
This is a repository copy of Shifting strategy for efficient block-based nonlinear model
predictive control using real-time iterations.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/155222/

Version: Accepted Version

Article:

Gonzalez, O. and Rossiter, J. orcid.org/0000-0002-1336-0633 (2020) Shifting strategy for
efficient block-based nonlinear model predictive control using real-time iterations. IET
Control Theory and Applications, 14 (6). pp. 865-877. ISSN 1751-8644

https://doi.org/10.1049/iet-cta.2019.0369

This paper is a postprint of a paper submitted to and accepted for publication in IET
Control Theory and Applications and is subject to Institution of Engineering and
Technology Copyright. The copy of record is available at the IET Digital Library

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

IET Research Journals

Submission Template for IET Research Journal Papers

A Shifting Strategy for Efficient Block-based
Nonlinear Model Predictive Control Using
Real-Time Iterations

ISSN 1751-8644

doi: 0000000000

www.ietdl.org

Oscar Gonzalez1, Anthony Rossiter2∗

1ACSE, The University of Sheffield, Sheffield, UK
2ACSE, The University of Sheffield, Sheffield, UK

* E-mail: ojgonzalezvillarreal1@sheffield.ac.uk

Abstract: Nonlinear Model Predictive Control (NMPC) requires the use of efficient solutions and strategies for its implementation

in fast/real-time systems. A popular approach for this is the Real Time Iteration (RTI) Scheme which uses a shifting strategy,

namely the Initial Value Embedding (IVE), that shifts the solution from one sampling time to the next. However, this strategy

together with other efficient strategies such as Move Blocking, present a recursive feasibility problem. This paper proposes a

novel modified shifting strategy which preserve both recursive feasibility and stability properties, as well as achieves a significant

reduction in the computational burden associated with the optimisation. The proposed approach is validated through a simulation

of an inverted pendulum where it clearly outperforms other standard solutions in terms of performance and recursive feasibility

properties. Additionally, the approach was tested on two computing platforms: a laptop with an i7 processor and a Beaglebone

Blue Linux-based computer for robotic systems, where computational gains compared to existing approaches are shown to be as

high as 100 times faster.

1 Introduction

Nonlinear Model Predictive Control (NMPC) is an advanced non-
linear optimisation method for Optimal Feedback Control that uses
a mathematical model of a dynamical system to predict and opti-
mise its future performance. Its popularity comes from its ability to
handle constraints explicitly, as well as complex multivariable non-
linear dynamic systems [1]. One of the main challenges is that the
required optimisation represents a significant computational burden,
which has limited its application to relatively slow systems such as
chemical reactors [2]. However, given the improvements in electron-
ics in the last two decades, its application to fast real-time systems is
now looking more feasible [3].

A key requirement for the implementation in real-time of NMPC
is the use of efficient solutions. Efficiency may come in many dif-
ferent forms, from approximate solutions and inexact mathematical
representations to tailored coding, special hardware such as Field
Programmable Gate Arrays (FPGA) [4] and other strategies.

One of the most popular NMPC approaches nowadays is the
Real-Time Iteration (RTI) Scheme proposed in [5] where a set
of strategies are used to achieve real-time performance, namely:
the Initial Value Embedding (IVE), the approximated single SQP
solution, and the computations separation, offering solutions in the
microseconds range [6–8] whilst preserving stability guarantees [9].
A tutorial-like paper of the latter is presented in [10]. Among other
solutions based on inexact and approximate solutions, authors from
[11] propose an inexact mathematical representation which avoids
having time-varying matrices and preserves stability and recursive
feasibility guarantees for a non-negligible region of the state space.
In [12], a similar approach based on adjoints and inexact Jacobians
is presented. In [13], the authors propose an inexact updating scheme
that allows a reduction in the number of sensitivity updates required
at each sampling time, by using a Curvature-like Measure of Non-
linearity (CMoN). Authors from [14] propose a partially tightened
NMPC that uses a Riccati-like recursive equation combined with an
interior-point like method that uses logarithmic barriers to remove
the constraints at later stages of the prediction horizon. Finally, a
common method for achieving faster computation times is by reduc-
ing the numbers of degrees of freedom; this can be done using

input-parameterised solutions such as Move Blocking and Laguerre
Polynomials [15] where an input-structure is embedded into the
decision variables. Authors from [16] proposed methods for solv-
ing the blocked optimisation using highly parallelizable algorithms,
which allow for even faster computation times. However, most works
in this area, including [3, 16–18] have used blocking for NMPC with
no regard to the recursive feasibility problem it presents.

In the case of tailored coding, a wide variety of toolkits exist that
facilitate the implementation of NMPC. One of the most popular is
the ACADO toolkit [19], an open source code capable of exporting
efficient automatically generated code. Authors from [20] provide
a tutorial-like paper for this toolkit. In [21], a toolkit named VIA-
TOC that also exports automatically generated code is presented.
Other toolkits such as CasADI and GRAMPC are also discussed
in [21]. Another important area of research is the development of
efficient QP solvers. Several solvers are available nowadays such
as qpOASES, FORCES, CVXGEN and qpDUNES [20, 22, 23].
Furthermore, the solution of NMPC problems can be done using
simultaneous or sequential approaches as discussed in [24] result-
ing in sparse or condensed QPs. Authors from [7] concluded that
using condensed QPs is computationally faster for small to medium
sized optimisations, whereas sparse solutions have better perfor-
mance for medium to large. However, one of the main benefits of
simultaneous approaches is that they present better stability char-
acteristics for unstable systems [8]. Finally, different methods can
be used for discretising an optimal control problem (OCP) such as
direct single/multiple-shooting and direct collocation [6].

This paper focuses on a single-shooting condensed/sequential
NMPC approach. It uses the RTI Scheme as a base line method-
ology in which the proposed shifting strategy is embedded, thus
re-formulating the optimisation. Although the proposed methodol-
ogy is formulated using this specific approach, it is possible to apply
it using other approaches such as multiple-shooting (sequential or
simultaneous), as well as in combination with other solutions and
methods such as [16] or [25]. The proposed approach uses con-
cepts from the block based solution for linear MPC presented in
[26] which are extended to an NMPC formulation and merged with
the RTI Scheme. The key contribution of this paper, which differs
from both aforementioned works, is the modified shifting strategy.

IET Research Journals, pp. 1–12

c© The Institution of Engineering and Technology 2015 1

By conceptualizing the optimisation in an absolute-time-frame, this
allows the reduction of both the numbers of degrees of freedom
and constraints, whilst also preserving recursive feasibility guaran-
tees and stability properties. The proposed approach is shown to
give computational benefits up to 100 times faster than the standard
RTI-NMPC solution.

This paper is organized as follows: Section 2 presents a detailed
description of the modeling, prediction and optimisation methods
to be used such as the RTI Scheme and the block-based solutions.
Section 3 develops the main ideas of the proposed shifting strategy
presented in this paper and gives a simple overall generic exam-
ple. Section 4 gives clear insight into important coding aspects for
implementing the proposed approach and an example code applied
to the benchmark problem of section 5 is provided in [27] and [28].
Section 5 presents a benchmark of this method applied to a fully
nonlinear inverted pendulum model and focuses mainly on the over-
all performance and recursive feasibility properties of the different
strategies that were tested. Additionally, it presents the computa-
tion times of the proposed approach implemented in two different
systems: a laptop with an i7 processor, and the aforementioned
Beaglebone Blue Linux-board [29]. Finally, section 6 contains con-
clusions, summarises the contribution of the paper and describes
future work.

2 Nonlinear Model Predictive Control

2.1 Modeling

Throughout this paper, discrete-time nonlinear dynamics of the
following form will be considered:

xk+1|k = f(xk|k, uk|k)
yk|k = g(xk|k, uk|k)

(1)

where xk are the states, uk are the controls or inputs of the system
and yk are the outputs, with nx, nu and ny the number of states,
inputs and outputs, respectively. The notation k + 1|k reads "value
at k + 1 predicted at sample time k", and will only be used in full
when needed for clarity.

Remark 1. Continuous-time models, can be discretized using any
integration method to reduce the infinite Optimal Control Problem
(OCP) to an approximate but tractable and finite Nonlinear Prob-
lem (NLP). This allows simulating the system forward using the
future nominal input trajectory, and linearising along the resulting
trajectory.

2.2 Prediction

By expanding a Taylor series up to first order terms, the system (1)
can be approximated by:

xk+1 = f(x̄k, ūk) +
∂f(x̄k,ūk)

∂x̄k
δxk +

∂f(x̄k,ūk)
∂ūk

δuk
= x̄k+1 +Akδxk +Bkδuk

(2)

where δxk = xk − x̄k and δuk = uk − ūk represent the state and
input deviations from the nominal points at time step t = k, respec-

tively, and Ak =
∂f(xk,uk)

∂xk
and Bk =

∂f(xk,uk)
∂uk

represent the

partial derivatives of the system dynamics. Notice the deviation
δxk+1 = xk+1 − x̄k+1 at time step t = k + 1 can be approxi-
mated by:

δxk+1 = Akδxk +Bkδuk (3)

Given that the nominal point x̄k+1 and linearisation matrices
(Ak, Bk) of (2) depend parametrically on x̄k and ūk, and that
at a given sampling time t = k the value of x̄k is already
given either by measurements or by state estimation, the value of
x̄k+1 can only be obtained by assuming (or guessing) a value

for ūk. If values are assumed/guessed for the future nominal

input trajectory Ū =
[

ūTk ūTk+1 · · · ūTk+Np−1

]T
, this allows

the computation of the predicted nominal state trajectory X̄ =
[

x̄Tk+1 x̄Tk+2 · · · x̄Tk+Np

]T
, and linearisation matrices Ak and

Bk at future time steps t = k + 1, k + 2, · · · , k +Np, where Np

is known as the prediction horizon. This prediction assumption is
known as single-shooting [20]. Common MPC strategies such as
GPC, also use a control horizon Nu where the inputs after k +Nu −
1 are enforced to be the same [30]. Let us consider Nu = Np for
now as this is just a special case of the blocked solution presented in
section 2.5.

Once X̄ is obtained using Ū , the prediction equation (3) can be
shifted forward:

δxk+2 = Ak+1δxk+1 +Bk+1δuk+1 (4)

Thus, substituting equation (3) into (4) gives:

δxk+2 = Ak+1(Akδxk +Bkδuk) +Bk+1δuk+1
= Ak+1Akδxk +Ak+1Bkδuk +Bk+1δuk+1

(5)

By repeating the above process recursively for Np steps and consid-
ering only the output of the system, the predicted deviations from the
nominal output trajectory can be represented in condensed form by:

δŶ = Gδxk +HδÛ (6)

where δŶ = Ŷ − Ȳ =
[

δyTk+1 δyTk+2 · · · δyTk+Np

]T
are the

output deviations, δÛ = Û − Ū =
[

δuTk δuTk+1 · · · δuTk+Np−1

]T

are the input deviations, and matrices G and H are given by:

G =








C1A0
C2A1A0

...
CNp

ANp−1 · · ·A1A0








(7)

H =










C1B0 O · · · · · ·
C2A1B0 C2B1 O · · ·

C3A2A1B0 C3A2B1 C3B2 · · ·
...

...
...

. . .

CNp
ANp−1 · · ·A1B0 CNp

ANp−1 · · ·A2B1 · · · · · ·










(8)

where G has dimensions of Npny × nx, H has dimensions of

Npny ×Npnu, Ck =
∂g(x̄k,ūk)

∂x̄k
is the partial derivative w.r.t the

nominal state in (1), and O represents a matrix of zeros with the
same dimensions of CkBk. Notice the k notation in Ak and Bk has
been dropped for simplicity.

2.3 Optimisation

Once the prediction is formulated, a quadratic cost function penal-
izing the predicted errors between the reference trajectory Yr and

the predicted output trajectory Ŷ , as well as penalizing the input

trajectory Û , can be formulated as:

J =
1

2
(Yr − Ŷ)TQ(Yr − Ŷ) +

1

2
ÛTRÛ (9)

where Q is a positive semi-definite matrix penalizing the predicted
errors with dimensions nyNp × nyNp and R is a positive definite
matrix penalizing input deviations with dimension nuNp × nuNp.
The latter represents an unbiased performance index for the inverted
pendulum system when no disturbances are present, given it stabi-
lizes at uk = 0. If other types of system are used, the cost function
(9) must be reformulated slightly, e.g. using unbiased costs [31].

IET Research Journals, pp. 1–12

2 c© The Institution of Engineering and Technology 2015

In the following, two types of solutions will be formulated: the

first one based on deviations of the nominal input trajectory δÛ and

the second one based on the input trajectory Û directly. Although
both solutions give the same result, the inequality constraints are
expressed differently. Let us first reformulate cost function (9) by
expressing it in the standard QP form:

J = 1
2z

TEz + fT z s.t Mz ≤ γ (10)

where z is the decision variable to be optimised depending on which
formulation (deviations or absolute) is chosen, E is a symmet-
ric matrix formally known as the Hessian with dimensions NE =
Npnu ×Npnu, f is a column-vector with dimension Npnu typi-
cally referred as the linear term, and M and γ are a matrix and vector
respectively related to the inequality constraints. Equality constraints
can be implemented by selecting the upper and lower limits of the
inequality constraints to be the same.

2.3.1 Deviations Formulation: Substituting expression (6) and

the definitions of Ŷ and Û into cost function (9) gives:

J =
1

2
(Yr − Ȳ −Gδxk −HδÛ)TQ(Yr − Ȳ −Gδxk −HδÛ)

+
1

2
(Ū + δÛ)TR(Ū + δÛ) (11)

By optimising w.r.t δÛ , the optimisation has the standard

QP form (10) where E = HTQH +R and f = −(HTQ(Yr −
Ȳ −Gδxk)−RŪ). Input and output inequality constraints are
expressed relative to the nominal trajectory as:

M =






I
−I
H
−H




 ; γ =






Umax − Ū
−(Umin − Ū)

Ymax − Ȳ −Gδxk
−(Ymin − Ȳ −Gδxk)




 (12)

2.3.2 Absolute Formulation: Similarly, substituting expres-

sion (6) and the definition of Ŷ and δÛ into cost function (9)
gives:

J =
1

2
(Yr − Ȳ −Gδxk −HÛ +HŪ)TQ

(Yr − Ȳ −Gδxk −HÛ +HŪ) +
1

2
ÛTRÛ (13)

Once again, by optimising w.r.t Û , the optimisation has the standard

QP form (10) where E = HTQH +R and f = −HTQ(Yr −
Ȳ −Gδxk +HŪ). The input and output constraints are expressed
as follows:

M =






I
−I
H
−H




 ; γ =






Umax

−Umin

Ymax − Ȳ −Gδxk +HŪ
−(Ymin − Ȳ −Gδxk +HŪ)




 (14)

Having defined the QP problem, any QP solver such as qpOASES
[22, 23] or quadprog MATLAB function can be used to find the
solution. In this paper, the Hildreth’s primal-dual quadratic program-
ming procedure presented in [32] was used for the simulations of
section 5.2 given its simplicity and "hot-starting" capabilities. A
fixed amount of iterations were done to obtain predictable timings
and accurate comparisons between the different approaches.

Remark 2. For rigorous closed-loop stability guarantees, suit-
able terminal costs or zero-terminal constraints must be added by
modifying the relevant matrices appropriately [6, 20, 33].

2.4 Real Time Iteration Scheme

The Real Time Iteration (RTI) Scheme is a method developed
by [5] for Nonlinear Optimisation in Optimal Feedback Control
that is capable of giving real-time performance based on strategies
summarised in the following subsections.

2.4.1 Initial Value Embedding: Initial Value Embedding (IVE)
uses the solution found in the previous step in a shifted version, typi-
cally duplicating the last input variable uk+Np|k+1 = uk+Np−1|k,

to obtain the nominal trajectory over which the formulation will lin-
earise and optimise. Additionally, in the case of QPs with "hot-start"
capabilities such as active-set, it also uses a shifted version of the
Lagrange multipliers λ found in the previous optimisation.

2.4.2 Single SQP: One can further reduce the computational
burden and achieve predictable timings, by performing only a single
SQP, ie. only linearise the optimisation once instead of re-linearising
over and over until convergence. This is reasonable given that the
optimisation is "hot-started" from the previous solution, which is
expected to be close to the optimal solution, provided no signifi-
cant disturbances have entered the system. Additionally, because the
problem is forced to finish solving the linearised QP rather fast to
give a quick feedback correction, the number of iterations or allowed
time for solving the QP must be limited. In general, the solution
of the problem is not given exactly but as an approximation that is
expected to decrease the cost J at each iteration. Moreover, one must
be satisfied with finding a local minimum and the solution can be
subject to small approximation errors given only one re-linearization
is done.

2.4.3 Computation Separation: Computation Separation is
arguably the most important strategy. It separates the computations
into feedback and preparation phases. A timing diagram illustrating
this can be found in [10, 34].

(a) Preparation Phase
The preparation phase uses a predicted state ˆ̄xk|k−1 as a starting

point obtained from the last nominal input trajectory in its shifted
version to linearise and prepare a QP. The standard RTI Scheme only
performs the aforementioned tasks and solves the QP in the feedback
phase, however, in this work a small modification is used where the
QP is iterated during preparation assuming δxk = 0 to find the vec-
tor of Lagrange Multipliers λ which is then used to compute the
solution as given in equations (15) or (16).

(b) Feedback Phase
Once the state measurement becomes available, the feedback

phase quickly delivers an approximate solution by calculating the
predicted state deviation δxk = xk − ˆ̄xk|k−1 and computing the
"feedback phase" parts of equations (15) or (16), depending on
which type of solution is being used. This allows the optimisation to
have robustness against noise, disturbances and uncertainty. Because
the state deviation δxk has an effect, not only on the linear term f ,
but also in constraint vector γ (see eqns.(11,12,13,14)), the standard
RTI Scheme recomputes them before solving the QP.

To further elaborate on the strategy of computation separation,
notice that the value of δxk in cost functions (11,13) only makes
sense to be used in the context of the RTI Scheme, in particular, in the
feedback phase. Assuming the vector of Lagrange Multipliers (λ),
has been found by an appropriate QP in the preparation phase, the
solution for both types (deviations and absolute), can be expressed
as the summation of the QP result which is calculated in the prepara-
tion phase, and the effect of δxk which is calculated in the feedback
phase of the RTI. From the QP procedure presented in [32] it can be
shown that the both solutions are given by the expressions below:
i) The deviations solution is given as:

Û = Ū−

E−1







Unconstrained
︷ ︸︸ ︷

−(HTQ(Yr − Ȳ)−RŪ)

Constrained
︷ ︸︸ ︷

+MTλ
︸ ︷︷ ︸

Preparation Phase

+HTQGδxk
︸ ︷︷ ︸

Feedback Phase







(15)

ii) The absolute solution is given as:

Û =

−E−1







Unconstrained
︷ ︸︸ ︷

−HTQ(Yr − Ȳ +HŪ)

Constrained
︷ ︸︸ ︷

+MTλ
︸ ︷︷ ︸

Preparation Phase

+HTQGδxk
︸ ︷︷ ︸

Feedback Phase







(16)

IET Research Journals, pp. 1–12

c© The Institution of Engineering and Technology 2015 3

A general drawback of NMPC methods based on the RTI Scheme
is that the predictions can be subject to approximation errors given
small deviation models are used and only one SQP iteration is done,
ie. re-linearizing the system only once.

2.5 Blocked Solutions

A popular method for reducing the computational burden further
is by using blocked solutions, where the inputs or decision vari-
ables are blocked in sections and assumed to have the same value
[16, 17, 26, 35]. This allows a reduction in the number of degrees of
freedom and consequently the optimisation time. To achieve this, an
equality constraint of block size NB is embedded into the optimi-
sation as uk = uk+1 = · · · = uk+NB−1 across all the prediction
horizon. The latter can be represented by an input structure of the
form:

δÛ = NδÛ (17)

Û = NÛ (18)

where Û (or δÛ) is the blocked decision variable and N is the
blocking matrix defined as:

N =







I O · · · O

O I · · · O

...
...

. . .
...

O O · · · I







(19)

with dimensions Npnu × ⌈
Np

NB
⌉nu where the operator ⌈x⌉ rounds

the result towards infinity, I is a matrix containing NB vertically
blocked identity matrices of nu dimension and O is a matrix of
zeros of the same dimension. Obviously with NB = 1, the block-
ing structure is just an identity and represents the same QP as (11)
or (13). Substituting (17) and (18) into cost functions (11) and (13)
respectively, leads to:

i) Blocked Deviations Formulation

J =
1

2
(Yr − Ȳ −Gδxk −HNδÛ)TQ(Yr − Ȳ −Gδxk −HNδÛ)

+
1

2
(Ū + δÛ)TR(Ū + δÛ) (20)

ii) Blocked Absolute Formulation

J =
1

2
(Yr − Ȳ −Gδxk −HNÛ+HŪ)TQ

(Yr − Ȳ −Gδxk −HNÛ+HŪ) +
1

2
(NÛ)TR(NÛ) (21)

Optimising w.r.t the decision variables, (δÛ) and (Û), results in the
modified Hessian (22) for both modified cost functions, (20) and
(21), respectively.

EN = N
T (HTQH +R)N = N

TEN (22)

which has reduced dimensions of NEN
= ⌈

Np

NB
⌉nu × ⌈

Np

NB
⌉nu,

and the linear terms can be found to be, respectively:
i) Blocked Deviations Linear Term

fN = −N
T (HTQ(Yr − Ȳ −Gδxk)−RŪ) = −Nf (23)

ii) Blocked Absolute Linear Term

fN = −N
THTQ(Yr − Ȳ −Gδxk +HŪ) = −Nf (24)

Finally, the constraint matrix M is modified to

MN =
[

N
T −N

T (HN)T −(HN)T
]T

(25)

whereas the constraint vectors γ remain the same.

The modified Hessian EN, linear term fN and constraint matrix
MN can be used to compress/decompress a pre-prepared QP, eg. to
use the strategy with a given toolkit such as ACADO.

Remark 3. N has NB vertically blocked identity matrices, so the
number of constraints related to the input can be reduced provided
the respective rows in γ of a given vertically blocked section are
equal. This is not the case when when the solutions are based on
deviations to a shifted blocked input trajectory (IVE strategy of RTI).
In fact, unlike the unblocked case where both formulations (abso-
lute or deviations) result in exactly the same solution, in this case,
they will have different solutions because it is conceptually different
to embed a blocked structure into either the deviations or absolute
variables. However, if the shifting strategy proposed in this paper
is used, it will be seen that they give the same results as a direct
consequence of performing a consistent optimisation.

After the optimisation is solved, definitions (17) and (18) can be
used to recover the solution in the original variables. This results in
solutions (15) and (16) presented in the section 2.4 to change to:

i) Blocked Deviations Solution

Û = Ū−

NE−1
N

N
T







Unconstrained
︷ ︸︸ ︷

−(HTQ(Yr − Ȳ)−RŪ)

Constrained
︷ ︸︸ ︷

+MTλ
︸ ︷︷ ︸

Preparation Phase

+HTQGδxk
︸ ︷︷ ︸

Feedback Phase







(26)

ii) Blocked Absolute Solution

Û =

−NE−1
N

N
T







Unconstrained
︷ ︸︸ ︷

−HTQ(Yr − Ȳ +HŪ)

Constrained
︷ ︸︸ ︷

+MTλ
︸ ︷︷ ︸

Preparation Phase

+HTQGδxk
︸ ︷︷ ︸

Feedback Phase







(27)

One of the advantages of blocking is that the problem or system
itself may required control actions in the future, and not all congested
in the beginning of the horizon as with standard GPC approaches.
This benefit can be seen in figure 1 where the predicted optimal
trajectory of both approaches is given for the inverted pendulum
problem presented in section 5 and compared to the one using the
full decision vector. Notice although they all present differences in
the input solution, the solutions of position and angle trajectories are
nearly indistinguishable for the blocked and full solutions, whereas
the GPC solution clearly results in a different trajectory. As expected,
the predicted costs of all cases, full decision, blocked and stan-
dard GPC were Jfull = 1872, Jblk = 1878 and Jstd−gpc = 1994
respectively, which clearly shows the superiority of blocking over the
standard GPC approach. Obviously, the GPC solution would adjust
the input as the horizon is moved forward (receding horizon) and
might be able to perform similarly in closed-loop. However, it is
the inconsistency/ill-posedness of the problem within each predic-
tion that may negatively affect the overall closed loop solution in
the long term, especially when constraints come into play. This is
discussed in section 3.2.

3 Shifting Strategy

This section presents the shifting strategy proposed in this paper
which represents the main contribution and has the main goal of
achieving faster computation times whilst preserving the stability
and recursive feasibility properties of the standard RTI Scheme.

3.1 Sub-strategies

The three sub-strategies summarised next are used in the proposed
approach. These sub-strategies are explained further in the following
subsections and an overall example is given in section 3.6.

IET Research Journals, pp. 1–12

4 c© The Institution of Engineering and Technology 2015

0 0.2 0.4 0.6 0.8 1 1.2 1.4
1

2

3

4

A
n

g
le

 (

ra
d

s
)

Inverted Pendulum Simulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1

-0.5

0

0.5

P
o

s
it
io

n
 x

 (
m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time (s)

-10

0

10

In
p

u
t

u
 (

V
o

lt
s
)

Full

Blocked

GPC Standard

Fig. 1: Blocking vs GPC Standard Comparison with NB = 4

3.1.1 Reducing the Number of Degrees Of Freedom: The
method uses an embedded input-structure, in this case blocked,
for reducing the degrees of freedom of the optimisation. Other
input-structures such as Laguerre or Kautz Polynomials [15] were
not considered but represent potential alternatives, although they
would present different recursive feasibility properties and overall
performance in the general case.

3.1.2 Reducing the Number of Shooting Points: It selects a
reduced number of points of interest which sometimes are referred
to as shooting points. These shooting points represent the constraints
and future errors that are included in the optimisation, and are
not necessarily at every sampling time but rather spread across the
prediction horizon.

3.1.3 Absolute-Time-Frame Shifting: It shifts the shooting
points and blocked-inputs structure in an absolute-time-frame,
rather than in a relative-time-frame (as implemented in standard
NMPC/RTI methods) to maintain consistency along the optimisa-
tion.

3.2 Consistent Optimisation and Recursive Feasibility

One of the most important properties to maintain in an optimisation
is recursive feasibility [36]. This property is present in an optimi-
sation if and only if for a given feasible solution at time t = k, all
subsequent solutions at future times t = k + 1, k + 2, · · · , k +∞,
remain feasible [26, 35]. At this point, it is emphasized that recursive
feasibility is not related to how an initial feasible solution is found
but rather, maintaining feasibility. In the case of a RTI Scheme, it
is typically assumed that the solution is initially close to an optimal
and feasible solution for nominal stability [9], thus initial feasibil-
ity is implied. Moreover, strong recursive feasibility guarantees can
be given when the optimisation explicitly includes the solution from
the previous sampling time as a possible solution of the current opti-
misation, also known as the tail [30, 31]. This is a direct result of
performing a consistent optimisation where at each time, the latter
improves or “builds on top of” the previous solution. This prop-
erty is not naturally present in blocked solutions and instead, at each
sampling time, the optimisation is forced to disregard the previous
solution and find a new one which is the main reason they may lack
recursive feasibility guarantees [15]. In other words, at each sam-
pling time the optimiser makes a plan which is then immediately
forced to disregard at the next sampling time.

3.3 Shifting Strategy applied to Blocked Solutions

To solve the aforementioned problems, we propose the following
blocked solution which shifts the blocks in an absolute-time-frame
to maintain consistency in the "breaking points" of the blocked input.
A similar approach is presented in [26], however, an important dif-
ference with the proposed approach in this paper is that they do not
apply it in the context of the RTI where the IVE approach is used,
nor conceptualize it in an absolute-time-frame. Moreover, they do
not formulate it in the context of NMPC for both types of solu-
tions given above. Additionally, they use a time varying horizon
whereas in the proposed approach, the horizon is maintained con-
stant through the use of the ideal horizon. Finally, although the
approach has similarities with lifted systems [37], it has important
differences given both measurements and control actions are avail-
able at the all times and the strategy is applied to reduce computation
times whilst maintaining consistency and recursive feasibility.

In simple terms, the proposed approach applies a set of blocking
structures sequentially which guarantees that the previous solution
(ie. the tail) is always included in the optimisation. By using this
method, the solution based on deviations can now be applied con-
sistently as it now represents the exact same solution given by the
absolute blocked formulation; this will be seen later in the results
section 5.2.

Definition 1. Shifting Blocked Sections
The proposed strategy can be formally represented with the

input equalities (28) and (29) below, defined for time steps [k, k +
NB − 1] with an horizon Np, "resetting" at time step k +NB and
repeating infinitely.

uk+i+(n−1)NB |k+j = uk+nNB−1|k+j (28)

∀j = [0, NB − 1]; ∀n = [1, ⌈
Np−NB+j

NB
⌉]







∀i = [j,NB − 1] if n = 1

∀i = [0, NB − 1] if 1 < n < ⌈
Np−NB+j

NB
⌉+ 1

and for the last block (n = ⌈
Np−NB+j

NB
⌉+ 1),

uk+i+(n−1)NB |k+j = uk+imax+(n−1)NB |k+j (29)

∀j = [0, NB − 1]; ∀i = [0, imax]

with imax = Np + j − 1− ⌈
Np−NB+j

NB
⌉NB

where j is the time step, j = 0 giving the standard blocking struc-
ture, n is the number of blocked sections, n = 1 being the first one,
and i is related to the size of the given blocked section. Notice the
latter changes as j → NB − 1 and the number of blocks n depends
on the selected prediction horizon. This will be explored further in
the following subsections.

As a quick example of definition 1, consider a simple SISO opti-
misation with prediction horizon Np = 4 and block size NB = 2.
The proposed strategy would apply the two following blocking
matrices N1 and N2 sequentially, in order, and repeating infinitely
(N1,N2,N1, . . .).

N1 =






1 0
1 0
0 1
0 1




 N2 =






1 0 0
0 1 0
0 1 0
0 0 1




 (30)

Lemma 1. NB Unique Blocking Matrices
When using definition 1 with a blocking size of NB , there will

always be exactly NB unique blocking matrices (N) that include the
tail, maintaining consistency over time, hence preserving recursive
feasibility.

IET Research Journals, pp. 1–12

c© The Institution of Engineering and Technology 2015 5

Proof: Consider only the first blocked section n = 1 of a given
blocking structure. By applying (28) to maintain consistency at any
time step k + j within that first block, the latter gives:

uk+i|k+j = uk+NB−1|k+j

∀ j = [0, NB − 1]; ∀ i = [j,NB − 1]
(31)

Thus, the number of equalities i, ie. the size of the first blocked
section NB1

= NB − j, decreases as j → NB − 1 leading to NB

sizes for the latter and consequently NB unique blocking struc-
tures N. Conceptually, the latter shrinks until reaching its limit and
"resetting" its size to NB as in N1 of example (30). �

3.3.1 The Ideal Prediction Horizon: Notice in example (30),
the dimension of the resulting Hessian EN would vary from NEN

=
2× 2 to NEN

= 3× 3. This is undesirable behavior given that to
achieve better computing performance, dynamic memory allocation
should be avoided. A work around to this problem is to use an ideal
prediction horizon which allows implementation of the proposed
shifting strategy without modifying the dimension of the Hessian.

Lemma 2. The Ideal Prediction Horizon
When using definition 1 to maintain recursive feasibility, the

selected horizon Np must be an integer multiple of the block size
plus 1 to keep the Hessian dimension NEN

constant for any block
size NB:

Proof: The expected size of the Hessian NEN
for any block size NB

is given by:

NEN
= ⌈

Np −NB1

NB
⌉+ 1 (32)

where NB1
is the length of the first blocked section (n = 1 of 28) of

a given blocking structure. For constant dimensions, the following
must hold:

⌈
Np−NB

NB
⌉+ 1 = ⌈

Np−i
NB

⌉+ 1
∀i = [1, NB]

(33)

The latter can only be satisfied for all i and any NB by using Np =
nNB + 1, where n is an integer number. Substituting in (33) gives:

⌈
nNB + 1−NB

NB
⌉+ 1 = ⌈

nNB + 1− i

NB
⌉+ 1 (34)

After some algebraic manipulation:

n− 1 + ⌈
1

NB
⌉ = n+ ⌈

1− i

NB
⌉ (35)

because ⌈ 1
NB

⌉ = 1 and ⌈ 1−i
NB

⌉ = 0 for all i, equation (35) holds.
�

Algorithm 1. The Ideal Prediction Horizon
The following steps are advised for selecting the ideal prediction

horizon.

1. Select the desired block size NB .
2. Select a desired horizon Npdes > NB .
3. The closest ideal prediction horizon is then given by Np =

⌈
Npdes

NB
⌉NB + 1 or Np = ⌊

Npdes

NB
⌋NB + 1. For better stability

properties, the upper one is suggested.

Theorem 1. Shifting Strategy applied to Blocked Solutions -
Recursive Feasibility

When using Definition 1 with Lemma 1 and 2, recursive feasibility
guarantees are recovered by always including the tail.

Proof: Considering an optimal feasible solution with the blocked
structure given by Definition 1 at time k (j = 0) with block size
NB :

uk+i+(n−1)NB |k = uk+nNB−1|k (36)

∀n = [1, ⌈
Np

NB
⌉ − 1]; ∀i = [0, NB − 1]

and the last block containing a single input uk+Np−1|k. The tail

of the solution will be automatically included at the next time step
k + 1 (j = 1) giving:

uk+i+(n−1)NB |k+1 = uk+nNB−1|k+1 (37)

∀n = [1, ⌈
Np

NB
⌉ − 1]; ∀i = [1, NB − 1]

and the last block containing two blocked inputs, uk+Np−1|k+1 =
uk+Np|k+1. The same is true ∀ j = [0, NB − 1]. �

3.3.2 Breaking Points: Shifting Lagrange Multipliers: An
important concept in the proposed strategy is that of the "breaking
points". As shown in Lemma 1, the first blocked section size NB1

shrinks until it reaches its limit. When this happens, we refer to it
as the "breaking point" and the optimisation must apply a blocking
matrix N where the first blocked section "resets" and has the original
block size NB1

= NB such as N1 in (30). This is relevant when per-
forming a constrained optimisation in the context of the RTI Scheme
for hot-started solutions, as an active-set guess can be provided.

Theorem 2. Breaking Points - Shifting Lagrange Multipliers
When using definition 1 with Lemma 2, the Lagrange Multipli-

ers (λ) active-set guess for hot started solutions must be shifted
only when the optimisation reaches the "breaking point" to maintain
consistency.

Proof: Consider the following unblocked Lagrange Multipliers
related to positive input constraints (M ≤ umax):

λ =
[
λk|k, λk+1|k, · · · , λk+Np−1|k

]
(38)

The usual shifting strategy used by the RTI is:

λk+i|k+i > 0 active if λk+i|k+i−1 > 0
λk+i|k+i = 0 inactive if λk+i|k+i−1 = 0

∀i = [0, Np − 1]
(39)

Now for simplicity, consider an ideal prediction horizon Np =
NB + 1. When the proposed shifting input structure given by
definition 1 is used, it requires only two lambdas

[
λ1|k+j , λ2|k+j

]

for the two blocked sections where:

λ1|k+j = λk+i|k+j = λk+NB−1|k+j

∀ j = [0, NB − 1]; ∀ i = [j,NB − 1]
(40)

for the first blocked section with initial block size NB , and

λ2|k+j = λk+NB+i|k+j = λk+NB+j|k+j

∀j = [0, NB − 1]; ∀i = [0, j]
(41)

for the second blocked section. Applying the RTI IVE shifting
(39) combined with equalities (40) and (41), and considering the
"breaking point" of definition (1) happens at k +NB gives:

λ1|k+NB
> 0 active if λ2|k+NB−1 > 0

λ1|k+NB
= 0 inactive if λ2|k+NB−1 = 0

(42)

at that time step. The same holds for the rest of the blocks where:

λi|k+NB
> 0 active if λi+1|k+NB−1 > 0

λi|k+NB
= 0 inactive if λi+1|k+NB−1 = 0

∀i = [1, NEN
]

(43)

�

IET Research Journals, pp. 1–12

6 c© The Institution of Engineering and Technology 2015

3.4 Shifting Strategy applied to Shooting Points

The concept of a reduced number of points of interest is already
used in the shooting methods, e.g. [3, 18], however, they do not
apply the shifting strategy proposed in this paper where the points
are kept in an absolute-time-frame. The proposed approach of this
paper builds on top of the conceptual "breaking points" aforemen-
tioned for the input-blocking and selects a subset of future errors
and output constraints directly at the end of each blocked input for
the optimisation.

Definition 2. Shifting Shooting Points
The proposed approach can be formally represented by selecting

a subset of references, outputs and output constraints given by:

ek+nNB |k+j = rk+nNB |k+j − ŷk+nNB |k+j

ymin ≤ ŷk+nNB |k+j ≤ ymax
(44)

∀n = [1, NEN
− 1]; ∀j = [0, NB − 1]

where j is the time step, n is related to number of shooting points,
and the last point of the prediction horizon:

ek+Np+j|k+j = rk+Np+j|k+j − ŷk+Np+j|k+j

ymin ≤ ŷk+Np+j|k+j ≤ ymax
(45)

is always included. To select the points at the end of each blocked
input, the time step j must be "in phase" with the time step j used by
Definition 1.

Remark 4. Selecting a given subset of output errors or output con-
straints can be achieved by selecting the respective rows of matrices
H,G, Yr, Ȳ ,M, γ.

Theorem 3. Shooting Points - Recursive Feasibility
The tail of the optimisation is automatically included by using

Definition 2, giving recursive feasibility guarantees.

Proof: Consider an optimal solution for the shooting points:

r̂ =
[
rk+NB |k, rk+2NB |k, · · · , rk+(NEN

−1)NB |k, rk+Np|k
]

Ŷ =
[
ŷk+NB |k, ŷk+2NB |k, · · · , ŷk+(NEN

−1)NB |k, ŷk+Np|k
]

(46)

that satisfies the constraints Ymin ≤ Ŷ ≤ Ymax, ie. is feasible at
time k. By using (44) and (45) for time step k + 1 (j = 1), the opti-
misation will keep looking at the same output errors and constraints
at all the points (ie. the tail), except the last one.

r̂ =
[
rk+NB |k+1, · · · , rk+(NEN

−1)NB |k+1, rk+Np+1|k+1
]

Ŷ =
[
ŷk+NB |k+1, · · · , ŷk+(NEN

−1)NB |k+1, ŷk+Np+1|k+1
]

(47)

The only difference from the aforementioned variables to be used
for the optimisation is the error ek+Np+1|k+1 = rk+NB+1|k+1 −
ŷk+Np+1|k+1. If there were no reference changes and a sufficiently

big horizon is used, this error would make negligible change to the
cost J and therefore the optimisation would be able to follow the
plan obtained at the previous time step k, provided the previous
decisions can be replicated (ie. the tail of the decision variables is
available). It is noted that a rigorous guarantee requires invariant
sets/terminal modes [31]. Nonetheless, works such as [2, 7, 8, 10, 20]
have shown excellent performance without them, both in real sys-
tems and simulations. Moreover, because only one linearisation of
the optimisation is performed in the RTI Scheme, the constraint sat-
isfaction will be subject to the accuracy of the linearisation process.
This is a common problem for any RTI Scheme variation.

Although this proof is derived by selecting shooting points at the
conceptual "breaking points", it is a general result and holds, inde-
pendently of whether blocked approaches were used or not. In other

words, if a non-blocked input-parameterisation was used, it would
still guarantee recursive feasibility for the shooting points provided
the tail of the decision variables is always available. Without the
proposed shifting strategy, no recursive feasibility guarantee can be
given without the use of soft-constraints, ie. slack variables, which
would relax the feasibility problem entirely. �

Theorem 4. Shooting Points - Shifting Lagrange Multipliers
As in Theorem 2, the Lagrange Multipliers (λ) must be shifted

only when the optimisation reaches the "breaking points" to maintain
consistency. This holds even for non-blocked solution. This proof is
similar to Theorem 2 thus is omitted.

3.5 Stability, Optimality and Convergence

As discussed in remark 2, the stability of this scheme may be guaran-
teed with the use of zero-terminal constraints [6], or suitable terminal
weights such as infinite horizon costing [20] which would make the
resulting closed-loop sequence of costs to have Lyapunov stabil-
ity. Indeed, the typical zero-terminal constraint proof can be seen
directly in the assumption of theorem’s 3 proof where new informa-
tion would add negligible terms to the cost and remain feasible. In
the case of infinite horizon costing, a local LQR control law may be
used to stabilize the system in the terminal region after Nu control
actions as in [20], however in some cases, the state may not be able
to get inside the terminal region in one SQP iteration as performed
by the RTI Scheme. Moreover, the required assumptions of the RTI
Scheme discussed in [10] must be considered to achieve global opti-
mality, including that the optimisation is initialized at the global
optimum, and that there are no abrupt reference or state jumps.
Finally, as per all SQP methods, the convergence of the numerical
solution may be subject to appropriate step-size selection (typically
full for RTI [10]), and the accuracy of the linearization process.

3.6 An Example of The Overall Shifting Strategy

To understand the overall strategy, consider the simple generic
example given in (30) with the ideal prediction horizon Np = 5,
and the same block size NB = 2. By dropping the absolute nota-
tion k + i|k + j and applying the overall shifting strategy, the
selected shooting points and constraints for both blocking struc-
tures expressed relative to the "current" time step, would lead to
considering cost function (9) subject to the two set of variables
and constraints defined in table 1, used in sequence and repeating
infinitely (1st, 2nd, 1st,) for the optimisation. The optimisation
can then be prepared by selecting appropriate matrices and vectors
for Yr, G,H,M, γ.

Remark 5. Notice the entire future input trajectory is constrained
in the optimisation given the blocking input-structure used, however,
the output constraints only constrain the shooting points. This will
be seen in the results section 5.2.

To give a comprehensive visualization of the strategy, figure 2
shows the predicted trajectories in the relative time frame of three
subsequent optimisation problems for the inverted pendulum prob-
lem presented in section 5 when the strategy is using a block size of
NB = 4. It is noticeable how the shooting points at times approxi-
mately 0.2 ≤ t ≤ 0.4 (s) are kept at the constraint limits. Moreover,
notice how most of the time, the shooting points and the blocked
inputs are moving left horizontally indicating that the resulting opti-
mal of all three optimisations, in absolute time, are nearly identical.

4 Efficient Coding

This section presents the algorithms and computational savings used
to achieve efficient coding of the entire NMPC optimisation pre-
sented in section 2 together with the proposed Shifting Strategy of
this paper presented in section 3.

IET Research Journals, pp. 1–12

c© The Institution of Engineering and Technology 2015 7

Seq. 1st 2nd

Refs. Yr =





rk+2
rk+4
rk+5



 Yr =





rk+1
rk+3
rk+5





Outputs Ŷ =





yk+2
yk+4
yk+5



 Ŷ =





yk+1
yk+3
yk+5





Input
Structure

Û = N1Û

or δÛ = N1δÛ

N1 =








1 0 0
1 0 0
0 1 0
0 1 0
0 0 1








Û = N2Û

or δÛ = N2δÛ

N2 =








1 0 0
0 1 0
0 1 0
0 0 1
0 0 1








Constr.

u− ≤





uk
uk+2
uk+4



 ≤ u+

y− ≤





yk+2
yk+4
yk+5



 ≤ y+

u− ≤





uk
uk+1
uk+3



 ≤ u+

y− ≤





yk+1
yk+3
yk+5



 ≤ y+

Table 1 Shifting Strategy Example

0 0.2 0.4 0.6 0.8 1 1.2 1.4
1

2

3

4

A
n

g
le

 (

ra
d

s
)

Pendulum Simulation

Shooting Points @ k

Shooting Points @ k+1

Shooting Points @ k+2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-1

0

1

P
o

s
it
io

n
 x

 (
m

)

Position Constraint

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Relative Time Frame (s)

-10

0

10

In
p

u
t

u
 (

V
o

lt
s
)

Input Constraint

Fig. 2: Shifting Example with NB = 4 starting from j = 1 of
Definition 1, in relative time frames.

Algorithm 2. Efficient H and G Computation
In order to fill the H and G matrices efficiently, the follow-

ing algorithm uses dummy variables TG and TH to calculate the
required rows of the matrices recursively. Assuming [TG]0 = [A0]
and [TH]0 = [B0] as starting points, it can be shown that all
subsequent sub-matrices required by the H and G matrices are
determined by:

[TG]k = Ak [TG]k−1 [TH]k =
[
Ak [TH]k−1 Bk

]
(48)

∀k = [1, · · · , Np − 1]

The values are then assigned into the corresponding rows and
columns of H and G, and only the rows of the "shooting points"
are stored as discussed in section 3. In case the output has a nonlin-
ear relation to the state, matrices TG and TH must first be multiplied
(separately) with the appropriate Ck (see equations (7, 8)).

Once these matrices are filled, a significant number of compu-
tations can be avoided by taking advantage of the nature of the
operations as in [7]. Furthermore, memory used should be pre-
allocated avoiding dynamic memory allocation at all cost. Finally,

it is important to NEVER repeat the same operation twice. Below
we present a list of the computational savings that can be achieved.

1. The value of HN can be obtained by the summation of the respec-
tive columns in the H matrix. We will refer to this operation as
HN = HN.
2. The computation of the modified Hessian can be done as EN =
HT

N
QHN + N

TRN.

3. The operation N
TRN corresponds to the summation of penaliza-

tion values of the corresponding blocked inputs. This values can be
gathered in a vector rN and added directly to the diagonal.

4. The operation N
TRŪ represents the summation of the inputs in

the block multiplied by the respective penalization.
5. Assuming Q is diagonal, the values on the diagonal (q) can be
multiplied individually to the rows of HN in QHN operation of the
Hessian [7]. We will refer to this operation as HQN.

6. If Q is diagonal or symmetric, QT = Q, therefore N
THTQ =

HT
QN

.
7. Given the Hessian is symmetric, only the lower (or upper)
triangular values need be calculated; the rest can be duplicated [7].
8. Given the Hessian is symmetric, a Cholesky decomposition is
used to calculate the inverse of the Hessian efficiently by calculating
only lower (or upper) triangular values and duplicating the rest.
9. An efficient version of Hildreth’s QP provided [32] was devel-
oped, avoiding repeated computations by storing relevant results
required by the optimisation.
10. The recovery of the original solution (full sized vector) from
the blocked solution is done programatically, rather than through
equations (18) or (17).

Based on the ideas presented in this section, the proposed strategy
can significantly reduce the memory required for the optimisation.
In particular, this allows the reduction of matrix E → EN, gradient
f → fN, constraint matrix M → MN, prediction matrix H → HN,
as well as constraint vector γ, nominal output vector Ȳ and state-to-
output prediction matrix G by selecting only the rows related to the
shooting points. However, if the methodology is meant to be used
to compress/decompress a given QP, as explained in section 2.5,
the optimisation could add up to half the memory (depending on
block size - half at NB = 2) for storing the compressed QP matrices
(EN, fN,MN, γ).

The ideas and computational savings gathered up to this section
are implemented in the MATLAB and C++ codes given in [27] and
[28] for the benchmark presented in the following section.

5 The Inverted Pendulum - A benchmark

The inverted pendulum is a nonlinear system widely used by aca-
demics, known to present several control challenges such as non-
linear and non-minimum phase dynamics, physical constraints and
under-actuation (multiple outputs - single input), where the task is to
drive the pendulum to its upright position, and simultaneously con-
trol its position in a rail. This makes it an interesting and challenging
benchmark for NMPC.

The application of NMPC to a real inverted pendulum was suc-
cesfully achieved in [34] using modest hardware. An impressive
application to a real triple inverted pendulum is presented in [38]
where a nonlinear optimisation using a collocation points is to cal-
culate the solution offline, however, they don’t apply it in a receding
horizon context nor do they apply it using the RTI scheme. Other
authors have used it extensively for benchmark simulations such as
[1, 6, 10, 13, 14, 20].

This section presents a benchmark of the proposed approach in
a non-linear inverted pendulum for comparing the performance of
the different strategies presented in this paper. The results show that
by applying the proposed approach, the system achieves better per-
formance and presents better recursive feasibility properties, which
is a consequence of a consistent optimisation. Furthermore, it will
be seen that the proposed approach can have computational gains
up to 100 times faster on an i7 laptop, and up to 70 times faster on

IET Research Journals, pp. 1–12

8 c© The Institution of Engineering and Technology 2015

a relatively low power Linux-based embedded platform such as the
aforementioned Beaglebone Blue, which would otherwise render the
application of NMPC to this system unfeasible.

5.1 System Modeling

Several variations of the mathematical model of an inverted pen-
dulum have been used, some of which are more complex than
others. For our simulation, we used the mathematical model pre-
sented in [33] which contains two main non-linearities, namely, the
gravitational effect, g sin(θ), and the non-linear torque-relationship
cos(θ)u of the bar-link with the input u (or car acceleration p̈ = u).
The model is given by the following differential equations.

[

θ̈
p̈

]

=

[

−bθ̇ + g sin θ + cos θu
u

]

(49)

Assuming the state x =
[
θ θ̇ p ṗ

]T
, the system was simulated

using a forward Euler integration method. Considering θ and p as
the relevant outputs leads to the following linearisation matrices of
the state space model (3):

Ak =






1 T 0 0
Tαk (1− Tb) 0 0
0 0 1 T
0 0 0 1




 Bk =






0
Tcθk
0
T






Ck =

[
1 0 0 0
0 0 1 0

]
(50)

where T is the sampling time, cθk = cos θk, sθk = sin θk and
αk = gcθk − sθkuk. The parameters used were b = 0.3 and g =
9.81 (m/s2), and the simulation was done using a sampling time of
T = 0.025 (s). Only the position of the car and the angle were con-
sidered as outputs (ny = 2) and the constraints of the system were

considered as −10 ≤ u ≤ 10 (m/s2) and −1 ≤ p ≤ 1 (m).

5.2 Simulations

All the simulation tests were done in the nominal case (no noise,
no disturbances, no uncertainty) given that the prime interest is in
the “inner” recursive feasibility, stability properties and computa-
tional efficiency; disturbance rejection and noise cancellation can
be addressed separately using offset-free optimisations [18, 39] and
observer/estimator design or filters [30–32, 40] respectively. The
simulation was initialized with the state x =

[
π 0 0 0

]
, and

was run for Ts = 8 seconds, allowing the system to swing up in
"one shot" or "two shots" (see Figure 3). For the initial guess, a
future nominal input trajectory of zeros Ū = O was used which rep-
resents the free response of the system, a condition from which any
optimisation could be initialised.

A desired prediction horizon of Npdes = 50 (Tp = 1.25 (s)) was
selected and the ideal prediction horizon was then acquired depend-
ing on the selected block size (NB). For reference, the ideal horizon
is displayed next to the block size in parenthesis in all the tables.
Regarding the tuning parameters, the optimisation was done using
Q = I and an input penalization of R = 0.1I . Moreover, a terminal
cost (last 2 values in Q diagonal) of Qf = 500 was used for both,
angle and position, as a "soft" zero-terminal constraint to improve
the stability characteristics of the underlying optimisation.

5.2.1 Performance and Recursive Feasibility Comparison:
To assess the performance and recursive feasibility properties of the
proposed approach, the system was tested with four possible types
of solution (deviations/absolute with/without the proposed shifting
strategy) and for different block sizes (NB). Moreover, to com-
pare the performance, two QP solvers were used in this comparison,
namely the MATLAB R2018a quadprog function using the interior-
point method and Hildreth’s QP presented in [32], which is an
active-set primal-dual type of QP that allows for hot-starting the
solution (initial guess for λ). In the former, the solution did not have

a limit in iterations or time (solved to optimallity), and the latter
performed a fixed number of 20 iterations (approximated solution)
when the unconstrained solution did not satisfy the constraints. In
the particular case of non-shifted solution based on deviations, the
constraints remained in the full sized vector. Additionally, in the
case of the MATLAB quadprog function, every time it returned an
infeasibility flag, it was counted and the previous solution was used
explicitly; this represents essentially open-loop control (no feed-
back), thus is a risk. The number of infeasibilities presented in a
given type of solution is shown in brackets in table 2. Finally, the
solution of the optimisation was always saturated to respect the input
constraints regardless of the result from the QP.

Table 2 gathers the comparison of the costs for all the different
types of solutions where JDev−Shift represents the cost of the devi-
ations solution with the proposed shifting strategy, JAbs−Shift the
cost of the absolute solution, and so on. For reference, costs less than
2000 swung up the system in "one shot", costs greater than 2000 but
less than 3000 swung up the system in "two shots", and costs above
3000 means the optimisation was not able to stabilize the system (see
Figure 3). The following summarises the main results from Table 2.

1. In both QPs (quadprog and Hildreth’s), the results from the pro-
posed deviation and absolute formulations with the shifting strategy
are exactly the same (columns 1-2, and columns 5-6 equal). This
is a direct result of what has been said repeatedly throughout the
paper: consistency. Moreover, no infeasibilities were recorded for
both types of solutions when using quadprog.
2. The solution giving deviations without shifting presented a sig-
nificant number of infeasibilities (239), and worse performance
when solving to optimality (quadprog) than when using an approx-
imate solution (Hildreth’s). This is a direct result of inconsistency
combined with the fact that Hildreth’s does not check for infeasibil-
ity and therefore feedback is always applied.
3. Although there were some differences in the results between both
QP’s for the proposed approach (ie. columns 1-2 6= columns 5-6),
most likely given that Hildreth’s QP did not converge to the solu-
tion in the 20 iterations (slow convergence rate of λ [32]), they gave
similar results for all the cases (columns 1-2 ≈ 5-6).
4. Overall, the best "Total" cost is given by the proposed shifting
strategy and the absolute non-shifted formulation gave the worse
results.
5. For block sizes NB = 10, 11, non of the solutions was able to
swing up the system in "one shot". This is unsurprising and linked to
the obvious observation that there are sensible block sizes.
6. In both QP’s, suboptimalities ∆J = (JNB

/J1 − 1)× 100 <
13.26% where obtained through all the "one shot" solutions which
give acceptable performance such as the ones given in both figures
(3) and (4).
7. Notice block sizes NB = 2, 7 presented even better performance
than the original full size vector NB = 1. This is because in the lin-
earisation process, the optimisation might take a different "branch"
of the solution that improved further AFTER re-linearisation. More-
over, allowing the intermediate constraints to be violated may relax
the solution and lead to better performance at the cost of having to
accept the violations. Finally, the optimisation is done in a finite hori-
zon where both block sizes have slightly longer prediction horizon
which could result in better overall predictions.

Figure 3 shows an example response with block size NB = 6 where
it can be seen that the optimisation was able to swing up and stabi-
lize the system in "one shot" using the proposed shifting strategy
(both deviations/absolute giving same result). In contrast, it took
"two shots" for the non-shifted solution based on deviations and the
optimisation failed completely in the case of the absolute non-shifted
solution.

Another value that was compared was the summation of the abso-
lute violation to the position constraints for different block sizes
(NB). In other words:

∑

∀k

vk where vk =

{

|pk| − 1 if |pk| > 1

0 else
(51)

IET Research Journals, pp. 1–12

c© The Institution of Engineering and Technology 2015 9

Table 2 Cost comparison for different block sizes NB using Shifting and Non-Shifting Strategies, and using quadprog MATLAB function and Hildreth’s QP for solving

the optimisation

QP quadprog Hildreth’s

NB (Np) JDev−Shift JAbs−Shift JDev JAbs JDev−Shift JAbs−Shift JDev JAbs

1 (50) 1101 1101 1101 1101 1102 1102 1102 1102

2 (51) 1099 1099 1105 [17] 1119[8] 1102 1102 1108 1130

3 (52) 1104 1104 2732 [18] 1239 1103 1103 1114 1238

4 (53) 1138 1138 2758 [32] 2475 1140 1140 1135 2787

5 (51) 1194 1194 1224 [14] 4118 1244 1244 1218 3952

6 (55) 1168 1168 2436 [18] 4002 1177 1177 1237 3715

7 (57) 1098 1098 2438 [26] 2197 1098 1098 1245 2201

8 (57) 1183 1183 2533 [38] 2173 1192 1192 1285 2293

9 (55) 1207 1207 2361 [20] 3514 1220 1220 2697 2230

10 (51) 2524 2524 2544 [27] 3475 2555 2555 2448 3474

11 (56) 2776 2776 2284 [15] 3448 2714 2714 4392 3447

12 (61) 1244 1244 4432 [14] 3397 1247 1247 2203 3399

Total 16835 16835 27948 [239] 32258 [8] 16894 16894 21185 30969

0 1 2 3 4 5 6 7 8

0

2

4

 (
ra

d
s
)

Angles

Dev-Shift

Abs-Shift

Inc

Abs

0 1 2 3 4 5 6 7 8
-1

0

1

x
 (

m
)

Positions

0 1 2 3 4 5 6 7 8
-10

0

10

u
 (

m
/s

2
)

Inputs

Fig. 3: Example Performance Comparison with NB = 6 using
quadprog

The results of this are gathered in Table 3 where VT−Shift repre-
sents the total violation of the proposed shifting strategy (deviations
and absolute are the same), and VDev and VAbs the total violation of
the deviation and absolute non-shifting solutions, respectively. Addi-
tionally, given that the proposed shifting strategy is only supposed to
enforce the constraints in the shooting points, the summation of the
constraint violation at this particular points was stored separately and
is represented by VS−Shift in the table. The following summarize
the main results from Table 3.

1. In the full optimisation case (quadprog), there were no violations
of the constraints at the shooting points (VS−Shift = 0) when using
the proposed strategy.
2. In the approximated optimisation case (Hildreth’s), only 3 sig-
nificantly small (1mm) violations occurred on the shooting points.
Notice as the block size increases, the number of constraints in the
optimisation are reduced. This ultimately allows the QP to find the
active set in less iterations, resulting in no violations on the shooting
points at bigger block sizes whilst performing slightly better because
of the relaxation of the intermediate constraints.
3. Although the non-shifted solutions gave presumably “good”
results for the Hildreth’s case, they present significant cost subop-
timalities. Moreover, the non-shifted deviation solution requires the
full decision vector (not the blocked vector) to be constrained, thus
removing part of the computational benefit.

To illustrate the concept of satisfying the constraints in the shoot-
ing points, Figure 4 shows the response of the system with block size
NB = 12 where it can clearly be seen that the solution satisfies the
constraints (at the very limits) at the shooting points, which in this
case are at times t = [0.925, 1.225] = [3NB + 1, 4NB + 1]T . The
"extra step" in both shooting points is due to the computation sepa-
ration strategy of the RTI which uses a predicted state, thus always
optimising relative to "one step ahead" and applying the feedback
phase in the next sampling time when the measurement of the state
is available. This can clearly be seen in the input response where the
first decision is at t = 0.025 (s) instead of t = 0 (s). Another impor-
tant thing to notice is that the solution clearly exhibits the blocking
structure, in particular, after t > 3 when the system is stabilised
within the prediction horizon. Finally, a particular drawback of the
proposed approach is that it only guarantees satisfying constraints at
the shooting points by fixating all attention to them, therefore a small
slack is required to protect the non-shooting points from small con-
straint violations. The selection of the slack size itself is a non-trivial
task but could be selected based on Monte Carlo simulations, ana-
lyzing the system from a variety of conditions, and obviously would
be increasing as the block size increases. In general, this is a problem
from which most direct methods suffer because of the discretisation
of the problem and thus is not unique to the proposal in this paper.

5.2.2 Computation Time Comparison: A core topic of inter-
est is the computation time benefits achieved by the proposed
strategy. Notice that the latter benefits from two main parts: (i) the
first being the reduction in the number of degrees of freedom and
points of interest which by itself would lend to faster unconstrained
solutions, and (ii) the second being the reduction of the number
of constraints which would otherwise lack the recursive feasibility
guarantees if they were not reduced in the absolute-time-frame used
by the proposed approach.

In order to properly test the computation times, the strategy was
tailored to be executed with a given block size NB and its ideal
prediction horizon Np which define the sizes of the matrices to be
used. Each block size was programmed separately as a MATLAB
function, and MATLAB C Coder was used to produce tailored C++
code to perform the optimisation. Regarding the QP iterations, the
interest was on how fast the prepared QPs could be run, therefore
the optimisation performed exactly 20 steps of Hildreth’s QP when
the unconstrained solution did not satisfy the constraints, indepen-
dently of whether the active set was found or not. This is a realistic
scenario given a situation may arise in a real system where the opti-
misation can only run for a given maximum number of iterations.
Three execution times were of interest namely:

1. Preparation: The total time required to compute QP matrices
EN, fN,MN, γ; referred to as QPp in Table 4.
2. Unconstrained Solution: The preparation time plus obtaining
the unconstrained solution and computing the feedback gain Kx =
E−1
N

HT
NQG to be used in the feedback phase; referred to as QPu in

Table 4.

IET Research Journals, pp. 1–12

10 c© The Institution of Engineering and Technology 2015

Table 3 Constraint violation comparison for different block sizes NB , using Shifting and Non-Shifting Strategies, and quadprog MATLAB function and Hildreth’s QP

for solving the optimisation

QP quadprog Hildreth’s

NB (Np) VT−Shift VS−Shift VDev VAbs VT−Shift VS−Shift VDev VAbs

1 (50) 0 0 0 0 0 0 0 0

2 (51) 0.002 0 0.004 0.006 0.002 0.001 0.002 0

3 (52) 0.009 0 0.017 0 0.008 0 0.010 0

4 (53) 0.002 0 0.064 0 0.002 0.001 0.012 0

5 (51) 0 0 0.044 0.106 0 0 0.030 0.040

6 (55) 0.003 0 0.094 0.178 0.003 0 0.040 0.301

7 (57) 0.171 0 0.300 0 0.171 0 0.089 0

8 (57) 0.114 0 0.423 0 0.108 0.001 0.021 0.094

9 (55) 0 0 0.406 0.059 0 0 0.100 0.008

10 (51) 0.032 0 0.686 0 0.026 0 0.334 0

11 (56) 0.069 0 0.313 0 0.156 0 0.214 0

12 (61) 1.055 0 0.986 0 1.033 0 0.055 0

Total 1.457 0 3.337 0.349 1.511 0.003 0.908 0.444

Table 4 Comparison of computation times (in microseconds) for different block sizes NB in 32/64 bit formats on 2 different systems: Ubuntu 18.04 (Intel i7-5700HQ

64-bit @ 3.5 GHz) & Beaglebone Blue running RT Debian (ARM Cortex-A8 32-bit @ 1 GHz)

Sys Ubuntu 18.04 (i7-5700HQ @ 3.5 GHz) Beaglebone Blue (ARM Cortex-A8 @ 1 GHz)

bits 64-bits 32-bits 64-bits 32-bits

NB (Np) QPp QPu QPc QPp QPu QPc QPp QPu QPc QPp QPu QPc

1 (50) 165 276 2646 144 248 2291 6393 14326 108567 6689 14879 119865

2 (51) 41 60 427 35 53 415 2239 3459 19800 2144 3359 21586

3 (52) 26 34 185 22 30 172 1756 2204 8568 1598 2043 9211

4 (53) 21 25 85 18 22 77 1628 1863 5250 1456 1680 5100

5 (51) 17 19 57 15 17 52 1440 1575 3496 1372 1493 3493

6 (55) 19 21 52 16 17 46 1619 1729 3252 1390 1487 3077

7 (57) 19 21 45 17 18 41 1706 1794 2962 1655 1734 2996

8 (57) 18 19 39 16 17 35 1693 1761 2634 1426 1492 2439

9 (55) 17 18 33 15 15 29 1572 1625 2306 1447 1495 2235

10 (51) 14 15 26 12 13 23 1312 1352 1860 1146 1182 1717

11 (56) 17 18 29 14 15 26 1552 1593 2105 1366 1403 1938

12 (61) 20 20 32 17 18 29 1819 1861 2357 1602 1639 2172

Gain 12 18 102 12 19 100 5 11 58 6 13 70

0 1 2 3 4 5 6 7 8

0

2

4

 (
ra

d
s
)

Angles

Shift-Inc

0 1 2 3 4 5 6 7 8

-1

0

1

x
 (

m
)

Positions

0.9 1 1.1 1.2

-1.1

-1

0 1 2 3 4 5 6 7 8
-10

0

10

u
 (

m
/s

2
)

Inputs

0 0.2 0.4
-5

0

Fig. 4: Shifting Strategy Response with NB = 12 using Hildreth’s
QP

3. Constrained Solution: The unconstrained solution time plus the
time required to perform exactly 20 QP iterations of Hildreth’s QP;
referred to as QPc in Table 4.

The resulting C++ code can be found in [28] and was tested
on two different systems: a laptop running Ubuntu 18.04 with an

i7-5700HQ 64-bits processor running @ 3.5 GHz with 12 GB of
DDR3 RAM @ 1.6 GHz; and a Beaglebone Blue embedded platform
running Real-Time (RT) Debian with an ARM Cortex-A8 32-bits
processor running @ 1GHz. Given that the latter is a 32-bit sys-
tem, the code was also produced and tested in 32-bits format on
both systems. The simulation was done 1000 times and the mini-
mum execution times for all cases were stored. This represents the
fastest computation time that the approaches could obtain if a real
time OS was used given the exact same computations/QP iterations
are performed. The resulting computing times are gathered in Table
4 and the following summarises the main results.

1. For the constrained solution, the optimisation was able to get
computation times QPc up to 102 times faster in the laptop when
using 64-bits, and 100 times faster when using 32-bits format. In the
case of the embedded system (Beaglebone Blue), the optimisation
was able to get computation time QPc up to 70 times faster when
using 32-bits, and only 58 times faster when using 64-bits.
2. Gains of up to 19 and 13 times faster were observed for the
unconstrained solution, and up to 12 and 6 times faster for the
preparation in the laptop and the embedded system respectively.
3. The fastest execution time in all the cases is obtained with block
size NB = 10. This is because this block size, has the smallest
ideal prediction horizon (Np = 51) with the smallest Hessian size

of 6× 6 (⌈ 5110⌉) and only 24 constraints (6× 4). In contrast, the
optimisation with block size NB = 1 has a Hessian size of 50× 50
and 200 constraints (50× 4).
4. The block size of NB = 1 would render the application unfea-
sible in the embedded system (Beaglebone Blue) given that the
optimisation wouldn’t be able to finish within a sampling time (T =
0.025 (s)). However, in all the cases the computation time quickly
drops to less than 8% with a block size of NB = 3 .

IET Research Journals, pp. 1–12

c© The Institution of Engineering and Technology 2015 11

6 Conclusion

This paper presents a novel shifting strategy based on efficient
blocked solutions for NMPC combined with the RTI Scheme.
The proposed strategy uses a set of blocking structures which if
applied sequentially automatically include the tail of the solution
hence preserving recursive feasibility guarantees whilst reducing the
degrees of freedom and the input-related constraints. Additionally,
the proposed approach uses a reduced amount of points of interest,
sometimes called shooting points, which represent output errors and
output constraints that must be satisfied, and a stability and recursive
feasibility guarantee is presented for the infinite horizon case, or for
when the system includes special terminal conditions such as zero-
terminal constraints or infinite horizon costing. Finally, it presents a
set of algorithms and computational savings that can be used to code
the proposed approach efficiently.

The overall resulting strategy is tested using an inverted pendulum
as a benchmark where the proposed approach clearly outperforms
the standard solutions in recursive feasibility properties and general
performance, giving suboptimallities ∆J < 13% and fully satisfy-
ing the constraints at the shooting points when a full optimisation
is performed. Finally, the computational benefits of the proposed
approach were evaluated in two physical systems: an i7 laptop and a
Beaglebone Blue embedded system, where computation times up to
100 and 70 times faster were possible.

Future work related to the proposed strategy will be to merge the
approach with the ACADO toolkit allowing it to use the efficient
sensitivity generation and integration methods it contains, as well as
a variety of QP solvers, and ultimately, the automatic code genera-
tion for its implementation in real robotic and mechatronic systems
such as UAVs using, for example, the Beaglebone Blue Linux-based
computing platform.

7 Acknowledgments

This work was funded by CONACyT, Mexico.

8 References

1 R. Quirynen, S. Gros, and M. Diehl, “Efficient NMPC for nonlinear models with

linear subsystems,” IEEE Conference on Decision and Control, pp. 5101–5106,

2013.

2 H. Seki, S. Ooyama, and M. Ogawa, “Nonlinear Model Predictive Control Using

Sucessive Linearization - Application to Chemical Reactors,” Trans. of the Society

of Instrument and Control Engineers, vol. E-3, no. 1, pp. 66–72, 2004.

3 A. Zannelli, G. Horn, G. Frison, and M. Diehl, “Nonlinear Model Predictive Con-

trol of a Human-sized Quadrotor,” European Control Conference, vol. 16, no. 1,

pp. 41–50, 2018.

4 Q. Mei, F. Xu, H. Chen, Z. Li, and Y. Hu, “Fast Model Predictive Control

Based on Multiscale System Theory,” World Congress on Intelligent Control and

Automation, pp. 2517–2522, 2016.

5 M. Diehl, H. G. Bock, and J. P. Schlöder, “A Real-Time Iteration Scheme for Non-

linear Optimization in Optimal Feedback Control,” SIAM Journal on Control and

Optimization, vol. 43, no. 5, pp. 1714–1736, 2005.

6 B. Houska, H. J. Ferreau, and M. Diehl, “An auto-generated real-time iteration

algorithm for nonlinear MPC in the microsecond range,” Automatica, vol. 47,

no. 10, pp. 2279–2285, 2011.

7 M. Vukov, A. Domahidi, H. J. Ferreau, M. Morari, and M. Diehl, “Auto-generated

algorithms for nonlinear model predictive control on long and on short horizons,”

IEEE Conference on Decision and Control, pp. 5113–5118, 2013.

8 S. Gros, R. Quirynen, and M. Diehl, “Aircraft control based on fast non-linear

MPC & multiple-shooting,” IEEE Conference on Decision and Control, no. 1,

pp. 1142–1147, 2012.

9 M. Diehl, R. Findeisen, F. Allgöwer, H. G. Bock, and J. P. Schlöder, “Nominal

stability of real-time iteration scheme for nonlinear model predictive control,” IEE

Proceedings-Control Theory and Applications, vol. 152, no. 3, pp. 296–308, 2005.

10 S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From linear to

nonlinear MPC: bridging the gap via the real-time iteration,” International Journal

of Control, vol. 7179, no. November, pp. 1–19, 2016.

11 F. Guarantees, R. Quirynen, M. Diehl, and Q. Moritz, “An Efficient Inexact NMPC

Scheme with Stability and Feasibility Guarantees,” IFAC-PapersOnLine, vol. 49,

no. 18, pp. 53–58, 2016.

12 L. Wirsching, J. Albersmeyer, P. Kühl, M. Diehl, and H. Bock, “An Adjoint-

based Numerical Method for Fast Nonlinear Model Predictive Control,” IFAC

Proceedings Volumes, vol. 41, no. 2, pp. 1934–1939, 2008.

13 Y. Chen, D. Cuccato, M. Bruschetta, and A. Beghi, “An Inexact Sensitivity Updat-

ing Scheme for Fast Nonlinear Model Predictive Control based on a Curvature-like

Measure of Nonlinearity,” IEEE Conference on Decision and Control, pp. 4382–

4387, 2017.

14 A. Zanelli, R. Quirynen, G. Frison, and M. Diehl, “A Partially Tightened Real-

Time Iteration Scheme for Nonlinear Model Predictive Control,” IEEE Conference

on Decision and Control, vol. 1, no. 1, 2017.

15 J. Rossiter, L. Wang, and G. Valencia-Palomo, “Efficient algorithms for trading

off feasibility and performance in predictive control,” International Journal of

Control, vol. 83, pp. 789–797, April 2010.

16 D. Kouzoupis, R. Quirynen, B. Houska, and M. Diehl, “A block based ALADIN

scheme for highly parallelizable direct Optimal Control,” American Control

Conference, vol. 2016-, pp. 1124–1129, 2016.

17 D. Kouzoupis, R. Quirynen, J. V. Frasch, and M. Diehl, “Block Condensing for

Fast Nonlinear MPC with the Dual Newton Strategy,” IFAC-PapersOnLine, vol. 48,

no. 23, pp. 26–31, 2015.

18 R. Huang, L. T. Biegler, and S. C. Patwardhan, “Fast Offset-Free Nonlinear

Model Predictive Control Based on Moving Horizon Estimation,” Industrial &

Engineering Chemistry Research, vol. 49, no. 17, pp. 7882–7890, 2010.

19 B. Houska, H. J. Ferreau, and M. Diehl, “ACADO toolkit-An open-source frame-

work for automatic control and dynamic optimization,” Opt. Control Applications

and Methods, vol. 32, no. 3, pp. 298–312, 2011.

20 B. Houska, H. J. Ferreau, and M. Diehl, “Autogenerating microsecond solvers

for nonlinear MPC: A tutorial using ACADO integrators,” Optimal Control

Applications and Methods, vol. 36, pp. 685–704, 2015.

21 J. Kalmari, J. Backman, and A. Visala, “A toolkit for nonlinear model predic-

tive control using gradient projection and code generation,” Control Engineering

Practice, vol. 39, pp. 56–66, 2015.

22 H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, “qpOASES:

a parametric active-set algorithm for quadratic programming,” Mathematical

Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.

23 M. D. H.J.Ferreau, H.G. Bock, “An online active set strategy to overcome the lim-

itations of Explicit MPC,” International Journal of Robust and Nonlinear Control,

vol. 18, no. October 2014, pp. 816–830, 2008.

24 R. Quirynen, M. Vukov, and M. Diehl, “Multiple Shooting in a Microsecond,” in

Multiple Shooting and Time Domain Decomposition Methods, vol. 9, pp. 183–202,

Springer, Cham, 2015.

25 C. Shen, B. Buckham, and Y. Shi, “Modified C/GMRES Algorithm for Fast Non-

linear Model Predictive Tracking Control of AUVs,” IEEE Transactions on Control

Systems Technology, vol. 25, no. 5, pp. 1896–1904, 2017.

26 R. Cagienard, P. Grieder, E. C. Kerrigan, and M. Morari, “Move blocking strategies

in receding horizon control,” Journal of Process Control, vol. 17, no. 6, pp. 563–

570, 2007.

27 O. J. G. Villarreal, “MATLAB Code for "A Shifting Strategy for

Efficient Block-based Nonlinear Model Predictive Control Using

Real Time Iterations.” https://doi.org/10.24433/CO.

0e3ceef1-9d0d-4bbc-b3ff-9fe6213ebc12, 2018.

28 O. J. G. Villarreal, “C++ Code for "A Shifting Strategy for Effi-

cient Block-based Nonlinear Model Predictive Control Using

Real Time Iterations.” https://doi.org/10.24433/CO.

5d68cc1d-237e-4440-8e0e-dad909605e3f, 2018.

29 Beagleboard.org, “Beaglebone Blue.” https://beagleboard.org/blue,

2017.

30 J. A. Rossiter, Model-based predictive control : a practical approach. Control

series, Boca Raton: CRC Press, 2003.

31 J. A. Rossiter, A first course in predictive control. Boca Raton: CRC Press, Taylor

& Francis, 2nd ed., 2018.

32 L. Wang, Model Predictive Control System Design and Implementation Using

Matlab. Springer, 2009.

33 M. Alamir, “Fast NMPC: A reality-steered paradigm: Key properties of fast NMPC

algorithms,” European Control Conference, no. 4, pp. 2472–2477, 2014.

34 A. Mills, A. Wills, and B. Ninness, “Nonlinear model predictive control of an

inverted pendulum,” American Control Conference, pp. 2335–2340, 2009.

35 R. C. Shekhar and C. Manzie, “Optimal move blocking strategies for model

predictive control,” Automatica, vol. 61, pp. 27–34, 2015.

36 C. J. Ong, Z. Wang, and M. Dehghan, “Model Predictive Control for Switching

Systems With Dwell-Time Restriction,” IEEE Transactions on Automatic Control,

vol. 61, no. 12, pp. 4189–4195, 2016.

37 J. A. Rossiter, J. Sheng, T. Chen, and S. L. Shah, “Interpretations of and options in

dual-rate predictive control,” Journal of Process Control, vol. 15, no. 2, pp. 135–

148, 2005.

38 T. Glück, A. Eder, and A. Kugi, “Swing-up control of a triple pendulum on a cart

with experimental validation,” Automatica, vol. 49, no. 3, pp. 801–808, 2013.

39 J. Huusom, N. Poulsen, S. Jorgensen, and J. Jorgensen, “Tuning of methods

for offset free MPC based on ARX model representations,” American Control

Conference, pp. 2355–2360, 2010.

40 E. F. Camacho, Model predictive control. Advanced textbooks in control and signal

processing, London ; New York: Springer, 2nd ed. ed., 2003.

IET Research Journals, pp. 1–12

12 c© The Institution of Engineering and Technology 2015

