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Abstract 

In this paper, we investigate how energy storage can be used to increase the value of 

community energy schemes through cost reductions, infrastructure support, increased 

scheme membership, and reduced carbon emissions. A linear programming optimisation 

framework is developed to schedule the operation of behind-the-meter energy storage such 

that costs are minimised, while keeping peak demands within allowable limits. This is also 

extended to model generation-integrated energy storage systems, where the storage is 

located in the flow of energy from primary source (e.g. wind) to a usable form (e.g. 

electricity). To demonstrate the potential of energy storage within a real community energy 

scheme, we present a case study of a community hydro scheme in North Wales, considering 

both battery storage and a reservoir-based storage system. It is found that either system can 

be used to substantially increase the membership of the scheme while avoiding impacts on 

the electricity network, but that storage remains prohibitively expensive when used for self-

consumption of renewables and arbitrage. We also investigate the impacts of energy storage 

on the community’s carbon emissions, showing that storage operation appears to provide 

very little additional reduction in emissions when grid average emissions factors are used. 

Keywords: Micro hydro; Battery storage; Scheduling; Linear programming 

Highlights: 

 Methodology for assessment of generation-integrated and non-generation-integrated 

energy storage systems is developed. 

 Assessment covers economics, environment, and network constraints. 

 An efficient method of scheduling behind-the-meter storage is designed. 

 Storage alongside a community hydro scheme in North Wales is investigated. 

 Storage on a scale of 1 kWh per household can increase scheme membership by 

>30%. 
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Nomenclature: 𝐴ℎ Amp-hour charge throughput in a battery cell 𝑐 Carbon intensity of grid power 𝐶 Cash flow 𝐶 Charge power capacity of the storage 𝐷 Discharge power capacity of the storage 𝐸 Maximum allowable energy in store 𝐸 Minimum allowable energy in store 𝑔 Local generation 𝐺 Generator capacity 𝑘 Time step index 𝑙 Load 𝑛 Percentage increase in load; Year of cash flow 𝑝 Net demand 𝑝+ Grid import 𝑝− Grid export 𝑄loss Percentage capacity loss in the battery 𝑟 Discount rate 𝑠 Number of time steps in foresight horizon 𝑡 Life of investment opportunity Δ𝑡 Duration of time step 𝑇 Absolute temperature 𝑢 Storage charge/discharge power 𝑥 Energy in store 

 𝜂𝑐 Storage charging efficiency 𝜂𝑑 Storage discharging efficiency 𝝀 Vector of import prices 𝝅 Vector of export prices 𝑀 Maximum import capacity 𝜎 Storage self-discharge rate (hourly) Φ Carbon emissions 
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ADMD After diversity maximum demand 

CIC Community interest company 

CRC Carbon Reduction Commitment 

DOD Depth of discharge 

FIT Feed-in Tariff 

GIES Generation-integrated energy storage 

MPC Model predictive control 

NPV Net present value 

PPA Power purchase agreement 

TOU Time-of-use (tariff) 

1. Introduction 

1.1. Motivation 

Community energy generation schemes have several advantages over small-scale 

technologies owned by individual consumers. They can offer lower-cost renewable energy 

while avoiding the need for individuals to make large initial investments. They also allow 

consumers to make use of natural resources in the local area, strengthening communities by 

providing financial returns that can be used to fund socially beneficial projects. Compared to 

household scale technologies, community schemes can benefit from greater economies of 

scale, and in many markets can access better export terms. For example, by arranging a 

power purchase agreement (PPA) with a supplier, a community scheme can receive 

payments for export even if explicit support schemes (e.g. feed-in tariffs) are reduced or 

removed, as is the case in the UK [1]. Globally, there are many community energy 

generation schemes covering a wide range of technologies for generating heat and power. 

In the UK there are over 200 community electricity generation schemes with an estimated 

combined capacity of 249 MW [2]. 

While a great deal of research has been conducted into energy storage alongside 

community wind and solar schemes [3, 4], very little attention has been given to the role that 

energy storage could play in community hydro schemes. This is surprising as hydropower 

accounts for over half of the world’s renewables power capacity [5], with a recent study 

finding that 82,891 small hydropower plants are operating or are under construction around 

the world, and identifying potential capacity for another 180,000 new plants [6]. Within the 

UK alone, community hydro schemes have been implemented at many locations, yet none 

have energy storage alongside them. It seems likely that more will be developed in the near 

future, as projects in Wales have become more attractive following the introduction of 

business rates relief [7]. There is an urgent need therefore to understand how energy 

storage can be usefully integrated with community-scale hydro schemes. 

1.2. Storage concepts for community hydro systems 

First introduced by Garvey et al [8], a generation-integrated energy storage (GIES) system is 

an energy generation system with energy storage included in the flow of energy from primary 
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source to useful energy (i.e. electricity or heat). This can be contrasted with a non-GIES 

system (comprising generation and standalone storage), whereby the input to the energy 

storage system is electricity or heat. A comparison of non-GIES and GIES systems in shown 

in Fig. 1. In the non-GIES system, energy undergoes one or more transformations to 

become electricity and any energy passed through storage undergoes two further 

transformations and two moves. In the GIES system, all electrical energy extracted has 

undergone two transformations. Energy put through storage is moved twice but not 

transformed further. Energy movements incur some losses but these are normally much 

smaller than the losses due to transformation. Since GIES systems reduce the number of 

transformations associated with the storage of energy, they can have far lower energy 

losses than non-GIES systems when energy is passed through storage. Readers are 

directed to Garvey et al [8] for a more detailed description of GIES. 

Natural hydro systems with reservoir storage are a good example of existing GIES systems, 

and such systems also already exist for concentrating solar power [9, 10] with concepts 

proposed for wind [11-15] and nuclear power [16, 17]. In the case of a community 

hydropower system, the storage in a GIES system would most likely be a dammed reservoir 

upstream of the hydro generator, whereas a non-GIES hydropower system might have a 

battery behind the same meter as the hydro generator and the load (i.e. the households and 

businesses in the community energy scheme). 

 

Fig. 1 Generation systems with storage: (A) Non-GIES system with storage and (B) 
GIES system. Red arrows represent energy transformations. Green arrows represent 

energy movements [8]. 
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1.3. Objectives of the present work 

A key factor in deciding whether to integrate any storage system is the value of the benefits 

provided compared to the cost of installing the equipment. While the latter is relatively easy 

to evaluate, the former is much more challenging. This paper addresses, therefore, the 

question: “What is the value of generation-integrated and non-generation-integrated energy 

storage in community electricity generation schemes?” with an emphasis on hydro schemes.  

We present an efficient, general approach to scheduling the operation of behind-the-meter 

energy storage systems, based on the principles of model predictive control and linear 

programming. We use this approach to investigate the value of installing energy storage 

alongside a community hydro scheme, considering both a conventional non-generation-

integrated energy storage system, taking the form of batteries, and a GIES system, taking 

the form of a reservoir. The value streams considered cover economics, the environment, 

and the impacts on the electricity network. 

The specific contributions of this paper are: 

 Introducing an efficient, general method for scheduling the operation of energy 

storage systems, accounting for cycling-induced battery degradation, differing import 

and export prices (for behind-the-meter storage units), network constraints, and feed-

in tariff scheme requirements, as well as allowing limited foresight of generation and 

demand. 

 Further developing the method to support the scheduling of generation-integrated 

energy storage systems. 

 Using the method for a cost-benefit analysis of energy storage alongside a 

community hydro scheme, considering the needs of several stakeholders including 

members of the scheme, investors, and network operators. 

 Comparing generation-integrated energy storage systems with non-generation-

integrated energy storage systems in a community generation context. 

1.4. Key features of our approach 

Numerous approaches have been taken to optimising the operating schedule of energy 

storage systems. These include algorithmic approaches [18, 19], convex optimisation [20, 

21], quadratic programming [22, 23], mixed integer linear programming [24-27], and linear 

programming [28, 29]. Of these, linear programming approaches have the advantage of 

being efficient while also being widely applicable. However, the nonlinearities associated 

with the degradation of electrochemical electricity storage technologies have previously been 

problematic. The method presented here avoids these problems by combining a cycling-

induced degradation model for a promising Li-ion battery storage technology with a model 

predictive control-based linear programming approach to storage scheduling. 

The application of our method focuses on large community storage systems connected to a 

shared generator, rather than in-home storage systems. This decision is partly due to the 

benefits offered by larger systems over in-home systems, and partly because accurate 

analysis of in-home storage systems must account for different levels of storage deployment 

by each member of the scheme. Depending upon how local generation output is allocated to 

individual scheme members, independent decisions taken by individuals could affect the 

investment value of storage. This would be a small-scale example of storage being part of 
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the price formation process and “cannibalising” its own market [30-32]. Such analysis is 

beyond the scope of this work. 

In assessing the techno-economics of adding storage, we assume that the single large 

storage system would be installed and operated by the operators of a community energy 

scheme (e.g. a community interest company, or CIC), and funded by investors in the 

scheme. Any techno-economic benefits arising from the added storage would be returned to 

the investors in the form of an improved financial performance. 

2. Methodology 

In this section, the methods used are set out, covering storage scheduling, battery 

degradation, generation-integrated energy storage systems, and the quantification of carbon 

emissions. 

2.1. Storage scheduling 

We now present an optimisation framework for energy storage scheduling, based on linear 

programming and model predictive control (MPC) for computational efficiency. While 

developed for the study reported here, its general nature means it could be used to model 

the operation of energy storage in various other scenarios (e.g. in an individual household, 

or for modelling the operation of thermal energy storage systems). 

The storage operating schedule, and hence total electricity cost for community members, is 

found over the course of the analysis period (e.g. one year) using an MPC approach. In the 

MPC approach, the optimal storage schedule is found over a foresight horizon, over which 

there is perfect foresight of the community’s electricity demands, local generation, and 
prices, at half-hour resolution. The operating schedule is then followed until the foresight 

horizon can be updated. Here we use a foresight horizon of 96 hours and an update period 

of 24 hours. This means that the optimisation is carried out over hours 1-96, then the optimal 

operating schedule for hours 1-24 is used, then the optimisation is carried out over hours 25-

120, then the optimal operating schedule for hours 25-48 is used, and so on, until the 

storage operating schedule has been developed for the whole analysis period. In the first 

MPC iteration, we set the storage to be full; the reason for this is explained later in this 

subsection. In the following MPC iterations the initial store charge in the optimisation 

problem is set to the actual one at the end of the most recent update period. 

Since the storage control is based on an optimisation, the results shown here provide an 

upper limit on the potential for storage as if the controller had perfect foresight of demand, 

generation, and price. In reality, demands and generation cannot be predicted perfectly, 

though techniques for forecasting renewable resources and electricity demands are 

continually developing. It should be noted that the analysis is performed here with only one 

year’s worth of data, as explained later in Section 3.1, and it is possible that this happened to 

be a poor year for generating savings using storage. Future work could apply this analysis to 

larger datasets if they become available, to gain more reliable insight into the savings 

achievable from deploying storage in community energy schemes. 

In the following description of the storage scheduling algorithm, column vectors are denoted 

using bold characters. Inequalities involving vectors should be understood component-wise. 
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The foresight horizon comprises 𝑠 time steps, indexed by 𝑘 ∈ {1, … , 𝑠}. Each time step is Δ𝑡 

hours long. In the analysis presented in this paper, we use a 96-hour foresight horizon and 

data at half-hour resolution, hence Δ𝑡 = 0.5 and 𝑠 = 192. In this work we also assume that 

the foresight horizon always starts at midnight. 

At time step 𝑘, the power balance for a consumer’s net demand 𝑝(𝑘) is given by 

 𝑝(𝑘) = 𝑙(𝑘) − 𝑔(𝑘) + 𝑢(𝑘), (1) 

where 𝑙(𝑘) is the community’s load, 𝑔(𝑘) is the community’s local generation, and 𝑢(𝑘) is 

the power flowing to/from an energy storage system, where power flows to the storage (i.e. 

charge) are positive, and power flows from the storage (i.e. discharge) are negative. Note 

that we are assuming that there is no curtailment of local generation. All powers are in units 

of kW. 

To allow charge and discharge efficiencies to be taken into account, separate vectors for 

charge and discharge powers are used (𝒄 and 𝒅 respectively), such that 

 𝑢(𝑘) = 𝑐(𝑘) − 𝑑(𝑘) (2) 

where 𝑐(𝑘), 𝑑(𝑘) ≥ 0. As will become clear later in this section, the optimisation problem is 

set up in such a way that at each time step 𝑘, at least one of the optimal values of 𝑐(𝑘) and 𝑑(𝑘) will be equal to zero. 

To calculate the cost of purchasing electricity from the grid, as well as the payments for 

export onto the grid, the 𝑠-length vector of net demands, 𝒑, is decomposed as 

 𝑝(𝑘) = 𝑝+(𝑘) − 𝑝−(𝑘), (3) 

where 𝒑+ is an 𝑠-length vector of net import powers and 𝒑− is the vector of net export 

powers. 

The objective function is thus given by 

 min Δ𝑡𝝀𝑇𝒑+ − Δ𝑡𝝅𝑇𝒑− + 10−6‖𝒖‖1 (4) 

subject to 

 𝑥(𝑘) = 𝑥(𝑘 − 1)(1 − 𝜎Δ𝑡) + 𝑐(𝑘)Δ𝑡𝜂𝑐 − 𝑑(𝑘)Δ𝑡 𝜂𝑑⁄ , 𝑘 = 2, … , 𝑠 (5) 

 𝐸 ≤ 𝒙 ≤ 𝐸(100 − 𝑄𝑙𝑜𝑠𝑠) 100⁄  (6) 

 𝑥(𝑠) = 0.5(𝐸 (100 − 𝑄𝑙𝑜𝑠𝑠) 100⁄ + 𝐸) (7) 

 0 ≤ 𝒄 ≤ 𝐶 (8) 

 0 ≤ 𝒅 ≤ 𝐷 (9) 

 𝒖 = 𝒄 − 𝒅 (10) 

 𝒑+ ≥ 𝒍 − 𝒈 + 𝒖 (11) 

 𝒑+,  𝒑− ≥ 0 (12) 

 𝒑+ − 𝒑− = 𝒍 − 𝒈 + 𝒖 (13) 

 𝒑+ ≤ 𝑀 (14) 

The set of electricity prices paid by the community for grid import over the foresight horizon 

is given by the 𝑠-length column vector 𝝀, and the set of prices paid to the community for 

export to the grid over the foresight horizon is given by the 𝑠-length column vector 𝝅. For a 

unique solution, it is necessary that 𝝀 > 𝝅 ≥ 0. We disregard running costs in this analysis, 
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as the costs of running a community energy scheme are unlikely to be strongly affected by 

the presence of an energy storage system. 

The final component of the objective function, 10−6‖𝒖‖1, is a penalty term that is included to 

ensure that the storage isn’t needlessly cycled without benefit to the community. It 

represents the net present value of the whole-life costs of store deterioration due to 

charge/discharge in the present foresight horizon. As previously explained, 𝒖 = 𝒄 − 𝒅, and 

the L1 norm of the storage operation is calculated using a linear formula ‖𝒖‖1 =∑ (𝑐(𝑘) + 𝑑(𝑘))𝑠𝑘=1 . 

Taking account of storage charge and discharge efficiencies of 𝜂𝑐 and 𝜂𝑑 respectively, and 

hourly self-discharge rate 𝜎 (where 0 ≤ 𝜎, 𝜂𝑐 , 𝜂𝑑 ≤ 1), the energy in store at the end of time 

step 𝑘 is given by equation 5. Vector 𝒙 is uniquely specified by 𝒄, 𝒅, and 𝑥(0) (the energy in 

store at the start of the foresight horizon). 

The constraints on 𝒙 in equation 6 are the storage’s energy constraints (where 𝐸 and 𝐸 are 

the storage’s minimum and maximum allowable energy levels, respectively), and the 

constraints on 𝒄 and 𝒅 in equations 8 and 9 are the storage’s power constraints (with 𝐶 and 𝐷 being the charge power capacity and discharge power capacity, respectively). 

The constraints on 𝒑+ and 𝒑− in equations 11 to 13 ensure that the optimal values correctly 

represent the net import and export powers. Equations 11 and 12 ensure that, at each time 

step 𝑘, 𝑝+(𝑘) is greater than or equal to the maximum of 0 and 𝑝(𝑘) (calculated as 𝑙(𝑘) −𝑔(𝑘) + 𝑢(𝑘), as defined by equation 1). Combined with equation 13 to calculate 𝑝−(𝑘) 
(which effectively combines equations 1 and 3), the objective function will ensure that the 

optimal value of 𝑝+(𝑘) is equal to the maximum of 0 and 𝑝(𝑘) (since having 𝑝+(𝑘) any 

greater than necessary will increase the value of the objective function, which the 

optimisation is seeking to minimise) and that the optimal value of 𝑝−(𝑘) is equal to the 

maximum of 0 and – 𝑝(𝑘). Note that this is only true if all export prices are lower than the 

import prices, i.e. 𝝅 < 𝝀, as is the case here. The L1 norm of 𝑢 in the objective function will 

also ensure that at least one of 𝑐(𝑘) and 𝑑(𝑘) will be equal to zero. 

The equality constraint of equation 7 is a terminal constraint ensuring that the state of charge 

at the end of the foresight horizon is equal to 50% of the remaining available storage 

capacity. This gives the storage equal opportunity to charge or discharge in future time 

periods. It should be noted that this constraint does not fix the state of charge to be 50% 

every midnight, since the 96-hour foresight horizon is updated every 24 hours. 

In one part of this paper, it is supposed that the number of households in a community 

energy scheme is increased while the electricity grid connection is unchanged. Equation 14 

is used to ensure that the maximum grid import power remains less than the maximum 

import capacity of the network, 𝑀. Assuming there is sufficient storage capacity, the 

optimisation procedure schedules the storage in such a way that grid import does not 

exceed 𝑀. If the storage cannot be operated to maintain grid import below 𝑀 then the 

optimisation procedure fails. Where the grid import constraint is included, we set 𝑀 as the 

maximum difference between the original load of the community (i.e. before the load is 

scaled up to represent the addition of households to the community) and the community’s 
local generation over the whole duration of the study. In this way, storage can allow the 

community size to be increased with no impact on the electricity network. If necessary, a 

maximum export capacity could easily be added using a similar constraint on 𝒑−. 
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The optimisation problem is linear, and hence can be efficiently solved using dedicated 

linear programming solvers. Optimisation of the storage operating schedule over the 

foresight horizon is conducted using CPLEX (version 12.8). The MPC approach is run until 

the storage operating schedule has been developed for the whole analysis period or until the 

grid constraint cannot be met, indicating that the load is so high that the storage cannot keep 

the maximum grid import below 𝑀. As explained near the start of this subsection, in the first 

MPC iteration we set the storage to be full, i.e. we put 𝑥(0) = 𝐸. This ensures that demand 

peaks that occur early in the analysis period can be dealt with. 

We use equal time steps of 0.5 hours in this work. Unequal time steps could be implemented 

through modification of the objective function and constraints. An example application of this 

would be if one minute resolution data were available, and/or to account for the reduced 

accuracy of longer-term forecasting. Since there are 1,440 minutes in a day, it could take 

some time to develop the storage operating schedule over the analysis period if a multiple-

day foresight horizon is being used, and in any case, it is highly unlikely that forecasting of 

load and generation could be achieved at one minute resolution for many hours hence. 

Therefore in those circumstances it might be desirable to use the first 30 minutes of data at 

one minute resolution, then to convert the remaining data in the foresight horizon to a lower 

resolution (e.g. 30 minutes). 

2.2. Generation-integrated energy storage 

In the next section, we examine the benefits of installing energy storage at a community 

hydro scheme, and compare the benefits of a battery system (i.e. a non-generation 

integrated energy storage system) with a reservoir just upstream of the hydro generator, 

which can only be charged using water flowing down the mountainside that would otherwise 

have passed through the hydro generator (i.e. a generation-integrated energy storage, or 

GIES, system). 

To model a GIES system, where the only power conversion machinery is the on-site 

generator (e.g. the hydro generator in the case of the community hydro scheme studied in 

this paper), we must add two additional constraints to the optimisation problem laid out in 

section 2.1. 

 𝒖 ≤ 𝒈 (15) 

 𝒈 − 𝒖 ≤ 𝐺 (16) 

where 𝐺 is the capacity of the generator. In this case, 𝒈 is the potential generation from the 

current water flow, and 𝒖 is the withheld generation, i.e. water accumulating in the reservoir. 

The first of these two additional constraints ensures that the storage is never charged at a 

higher rate than would otherwise be generated at the on-site generator, since in the case 

considered here, the energy for charging a GIES system can only come from the primary 

energy flow (e.g. the flow of water down the mountainside). The first constraint ensures that 

the storage is never charged from the grid, and hence could also be used to model systems 

that claim metered export Feed-in Tariff (FIT) payments, the regulations for which require a 

metering arrangement or disconnection relay to ensure that the storage is only ever charged 

using the FIT-eligible generation [33]. The second of the additional constraints ensures that 

discharge of the storage system never causes the generator’s power capacity to be 
exceeded. 
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In the following section, when analysing reservoir storage alongside a hydro generator, we 

assume that the reservoir can potentially be charged and discharged at any rate up to the 

capacity of the generator (since a valve is likely to have little effect on the flow of energy out 

of a reservoir), so we set 𝐶 = 𝐷 = 𝐺. 

2.3. Battery degradation 

When considering battery storage, we assume that a graphite-LiFePO4 battery is used, and 

account for cycling-induced degradation of battery storage. The graphite-LiFePO4 (lithium 

iron phosphate) based lithium-ion battery chemistry is one of the most promising for large-

scale applications, due to its chemical and thermal stability and low cost. For a 2 Ah LiFePO4 

battery cell cycled at a C/2 rate, cycling-induced capacity fade is shown in ref. [34] to be 

given by 

 𝑄loss = 30,330exp (−31,5008.314𝑇 ) 𝐴ℎ0.552 (17) 

where 𝑄loss is the percentage capacity loss, 𝑇 is the absolute temperature, and 𝐴ℎ is the 

cell’s charge throughput in amp-hours, given in ref. [34] as 𝐴ℎ = cycle_number × DOD × 2 

(since equation 17 is valid for 2 Ah cells, as stated above). DOD is depth of discharge. We 

assume an operating temperature of 15 °C, slightly higher than the mean atmospheric 

temperature in the UK, and a depth of discharge of 100%. It has been shown that at low C 

rates, DOD has a negligible effect on the cycle-life of a LiFePO4 battery [34]. Fig. 2 shows 

the capacity loss against number of cycles as predicted using equation 17; evidently 

temperature has a strong influence on cycle-life, and the UK climate is reasonably well-

suited to electrochemical storage in this respect. 

 

Fig. 2 Capacity loss against number of cycles for a LiFePO4 battery, as calculated 
using the cycle-life model [34]. 
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Our calculations begin by taking the charge throughput to be zero at the start of the analysis 

period (i.e. at the start of the first foresight horizon), then use equation 17 to update the 

remaining storage capacity at the start of each subsequent foresight horizon. 

2.4. Economics and emissions 

To determine the economic value of investment in community energy storage systems, we 

use the concepts of net present value (NPV) and breakeven cost. The NPV of an investment 

is given by 

 NPV = ∑ 𝐶𝑛(1 + 𝑟)𝑛𝑡
𝑛=0  (18) 

where 𝐶𝑛 is the cash receivable after 𝑛 years, 𝑟 is the discount rate, and 𝑡 is the life of the 

opportunity in years [35]. 

The breakeven cost is defined here as the capital cost of the storage system (i.e. cost in 

year 0) for which NPV = 0, and is given by 

 BEC = ∑ 𝐶𝑛(1 + 𝑟)𝑛𝑡
𝑛=1  (19) 

If the storage system has a capital cost lower than the breakeven cost then the investment 

will have a positive NPV. 

Environmental aspects of energy generation are playing an increasingly important role. We 

remark that the optimisation methodology of this paper can be adapted to either optimise a 

trade-off between costs and greenhouse gas emissions or minimise the latter with a 

disregard for economic costs. However, in this paper, we study the greenhouse gas 

emissions associated with storage operating schedules based on cost minimisation. 

To quantify the emissions caused by the community’s electricity consumption, we multiply 

the community’s total grid import by the emissions factor used in the CRC Energy Efficiency 
Scheme for grid electricity in 2017-18, approximately 380 gCO2/kWh [36]. In future work it is 

anticipated that we will make use of time-resolved carbon intensity data that has recently 

become available via the Carbon Intensity API developed by National Grid [37]. However the 

data currently provided through this service does not precede May 2018, and hence is not 

usable in the current work. Nevertheless, we have developed our methodology with this 

extension in mind. 

If historical carbon intensity data were available at half-hour resolution, then multiplying it by 

the community’s grid import over the analysis period would yield the total carbon emissions 

associated with the community’s electricity consumption, given by 

 Φ = 𝒄𝑇𝒑+Δ𝑡 (20) 

where 𝒄 is a column vector of regional carbon intensity of generation (in gCO2/kWh) over the 

analysis period and 𝒑+ is the column vector of the community’s import over the same period. 

In the current analysis of course, every element of 𝒄 is set to 380 gCO2/kWh. 
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3. Case study on a community hydro scheme 

3.1. Bethesda Energy Local Club 

Using the tools developed above, we now investigate the effect of adding electricity storage 

to a community energy scheme. The Bethesda Energy Local Club is an energy cooperative 

in Bethesda in North Wales, comprising 100 households, run by Energy Local. The 

community is fed by a 100 kW micro hydro plant nearby. Each household has a smart meter 

that records their electricity consumption at 30 minute intervals. Historic data on the 

community’s aggregated electricity consumption and the output of the hydro plant has been 

made available to the authors at 30 minute resolution through an API, and data over the 

period of 1st August 2017 to 31st July 2018 is used for the analysis conducted here. 

Throughout this period there were 100 households in the community. Monthly electricity 

generation and consumption totals are shown in Fig. 3; it can be seen that there is significant 

variation in the hydro generator’s output from month to month, and that the hydro output 

reduces significantly over summer. 

 

Fig. 3 Monthly hydro generation and community electricity consumption at the 
Bethesda Energy Local Club community energy scheme in Bethesda, North Wales, 

between August 2017 and July 2018. 

All households are signed up to the same electricity tariff with a licensed electricity supplier 

for grid import, i.e. when the community’s consumption exceeds the output of the hydro 

plant. This is a four-rate time-of-use (TOU) tariff, with four tariff periods over the course of 

each day: morning, midday, evening, and overnight. The households also pay to consume 

the hydro power at 7 p/kWh, a slightly lower rate than the lowest price in the TOU tariff. (The 

hydro generation is shared among the households using a fair share allocation, as detailed 

in ref. [38].) The community has a PPA with the supplier, and so sells excess hydro power 

back to the grid. This supersedes the export component of the Feed-in Tariff, and so the 
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community is paid for all export to the grid and is not subject to the requirement to only 

charge the storage using FIT-eligible generation [33]. The hydro payments and export 

payments are kept by the generator, to cover running costs and provide a return for 

shareholders. In the case of community-owned generation, these payments can be used for 

community projects. In this work we consider the households and generator collectively 

(since installation of storage should be a positive investment for all), so the hydro payments, 

which pass from householders to generator and so are completely internal, cancel out and 

do not need to be included. The effective tariff is laid out in Table 1. 

 

Tariff Component Time Period Price 

Morning 06:00-11:00 12 p/kWh 

Midday 11:00-16:00 10 p/kWh 

Evening 16:00-20:00 14 p/kWh 

Overnight 20:00-06:00 7.25 p/kWh 

Export All the time 6 p/kWh 

Table 1 Electricity tariff seen by the Bethesda Energy Local Club community 
energy scheme. Correct as of January 2019. 

Some statistics over the analysis period are shown in Table 2. Roughly two-thirds of the 

hydro generation was self-consumed within the community; increasing this figure will lower 

the community’s electricity costs and carbon emissions. It can also be seen that the 

maximum import was equal to the maximum demand. This is because the output of the 

hydro generator gradually reduces towards zero between periods of rain, as can be seen in 

Fig. 4, and the hydro output happened to be zero at the half-hour of maximum demand 

(18:00-18:30 on 1st March 2018). Note that Fig. 4 is a subset of the full dataset, shown as an 

illustration. 

 

Analysis period 1 Aug 2017 – 31 Jul 2018 

Number of households 100 

Hydro generation capacity 100 kW 

Total elec. consumption 782,118 kWh 

Total hydro generation 697,956 kWh 

Total grid import 311,624 kWh 

Hydro self-consumption 67.4 % 

Maximum demand 115.7 kW 

Maximum import 115.7 kW 

Maximum export 81.6 kW 

Table 2 Statistics on the Bethesda Energy Local Club community energy 
scheme data used in this case study. 
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Fig. 4 Hydro output and community demand at the Bethesda Energy Local Club 
community energy scheme, over the first two weeks of October 2017. 

Households in the community scheme have access to a website which provides information 

on the community’s recent demand, along with the output of the hydro generator. Forecasts 
of upcoming demand and generation are also provided; the demand forecast is based on the 

same day in the previous week, and the generation forecast is based on a weather forecast. 

These data are currently used to provide households with advice regarding when to run 

appliances in order to save money. 

The characteristics of the energy storage systems considered in this case study are laid out 

in Table 3. The charging and discharging efficiencies of the Li-ion battery system are 

calculated as the square-root of 85%, a typical round-trip efficiency for a Li-ion battery 

system [39]. The charge and discharge power capacities for the reservoir storage system 

are as explained in Section 2.2; charge power capacity is given as not applicable as it is 

assumed that the reservoir can be charged at any rate up to 𝑔(𝑘), i.e. up to the rate at which 

energy is flowing through the hydro generator. 

 

 Li-ion Battery Reservoir 

Charging Efficiency 92.2 % 100 % 

Discharging Efficiency 92.2 % 100 % 

Self-Discharge Rate 0.3 %/day 0.3 %/day 

Charge Power Capacity 0.5 C N/A 

Discharge Power Capacity 0.5 C 100 kW 

Calendar Life 15 years 40 years 

Cycle Life 20 % capacity fade N/A 
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Table 3 Characteristics of the energy storage systems considered in the case 
study. 

In this study, we look at the economics of adding electricity storage to the existing 

community, as well as at the potential to increase the community size using storage. 

3.2. Existing community size 

We begin by determining the NPV of behind-the-meter storage systems at the Bethesda 

Energy Local Club community hydro scheme, applying the linear programming methodology 

developed in Section 2. NPVs are shown in Fig. 5 for Li-ion battery storage and reservoir 

storage, over a range of sizes and capital costs. Breakeven storage costs are shown in Fig. 

6. At this point, no grid import constraint (equation 14) is applied. When modelling reservoir 

storage, the constraints defined in equations 15 and 16 are included. A discount rate of 6% 

is used in all cases; this is higher than the social time preference rate of 3.5% 

(recommended for use by the UK government in appraisal of public sector projects [40, 41]) 

to account for the systematic risk associated with new energy projects. Evidently, while the 

installed cost of battery storage is in excess of approximately £200 per kWh of storage 

capacity, the NPV is negative with all levels of installed capacity. If the cost of storage falls 

below this level, then the optimal installed capacity depends upon the storage cost; the lower 

the storage cost, the higher the optimal installed capacity. For any given storage cost, the 

available annual savings gradually level off with increased storage capacity, as the number 

of remaining opportunities for cost savings diminishes. 

These results show that the cost savings from using battery storage at a community hydro 

scheme are so low that a battery storage system is not economically viable with current 

battery costs and electricity prices. The results show that in order to be cost-effective 

currently, behind-the-meter battery storage should also be used to provide grid services 

(such as frequency response, operating reserve, and network support) in addition to 

increasing the self-consumption of embedded generation and arbitraging on electricity tariffs. 

However, with the current pace of cost reductions [42], battery storage could be 

economically beneficial in community energy schemes even without providing grid services 

in a few years’ time. 

It is also evident that for any given capital cost of storage, a reservoir storage system has a 

higher net present value than a battery storage system of equal energy storage capacity. 

There are three factors contributing to this. Firstly, a dam/reservoir has a much longer 

lifespan than a battery: 40 years vs 15 years in the analysis presented here. Secondly, at all 

storage capacities, the reservoir can be charged using all of the flow that would otherwise be 

passing through the hydro generator and can be discharged at any rate up to the power 

capacity of the generator (i.e. 100 kW in this case), whereas a battery is limited by the 

charging and discharging power capacities, both set to 0.5C here. (A battery has a benefit of 

being possible to charge at any time, however on-site generation is typically lower cost than 

grid power.) Finally, the charging and discharging efficiencies of a reservoir storage system 

are higher than with a battery. 
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Fig. 5 Net present value of a Li-ion battery energy storage system and a reservoir-
based generation-integrated energy storage system at the Bethesda Energy Local 
Club, for a range of storage capacities and capital costs. Battery life: earlier of 15 

years and 20% capacity fade. Reservoir/dam life: 40 years. 6% discount rate. 

 

Fig. 6 Breakeven cost of storage for the systems presented in Fig. 5. 
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In all cases, the cycling-induced capacity fade of the battery in the first year of operation is 

small, in the range of 1-3%. The percentage capacity fade is highest in systems with small 

storage capacities because such systems undergo a greater number of cycles, and hence 

the cell-level charge throughput 𝐴ℎ takes a higher value in equation 17. Since 𝑄loss is 

concave in 𝐴ℎ, the rate of capacity fade reduces over time, and so the capacity fade in 

subsequent years is less than in the first year. After 15 years of operation, battery capacity 

fade was less than 20% in all of the cases studied for Fig. 5. 

An example of the operating schedule developed using the linear programming 

methodology, for a 100 kWh battery energy storage system, is shown in Fig. 7. It can be 

seen that charging is prioritised when there would otherwise be excess hydro power, and 

that discharging is prioritised during the morning and evening peak periods. Demand 

exceeds generation for most of the first two days, during which time the storage cycles to 

arbitrage on price differences in the time-of-use tariff. This increases grid import to such an 

extent that the daily peak grid imports are shifted into this period in each of the first two days 

and considerably increased; known as a “rebound peak”, this phenomenon has been found 

previously [20, 43]. The storage operates very little during the last two days, as the hydro 

generation exceeds the community consumption throughout most of this period leaving very 

few occasions when storage discharge is worthwhile. 

Because the rate of self-discharge is proportional to state of charge, the optimisation seeks 

to maintain a low state of charge where possible, and hence when there is a range of times 

during which a charging operation could occur with equal cost at any of the times in the 

range (e.g. during the 10-hour overnight price period), the charging operation will take place 

as late as possible. Similarly, discharging occurs as early as possible. 
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Fig. 7 Storage operating schedule over four days in October 2017, for a 100 kWh Li-
ion battery storage system. Positive values of net demand correspond to import from 
the grid, negative values correspond to export to the grid. Times of tariff price periods 

marked using grey dashed vertical lines. 

The effect of behind-the-meter storage on carbon emissions is shown in Fig. 8, assuming 

that the storage is operated to maximise NPV. We simply use the charge/discharge 

schedules developed for the results shown in Fig. 5 and Fig. 6. These schedules are used to 

find grid import 𝒑+, and equation 20 is applied. It can be seen that increased levels of 

storage capacity generally lead to a reduction in CO2 emissions, as a result of increased 

self-consumption of hydro and hence reduced grid import. However, in the case of a battery 

system that can be charged from the grid, CO2 emissions actually increase by a small 

amount as storage capacity is increased from 100 kWh to 150 kWh, then decrease again 

with further increases in storage capacity. This increase occurs because, above around 50-

100 kWh of storage capacity, the best opportunities for self-consuming hydro and then 

discharging in peak periods have all been used up, and the next best opportunities for cost 

savings result from charging from the grid (hence increasing grid import and CO2 emissions). 

As storage capacity is increased further, the next best opportunities for cost savings then 

arise from further self-consumption of hydro. Reservoir storage only leads to a reduction in 

CO2 emissions because it cannot be charged from the grid (unless the reservoir is part of a 

pumped storage system, of course). 

Clearly, the cost of reducing a community’s carbon emissions by adding energy storage 

alongside an existing renewable installation is very high, at hundreds of times the level of 

existing carbon prices (for example in the EU Emissions Trading Scheme and UK Carbon 

Price Floor). By way of example, even if the capital cost of battery storage could be reduced 

to £100/kWh, a 50 kWh system, saving one tonne of CO2 per year, would cost £5,000. This 

is on the order of 100 times higher than most projections of carbon prices by 2030. 

In reality of course, embedded renewables are not curtailed and exported electricity is often 

used in the local area anyway, so the losses associated with exported renewable generation 

are low. However, it should be remembered that energy storage is not a generation 

technology, but is instead an enabler for low carbon generation. 
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Fig. 8 CO2 emissions in first year of operation. 

3.3. Increasing the community size 

The linear programming optimisation framework developed in the previous section is used to 

determine how much electricity storage is required to maintain the maximum import of the 

community at the existing level of 115.7 kW while the community load is increased by adding 

more houses. Again, storage schedules are developed assuming that the storage is 

operated to maximise NPV, but a grid import constraint is now included using equation 14, 

setting 𝑀 = 115.7 kW. We make the assumption that an 𝑛 % increase in the number of 

houses in the community causes an 𝑛 % increase in demand at all times. This is a fair 

assumption because with 100 houses already in the community, the diversity in living 

patterns is already well accounted for; the design standard of a large Australian utility states 

that After Diversity Maximum Demand (ADMD), which represents the maximum electricity 

demand of a group of consumers divided by the number of consumers, is valid at distribution 

substations where there are at least 60 consumers connected to that substation [44]. This 

suggests that the diversity in living patterns is accounted for when there are more than 60 

consumers. 

The maximum number of households in the community (while keeping maximum import 

unchanged) is shown against battery storage capacity in Fig. 9, for various maximum charge 

and discharge C rates. From Fig. 9, it is clear that with C rates of 0.5 and above, the storage 

capacity required to keep the maximum import unchanged increases more than linearly with 

number of households in the community. As the number of households is increased, the 

number of half-hours in which the previous maximum import of 115.7 kW is exceeded 

increases until, with a large enough number of households, even the minimum import will 

exceed 115.7 kW, at which point it is clearly impossible to use storage to keep the maximum 

import below 115.7 kW. As a result, it is not surprising that an asymptote is exhibited. 
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Evidently, if the maximum C rates can be increased from 0.25 to 0.5, then membership of 

the community hydro scheme can be increased. It is also clear that with storage capacities 

greater than about 60 kWh, increasing the maximum C rates above 0.5 provide no further 

gain in terms of allowing increased numbers of households to join the community. 

We see that with a storage capacity of 100 kWh, we could expect to increase the number of 

households in the community from 100 up to 131. However, it is important to note that these 

results assume perfect foresight of half-hourly demand and generation up to 96 hours hence. 

In reality, imperfect forecasting will mean that such high increases in membership of the 

community energy scheme will not be possible, and the results shown here represent 

something approaching the best case. 

The allowable growth in the community energy scheme membership through the addition of 

reservoir storage initially matches that from adding battery storage, but then tails off at 

higher levels of storage capacity. This is because the reservoir storage can only be charged 

using water that would otherwise pass through the hydro generator, whereas battery storage 

can either be charged using hydro generation or from the grid. 

From this case study we can conclude that reservoir storage at a community hydro scheme 

has higher NPV than a battery of equal storage capacity and capital cost, and leads to 

higher reductions in operational CO2 emissions. However, this must be weighed up against 

the relative simplicity of adding a battery storage system, which has simpler planning 

requirements than reservoir storage and can be sited almost anywhere. Battery storage also 

has better growth-enabling capabilities than reservoir storage, particularly at high levels of 

energy storage capacity and when the battery has high power capacities, allowing a greater 

number of households to be connected to a given network. 

 

Fig. 9 Maximum number of households that could be in the community against the 
energy storage capacity required to keep the community’s maximum grid import 



21 
 

power unchanged from its current level. Maximum C rates are for both charge and 
discharge. 

3.4. Other possible applications 

In this section, we have applied the methods presented in Section 2 to analyse the value of 

energy storage in a community hydro scheme featuring a hydro generator and a collection of 

nearby houses across which the hydro generation is shared. Both non-generation-integrated 

energy storage and generation-integrated energy storage systems have been considered, in 

the form of battery storage and reservoir storage respectively. We conclude this case study 

by giving a brief discussion of other possible applications for the analysis methods. 

Another typical example of a community energy system is a community solar PV scheme, 

whereby solar PV generation is shared amongst scheme members. Analysis of such a 

system could be conducted using the non-GIES modelling approach, with the community 

generation 𝒈 simply being the output from the PV array. In such a scenario it might also be 

important to limit peak export, in which case an additional constraint on 𝒑− would be 

included, similar to the import constraint of equation 14. 

With little modification, the methods could also be used to investigate the operation of 

storage alongside standalone generation (i.e. no co-located demand), such as a wind farm 

with co-located storage, and standalone storage (i.e. no co-located generation or demand). 

For storage alongside standalone generation, co-located load 𝒍 would be set to zero, and for 

standalone storage both 𝒈 and 𝒍 would be set to zero. In both of these cases it is possible 

that the storage would be operated according to wholesale electricity prices, in which case 

the electricity price vectors 𝝀 and 𝝅 would be set to day-ahead or intra-day prices. As 

mentioned previously, the methods could be used for real-time storage scheduling based on 

forecasts of local demand, local generation, and electricity prices, in which case 𝝀 and 𝝅 

would be set to price forecasts. 

The methods could also be used to study other generation-integrated energy storage 

systems, such as concentrated solar power with molten salt storage [45], thermal energy 

storage integrated with nuclear power [46-48], and pumped heat electricity storage 

integrated with wind power [15]. Thermomechanical storage systems are often characterised 

by slower response rates than electrochemical storage, and storage ramp-up and ramp-

down constraints could be easily included using inequality constraints of the form 𝑨𝒖 ≤ 𝒃, 

ensuring that 𝑢(𝑘 + 1) − 𝑢(𝑘) is between the allowable ramp-up and ramp-down rates. 

4. Conclusions 

For the first time, this paper set out to compare the value of generation-integrated and non-

generation-integrated energy storage systems in community electricity generation schemes. 

A range of areas were investigated, including economics, carbon emissions, and distribution 

network support. To accomplish this objective, an efficient approach to storage scheduling 

was developed and applied to a case study of a community hydro scheme in rural North Wales. 

It was demonstrated that the addition of energy storage to community energy schemes could 

provide benefits. Most importantly, storage could allow scheme membership to be increased 

with no impact on the electricity network. At the case study hydro scheme, with 100 

households and a 100 kW hydro generator, the addition of 100 kWh of Li-ion battery storage 
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would allow the membership of the scheme to be increased by a third. Greater installed 

capacities of storage would allow even more members to be added. It was found that GIES 

systems generally cannot allow scheme membership to be increased by the same level as 

non-GIES systems. This is because the storage in GIES systems cannot be charged from 

the grid, and is entirely reliant on the availability of energy from the local generator. 

Adding storage to a community energy scheme would generally be expected to increase the 

self-consumption of on-site renewable generation and hence reduce grid import and 

associated carbon emissions. Our analysis demonstrated that the impact on overall carbon 

emissions at the case study location was low, with 200 kWh of Li-ion battery storage only 

reducing the community’s annual carbon emissions by an additional tonne of CO2 (at a 

scheme with a 100 kW hydro generator and 100 households). At this level of 10 kgCO2 per 

household per year, this is only around 0.5% of an average UK household’s electricity-

related CO2 emissions [49]. This is a disappointing result, indicating that storage deployed in 

the manner set out here will not provide a significant carbon benefit. 

A GIES system leads to greater reductions in CO2 emissions than a non-GIES system; in the 

case presented here, a 200 kWh reservoir storage system would provide approximately five 

times the emissions reduction provided by the equivalent battery storage system. This is 

because a GIES system can generally only be charged using energy from a low carbon 

source (in this case the energy in a mountain stream), whereas a non-GIES system is 

sometimes charged using grid power, a component of which is fossil fuel generation. As with 

much work in this area, the calculation approach employed relies on some simplifications. 

We therefore present a methodology that will allow us to account for time-varying grid 

carbon intensity in future work, drawing on some data only recently available for the UK. 

Depending upon the installed storage capacity, the breakeven cost of Li-ion battery storage 

at the scheme was around £150/kWh, whereas the breakeven cost of reservoir storage 

would be around £250/kWh. While the costs of battery storage have dropped considerably in 

recent years, driven largely by increased demand for consumer electronics and electric 

vehicles, they remain above this level. As a result, there is currently no strong economic 

case in the UK for the adoption of battery storage at community energy schemes, based on 

income from electricity arbitrage or possible future income derived from carbon savings. 

Currently the only route to acceptable economics is if the developer can ensure that lucrative 

grid services can also be provided using the battery [50], an option not analysed here. 

However, given past trends in battery costs, it is likely that battery storage will be economical 

when used for electricity price arbitrage in a few years’ time. 

The generation-integrated storage approach offers a better breakeven cost than battery 

storage in this case study. In large part this is because a reservoir system has increased 

power capacities and a longer lifetime than a battery storage system. In forming a judgement 

as to which is the superior approach, this must be tensioned against the difficult-to-estimate, 

and highly location-specific, costs of increasing reservoir capacity. Equally the GIES 

approach in this case would not be able to access potential income streams associated with 

high frequency grid services, in contrast to a battery system, and its ability to allow increased 

membership of a community energy scheme without increasing the grid connection capacity 

is lower than that of a battery system, because it can only be charged using primary energy 

and cannot be charged from the grid. Nevertheless this result, combined with previous 

research demonstrating high roundtrip efficiencies [8], demonstrates that GIES should be 

investigated further for integration with community energy schemes. 
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