𝑛 (𝑡) + 𝜀𝑛𝑙 (𝑡) 

(10) 

where: 1 𝛽𝑙 : Lane l specific constant 2 V̅𝑛𝑙 (𝑡) : Average speed at lane l of driver n at time t (m/sec) 3 occ𝑛𝑙    : Lane l occupancy level of driver n at time t 4  ∆𝑉𝑛𝑙(𝑡)      : Relative speed between nth driver and the leading vehicle at lane l at time t 5 𝑑𝑛𝑒𝑥𝑖𝑡(𝑡)    : Remaining distance to the mandatory lane-changing point of the nth driver at 6 

time t, ∞ if no mandatory lane-changing is required. 7 𝑐𝑛(𝑡)     : Number of lane changes required toward the target lane at time t 8 𝛼𝑙        : Estimated parameters of individual specific random effect ϑn for direction l'   9 l' ∈ {left, right} depending on the orientation of target lane 𝑙 with respect to the current 10 

lane. 11 

 12 

The choice of the target lane indicates the direction of lane change (e.g. stay in the current 13 

lane, look for gaps in the right, look for gaps in the left) and the driver looks for acceptable 14 

gaps in that direction.  15 

4.3.2 Results for the critical gap acceptance model 16 

The gap acceptance is the second level of the lane change decision-making process. As 17 

described in Section 3, three different mechanisms of lane changes have been considered 18 

here: solo, platoon, and weaving. The explanatory variables modelled include the relative 19 

speeds with the front vehicle in the current lane and lead and lag vehicles in the target 20 

lane.  The estimation results on the critical gaps are shown in Table 1 and are for each 21 
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individual LC mechanisms as well as for all types of LC. The results indicate that the 1 

model constant terms differ significantly by lane-changing mechanism and that, all else 2 

being equal, the critical lead gap is the smallest for the platoon LC and the largest for 3 

weaving2.  4 

 5 

The critical lead gap of solo LC is found to be affected by both relative speeds with the 6 

lead vehicle in the target lane and front vehicle in the current lane. Meanwhile, the critical 7 

lead gap of the platoon lane-changing mechanism is affected by the relative speed with 8 

the front vehicle in the current lane only. On the other hand, the critical lead gap of the 9 

weaving lane-changing mechanism is affected by the relative speed with the lead vehicle 10 

in the target lane only. This is intuitive as for the platoon mechanisms; the front vehicle 11 

in the current lane has a more dominant role whereas for the weaving mechanism, the lead 12 

vehicle in the target lane has a more dominant role. The relative speeds have negative 13 

signs in the critical lead gaps associated with all lane-changing mechanisms denoting that 14 

the observed vehicle opts for a smaller gap if the front vehicle in the current lane or lead 15 

vehicle in the target lane is moving faster than the subject vehicle (i.e. gap opening up). 16 

 17 

The coefficients of the individual-specific random terms and the standard deviations are 18 

also significantly different depending on the lane-changing mechanisms. An aggressive 19 

driver is defined as the one who requires a smaller critical gap all else being equal.  20 

                                                 

2 For weaving gap acceptance, the estimated model only applies to the instantaneous decision of 

the second vehicle (the one that changes lane after seeing that the lead vehicle in the target 

lane has already indicated that he/she is changing lanes)  
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Estimation results indicate that levels of aggressiveness have varied effects on the critical 1 

gaps depending on the lane-changing mechanism. The effect of aggressiveness is most 2 

(i.e. reduction in the critical gap is the largest) on weaving manoeuvres and least on 3 

platoon lane changes.  4 

 5 

The lead critical gap functions for the three lane-changing mechanisms are presented 6 

below: 7 𝐺𝑛𝑐𝑟,𝑙𝑒𝑎𝑑,𝑙,𝑠 (𝑡) = 𝑒𝑥𝑝 (−0.864 − 0.0204 ∆𝑉𝑛𝑙(𝑡) − 0.00730 ∆𝑉𝑛𝑐𝑙(𝑡)
−  1.440 𝜗𝑛𝑙𝑒𝑎𝑑,𝑠 (𝑡) + 𝜀𝑛𝑙𝑒𝑎𝑑,𝑠 (𝑡)) (11) 

   , 2~ 0,0.150lead s

n
t N

 

 8 𝐺𝑛𝑐𝑟,𝑙𝑒𝑎𝑑,𝑙,𝑝(𝑡) = 𝑒𝑥𝑝 (−2.36 − 0.263∆𝑉𝑛𝑐𝑙(𝑡) − 1.200𝜗𝑛𝑙𝑒𝑎𝑑,𝑝
+ 𝜀𝑛𝑙𝑒𝑎𝑑,𝑝(𝑡)) , (12) 

εnlead,p(t)~N(0,1.692) 

 9 𝐺𝑛𝑐𝑟,𝑙𝑒𝑎𝑑,𝑙,𝑤 (𝑡) = exp (−0.539 − 0.127∆𝑉𝑛𝑙(𝑡) − 1.680 ϑ𝑛𝑙𝑒𝑎𝑑,𝑤 +
𝜀𝑛𝑙𝑒𝑎𝑑,𝑤 (𝑡)), (13) 

𝜀𝑛𝑙𝑒𝑎𝑑,𝑤 (𝑡) ~ 𝑁(0,0.4102) 

where: 10 
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Gncr,lead ,l,m(t)   : Critical lead gap at the direction of target lane l of the nth driver at time 1 

t for lane-changing mechanism 𝑚, where m; Solo (s), Platoon (p) or 2 

Weaving (w) 3 ∆Vnl (t)        : Relative speed between the nth driver and the lead vehicle in the 4 

direction of the target lane l at time t 5 ∆Vncl(t)         : Relative speed between the nth driver and the front vehicle at current 6 

lane l at time t 7 

It may be noted that the gap-acceptance decision has already been made at time t. The 8 

relative speed for the platoon gap acceptance thus refers to the speed difference with the 9 

front vehicle at time t when both vehicles are in the same lane and the subject driver knows 10 

from the indicator that the vehicle in the front is changing lanes in the same direction. 11 

Similarly, for weaving gap acceptance, the relative speed refers to the speed difference 12 

with the lead vehicle in the target lane at time t who has indicated that he/she is changing 13 

lanes.  14 

 15 

The variations of median lead critical gaps and observed gaps with different relative 16 

speeds of the front and lead vehicles are presented in Fig. 8 respectively. 17 

 18 

Due to the limited availability of the observed data it was not possible to conduct any 19 

independent validation exercise. However, following the general guidance on simula t ion 20 

model and data validation methods (e.g. Antoniou et al., 2014; Hollander and Liu, 2007), 21 

we also compared the estimated critical lead gap variations with the corresponding 22 

observed gaps for the three lane-changing mechanisms as a function of relative speed. The 23 

analysis uses a nonlinear regression to capture the relationship between the observed 24 
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accepted gap (dependent variable) and relative speed (explanatory variable) for the fitted 1 

trajectory dataset. Similar to the critical gaps, the regression results show that the accepted 2 

lead gaps increase with the relative speed between the subject vehicle and front/lead 3 

vehicles. Further, the critical lead gaps are always found to be slightly smaller compared 4 

to the observed accepted leads gaps (as expected) which validates the results.  5 

 6 

The analysis of critical gap confirms that the critical gap is slightly increased with relative 7 

speed between the subject and both current lane front vehicle and target lane lead vehicles . 8 

The platoon lane-changing mechanism, which tends to be the simplest lane-changing 9 

movement, has the lowest critical gap compared to solo and weaving lane-changing 10 

mechanisms. The driver in this mechanism is relatively relaxes and follow the movement 11 

of front vehicle, who takes the role to initiate an interaction for creating space with the 12 

target lane traffic. 13 

 14 

<Figure 8 Variation of median lead critical gaps (predicted) and accepted gaps 15 

(observed) in as a function of relative speed> 16 

 17 

Asymptotic t-tests have been used to test the statistical differences in the coefficients (as 18 

suggested by Ben-Akiva and Lerman (1985). The test results indicate rejection of the null 19 

hypotheses at 5% level of significance. The differences in the specification of the critical 20 

lag gap depending on the lane-changing mechanism, however, revealed statistica l ly 21 

insignificant differences (which is intuitive) and therefore a common lag gap acceptance 22 

model has been retained.  23 

 24 
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The results indicate that the relative speed coefficient has a positive sign indicating that 1 

the critical lag gap of the lane-changing vehicle is larger if the lag vehicle in the target 2 

lane is moving faster (i.e. gap closing). Similar to the critical lead gaps, the critical gaps 3 

are found to be smaller for aggressive drivers. The estimated critical lag gap function can 4 

is as follows: 5 𝐺𝑛𝑐𝑟,𝑙𝑎𝑔,𝑙(𝑡) = 𝑒𝑥𝑝 (0.421 + 0.015∆𝑉𝑡𝑎𝑟𝑛𝑙𝑎𝑔,𝑙(𝑡) − 2.42𝜗𝑛𝑙𝑎𝑔 + 𝜀𝑛𝑙𝑎𝑔(𝑡))    (14) 

where: 6 Gncr,lag ,l(t)    : Lag critical gap at target lane  l of driver n at time t 7 ∆Vnl (t)        : Relative speed between the nth driver and the lag vehicle in the direction of 8 

the target lane l at time t  9 

   2~ 0,0.872lag

n
t N

 10 

 11 

<Figure 9 Variation of median lag critical gaps (predicted) and accepted gaps (observed) 12 

as a function of relative speed> 13 

 14 

The individual-specific constant of the critical lag gap indicates that it has slightly larger 15 

value compared to the critical lead gaps of all lane-changing mechanisms. That is to say 16 

that the driver is more alert when accepting the lag due to the difficulty in interpreting the 17 

lag vehicle behaviour (i.e. observe through the mirror) rather than the downstream traffic 18 

movement. This agrees with the findings of Bham (2008) for non-congested situations. 19 

 20 

Similar to the lead gaps, for validation, we compared the estimated critical lag gap 21 

variations with the corresponding accepted lag gaps (observed) as a function of relative 22 
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speed. The analysis uses a nonlinear regression to capture the relationship between the 1 

observed accepted lag gap (dependent variable) and relative speed (explanatory variable) 2 

for the given fitted trajectory vehicle dataset. Similar to the lead gaps, the regression 3 

results show that the observed accepted lag gaps increase with the relative speeds between 4 

the subject vehicle and lag vehicles and the critical lag gaps are always be slightly smaller 5 

compared to the observed lag accepted gaps (which validates the results).  6 

4.4. Model comparison 7 

The proposed model is compared with a model that ignores the effect of lane-changing 8 

mechanisms in the model structure (as in Toledo et al. 2005) that has been re-estimated 9 

using the M1 data. This model assumes same critical gap functions irrespective of lane -10 

changing mechanisms and is referred as the ‘Restricted’ model. The proposed extended 11 

model with different model parameters for solo, weaving and platoon lane changes is 12 

referred as the ‘Unrestricted’ model.  13 

 14 

The summary statistics of the estimation results for the two models are presented in  15 

 16 

<Table 4. The model with explicit lane-changing mechanisms has larger values in terms 17 

of both Akaike Information Criteria (𝐴𝐼𝐶) and Adjusted Rho-Square (𝜌2) indicating an 18 

improvement in the fitness of the proposed model, even after discounting for the larger 19 

number of parameters.  20 

 21 

<Table 4 Model comparison> 22 

 23 
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Furthermore, the improvement in the goodness of fit is also tested using Likelihood Ratio 1 

Tests:  2 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑅𝑎𝑡𝑖𝑜 𝑇𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 = 2 ∗ (𝐿(𝛽∗,𝑟𝑒𝑠 ) − 𝐿(𝛽∗,𝑢𝑛𝑟𝑒𝑠 )) 

(15) = 63.08 > 𝜒82(15.51) 

   3 

This confirms that the inclusion of the lane-changing mechanisms in the decision 4 

framework results in a statistically significant improvement in the goodness-of-fit even 5 

after discounting for the increase in the number of parameters. These findings are in line 6 

with the asymptotic t-test results (Section 4.3.2), which denote that the parameters for 7 

platoon and weaving are statistically different from those of solo lane changes.  8 

5. Conclusions 9 

This paper extends the state-of-the-art random utility-based lane-changing model to 10 

explicitly incorporate the effect of the lane-changing mechanism (platoon, weaving and 11 

solo) in the modelling framework. The model parameters are estimated using vehicle 12 

trajectory data collected from a weaving section on the M1 motorway network between 13 

J42-43 in the UK. The estimation results indicate significant differences in parameters as 14 

well as influencing variables among the three types of lane-changing mechanisms. This is 15 

supported by statistically significant improvements in the goodness-of-fit results as well 16 

as asymptotic t-tests. 17 

 18 

The practical implications of the research are highlighted below: 19 

1. Safety implications: The model estimates provide critical insights that can be used 20 

to increase safety in weaving sections. For example, parameter values indicate that 21 
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all else being equal, platooned lane-changing involves smaller gap and there can be 1 

significant spread in critical gaps of weaving lane changes.  Interventio ns like 2 

advising drivers to keep larger headways in weaving sections can, therefore, play a 3 

significant role in making the weaving sections safer.   4 

2. Efficiency implications: The model estimates also indicate that platoon and weaving 5 

drivers are more sensitive to relative speed changes and increase their critical gaps 6 

significantly with negative relative speed. Advice/interventions (such as the variable 7 

speed limits) to equalise vehicle speeds would, therefore, reduce the critical gap and 8 

improve lane-changing efficiency. Estimates also validate that if multiple lane 9 

changes are required, a vehicle is more likely to occur at the beginning of a weaving 10 

area. Interventions to separate lane-changing for merging from lane-changing for 11 

diverging would minimise the intensity of lane-changing at the beginning of 12 

weaving area and spread lane-changing across the whole weaving area. This can 13 

improve safety as well as the traffic performance of the weaving section. 14 

3. Potential to lead to better microsimulation tools: The current models are yet to be 15 

validated in any microsimulation tool. However, the improvements in the goodness -16 

of-fit statistics provide strong indications of the potential to improve the weaving 17 

behaviour in microsimulation tools which has been identified as a weak point of the 18 

traffic simulation tools (Alexiadis et al. 2004). 19 

 20 

The research, however, has several limitations. First of all, the data used for the research 21 

includes trajectory data extracted from video recordings, which though widely used, have 22 

known limitations such as the possibilities of spatial measurement errors and absence of 23 

driver characteristics and information about lane-changing indicators. The quality of the 24 
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models would certainly be improved with better data. More data, possibly from other 1 

locations, would have also enabled us to perform out-of-sample validation which we 2 

recommend as an area of further research. Secondly, the proposed models are estimated 3 

using data collected from moderately congested traffic conditions. Though this provided 4 

the opportunity to observe higher shares of platoon and weaving mechanisms, it lacked 5 

observations on other mechanisms, as such courtesy and forced lane changes. The results, 6 

therefore, are therefore generalized since they may not be directly applicable to congested 7 

or over saturated situations. It will be interesting to test the transferability of the estimation 8 

results in other weaving sections and other congestion levels in future research. Further, 9 

the current models are yet to be validated in any microsimulation tool to investigate the 10 

improvements in the aggregate level predictions resulted by the improvements in the 11 

goodness-of-fit of the model parameters. Another potential direction of extension can be 12 

to investigate the effect of the lane-changing mechanism on acceleration behaviour. 13 
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