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Horacio Saggion, Automatic Text Simplification. Synthesis Lectures on Human 
Language Technologies, April 2017, 137 pages, ISBN:1627058680 9781627058681 

Automatic text simplification (TS) is a text-to-text transformation task where the aim is to 
produce a simpler version of an original text. There are several important aspects to such a 
task:  

• Audience: It is important to know the audience for which the simplified text is 
intended. Different audiences require different types of simplification operations. For 
example, the simplification requirements for a second language learner of English 
may be different from the requirements of a dyslexic person.  

• Simplification type: Traditionally, researchers have divided TS in two classes, lexical 
and syntactic simplification. Lexical simplification (LS) consists of the replacement of 
words and phrases in the text, while SS encompasses operations at the sentence 
structure, such as splitting a sentence or changing it from passive to active voice. 
However, new state-of-the-art approaches deal with both phenomena (machine-
translation (MT)-like systems, e.g.). 

• Method: As with other areas in Natural Language Processing (NLP), TS can also be 
explored through rule-based, data-driven or hybrid approaches.  

In this book, the author draws largely on his own experiences in order to address the basics 
of TS and to describe traditional work on this topic. In the introduction chapter, TS is defined 
alongside explanations of lexical and syntactic types of simplification. This chapter also 
includes a discussion about how texts are simplified by humans and what we can then learn 
in order to automatise the process. Finally, the motivation behind developing TS techniques 
is presented as a task with social impact that can enable different audiences to access 
different types of information. 

Chapter 2 provides an important overview of work on Readability Assessment (RA), that is 
the analysis of textual complexity. Although this topic may not be always linked to TS, 
knowing the complexity of a text or sentence can be seen as a pre-processing step for TS or 
as part of its evaluation. Although previous work in TS has highlighted the problems 
regarding RA shallow metrics (e.g., Shardlow, 2014), further development in this area can 
certainly improve the results and evaluation of TS systems. Perhaps, the biggest 
contribution in this chapter is Section 2.3, where advanced approaches for RA are 
discussed. 

LS is presented in Chapter 3, which highlights the work of Caroll et al. (1998) as the first 
approach for LS. The task of complex word identification (CWI) also appears in this chapter, 
where systems from the SemEval 2016 CWI shared task are detailed (Specia et al., 2012). 
The author also highlights that the availability of parallel data from original and simplified 
texts has promoted the new generation of TS systems, which could then rely on machine 
learning (ML) approaches. Notably, the most widely used parallel data are the Wikipedia-
Simple Wikipedia (W-SW)-aligned dataset (e.g., Coster and Kauchak, 2011). LS through 
language modelling (also discussed in this chapter) is another approach only possible due to 
the acquisition of large amounts of data. Finally, an interesting topic discussed in Chapter 3 
is the simplification of numerical expressions in texts. Although this may not be a trendy topic 
in the LS area, the author highlights the importance of this task for some audiences. In 
general, this chapter gives good insights about LS, including the author's own work for 
languages other than English (in this case, Spanish). Paetzold (2016), however, proposes a 
more structured way of presenting LS and a more complete survey of the topic. 

Chapter 4 is dedicated to SS and is a good overview of how rule-based systems work for 
this task. The discussion about the work of Siddharthan (2006) and Siddharthan (2011) 
represents a useful survey for researchers wanting a quick reference for the topic. The 
detailed description of how a rule-based system for SS works, and how it can be used 



through a well-known toolkit for NLP – General Architecture for Text Engineering (GATE) 
(Maynard et al., 2002) – makes this chapter even more useful for other researchers.  

State-of-the-art approaches for TS are currently data-driven, and Chapter 5 reviews some of 
the work that has focused on these. TS can be viewed as an MT task, where the original 
document is the source and the simplified document is the target. Therefore, with the 
availability of parallel data for TS (such as W-SW), it is natural to explore MT-based 
approaches for this task (e.g. Zhu et al. (2010); Coster and Kauchak (2011)). Another 
approach explored by Woodsend and Lapata (2011) proposes learning TS rules from 
parallel data using quasi-synchronous grammars. Finally, Narayan and Gardent (2014) use 
a hybrid approach that relies on semantic information for split and delete operations, and an 
MT-based model for modelling paraphrasing.  

Although TS is usually motivated using social aspects (e.g., access to information by 
everyone), very little work has actually resulted in tools and/or has been evaluated by its 
intended target audiences. Chapter 6 presents three large projects that were successful in at 
least one of the points above: 

• PSET (e.g., Carroll et al., 1998): TS systems to adapt texts for aphasics -- English 
language. 

• Simplext (Saggion et al., 2015): TS systems targeting people with intellectual 
disabilities -- Spanish language.   

• PorSimples (e.g., Aluísio and Gasperin, 2010): TS systems for people with low 
literacy -- Portuguese language.  

Chapter 7 continues to present the usefulness of TS either as a tool to help different target 
audiences (e.g., people with dyslexia; Rello, 2014), or as a pre-processing step to improve 
other NLP tasks (e.g., parsing (Jonnalagadda et al., 2009)). Work on TS for specific 
domains, such as the medical one (Ong et al., 2007), is also discussed in this chapter.  

Finally, Chapter 8 is dedicated to presenting resources and tools available for TS, and 
evaluation approaches for this task. Resources for RA and parallel corpora for TS are 
described, including a dedicated section on the Simplext dataset and a brief discussion 
about the Newsela dataset. The LEXenstein toolkit for LS (Paetzold and Specia, 2015) is 
also presented and discussed. For evaluation, the traditional three-way human evaluation is 
presented, where human judges are asked to give a Likert score (usually from 1 to 5) in 
order to assess grammaticality, meaning preservation, and simplicity of automatically 
simplified texts. The author then correctly criticises work that uses RA metrics to evaluate 
simplified sentences, since such metrics are designed to work on longer texts. Automatic 

evaluation metrics from the MT area, such as BLEU (BiLingual Evaluation Understudy) 
(Papineni et al., 2002), are also discussed, as these have been largely employed by work on 
data-driven TS. Unfortunately, the author does not include the work of Xu et al. (2016) that 
presents SARI -- System output Against References and Input sentence -- as an automatic 
metric more adequate for TS. Similar to BLEU, SARI is a n-gram based metric that takes into 
account simplification references produced by humans and the original text in order to 
evaluate the output of a TS system. Data-driven work on TS is now mainly evaluated in 
terms of SARI, since BLEU is proven to be inadequate (e.g. Sulem et al., 2018a). Finally, the 
findings of a shared task on quality assessment for TS (QATS) (Stajner et al., 2016) are 
presented. The idea in QATS derives from work for quality estimation of MT (e.g. Specia et 
al., 2018), where ML approaches are used to build models using human assessments as 
labels. The ultimate goal is to create models able to generalise and automatically predict 
aspects such as grammaticality, meaning preservation and simplicity for unseen data 
points.  

In summary, this book presents a useful overview of the foundation work on TS. Mainly, 
Chapters 2, 3 and 4 are great contributions for researchers who are either new to the topic 
or need to find the best references to the topics discussed. Chapters 6 and 7 also contain 
important information about TS, its applications and successful projects. Nevertheless, TS 
has been evolving at a very fast pace since this book was published. Between 2017 and 



now, over 10 new approaches for TS have been proposed for the English language alone, 
thanks to the advance of neural deep learning techniques (e.g. Nisioi et al., 2017; Zhang and 
Lapata, 2017; Alva-Manchego et al., 2018; Vu et al., 2018; Guo et al., 2018; Sulem et al., 
2018b; Zhao et al., 2018; Scarton and Specia, 2018; Kriz et al., 2019; Dong et al.; 2019; 
Surya et al.; 2019). Additionally, apart from SARI, SAMSA -- Simplification Automatic 
evaluation Measure through Semantic Annotation -- (Sulem et al., 2018c) was also proposed 
as a new metric for TS evaluation that uses semantic information in order to better assess 
sentence-level operations such as splitting. Therefore, although the reader needs to be 
aware of the limitations imposed on this book by the fast-growing deep learning movement 
in NLP and also by the growing interest in TS by the NLP community, this book nevertheless 
represents a useful reference of traditional work in TS. 
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