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Abstract

Background: In recent years, the study of immune response behaviour using bottom up approach, Agent Based

Modeling (ABM), has attracted considerable efforts. The ABM approach is a very common technique in the biological

domain due to high demand for a large scale analysis tools for the collection and interpretation of information to

solve biological problems. Simulating massive multi-agent systems (i.e. simulations containing a large number of

agents/entities) requires major computational effort which is only achievable through the use of parallel computing

approaches.

Results: This paper explores different approaches to parallelising the key component of biological and immune

system models within an ABMmodel: pairwise interactions. The focus of this paper is on the performance and

algorithmic design choices of cell interactions in continuous and discrete space where agents/entities are competing

to interact with one another within a parallel environment.

Conclusions: Our performance results demonstrate the applicability of these methods to a broader class of

biological systems exhibiting typical cell to cell interactions. The advantage and disadvantage of each implementation

is discussed showing each can be used as the basis for developing complete immune system models on parallel

hardware.

Keywords: Agent based modeling, GPGPU, High-performance computing, Cellular modelling, Computational

modelling, Parallel simulation, FLAME GPU

Background
The immune system comprises various biological struc-

ture and processes. Immune system models are a form

of a complex biological system model which consist of

a large number of agents (cells) communicating indi-

rectly through diffusion of chemical substances or directly

through connection of chemical receptors [1]. Due to the

variance of type of interactions between various cells in

a large-scale model, studying such system is challenging.

Generally, to study and investigate biological systems,
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a hybrid approach that is the integration of experi-

mental and computational research, is required. This

hybrid approach has helped shaping novel hypotheses in

research. In-silico experiments, a.k.a simulation, attempts

to capture the dynamics of the system as an alterna-

tive to in-vitro/in-vivo for studying biological systems.

With the hybrid approach, experiments that are not easily

achievable in a laboratory are viable [2, 3].

Agent basedmethod

Modelling and simulation has been used by researchers in

various scientific domains as a tool to better understand

and predict the behaviour of a system. Based on the char-

acteristics of the model, a system can be represented using

different design methods. A top-down approach consist-

ing of sets of equations can be used to model system level

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3181-y&domain=pdf
http://orcid.org/0000-0002-2561-7926
mailto: m.kabiri-chimeh@sheffield.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Chimeh et al. BMC Bioinformatics 2019, 20(Suppl 6):579 Page 2 of 14

behaviour; or alternatively a bottom-up approach can be

used where individuals within the system are modelled

as agents. By using a top-down approach, it is possi-

ble to model large-scale systems of population dynamics

(large number of entities). However, this approach ignores

individual interactions as it approximates behaviour at

the macroscopic level. The bottom-up approach uses a

microscopic level of modelling, where individual entities

(agents) and interactions are described and then simulated

to observe system level behaviour.

Agent Based Models (ABMs) and Multi-Agent Systems

(MASs) are terms often used synonymously as techniques

used to describe a model of a complex system. Both

ABMs and MASs can be simulated to allow the non-

linear behaviours of the complex systems to be studied

[4, 5]. In other words, they are techniques for represent-

ing and describing an environment containing a number

of agents (self contained entities) and the set of rules

describing their behaviours and how they interact with

each another and with the environment. In the context of

an ABM, an agent can represent an individual or a col-

lection of entities. Agent Based Simulations (ABSs) are

the execution of an implementation of an ABM, for the

purpose of studying the whole system. The ABM method

provides a natural approach to modelling, where rela-

tively simple behaviours and interactions are described,

but more-complex behaviours may emerge during sim-

ulation. This makes the ABM approach suitable for the

description of biological simulations, by describing the

biological properties and behaviours of entities such as

cells. It can then be simulated in order to study the

complex and dynamic interactions within the biologi-

cal environment. The ABM method is the most used

bottom-up approach in immunology, as it describes the

immunological process with higher accuracy than top-

down approaches which may exhibit rough approxima-

tions [2]. With stochastic ABSs, the behaviour of large

numbers of simple individuals can be aggregated over

individual or multiple simulations to capture system-level

behaviours [6].

ABMmodelling of cell-cell interactions

Within ABM different levels of abstraction can be applied.

Agents such as cells may be modelled as points in contin-

uous space where agents are modelled as particles mov-

ing with Brownian motion and interactions only occur

based on spatial proximity and factors such as affinity.

Alternatively, agents may exist within discrete spatial

areas, or represent quantities of chemicals and cells at a

discrete spatial location, which may be arranged in a regu-

lar structures (e.g. as a square or hexagonal lattice). Hybrid

approaches where discrete spatial areas perform reac-

tion diffusion modelling but have well mixed collections

of directly interacting individual cells with Monte Carlo

(pairwise interaction) are also common within immune

system and more general biological modelling.

Simulating ABM on GPUs

Compared to the top-down approach, simulating a com-

plex system such as biological cellular system using

ABM technique is computationally expensive. Increasing

the scale of the model to achieve natural-scale simula-

tions places additional computational burden which can

impede discovery through simulation. A feasible solu-

tion would be the use of parallel computing resources to

address this requirement and achieve improved simula-

tion times when scaling agent based models of complex

biological systems.

Graphics Processing Units (GPUs) are specialised mas-

sively parallel processors containing thousands of arith-

metic processing units that can be utilised to achieve

significant acceleration for computationally intensive

scientific applications. GPUs allow a personal com-

puter to be transformed into a personal supercomputer,

providing up to 16 Trillion Floating Point Operations per

Second (TFLOPS) in single-precision using consumer-

grade hardware (NVIDIA TITAN RTX). While GPUs are

computationally powerful, utilising high level of parallel

performance is a huge challenge for a programmer with-

out considerable knowledge of data parallel algorithms,

the underlying parallel architecture and optimisation

techniques.

GPUs have been widely used in many scientific research

domains to accelerate applications and showed significant

computational performance improvements [7]. There are

several domain specific studies that use GPUs to imple-

ment various complex multi-agent systems [1, 8–10]. In

the majority of these cases GPUs have been used for sim-

ulating continuous or discrete space abstractions as well

as hybrid approaches which are desirable for large scale

immune systems simulations.

In our previous work [10], we demonstrated the imple-

mentation of hybrid space biological models with parallel

collection-type pairwise interactions executing on a GPU

architecture. The pairwise cell-cell interaction was imple-

mented using a hybrid approach, where agents represent-

ing multiple individuals at discrete locations interact with

individuals at the same location. This paper (an extended

version of paper [10] presented at Computational Methods

for the Immune System Function workshop) describes

three different parallel implementation of the pairwise

interaction model which is representative of an agent

based immune system model in both discrete or contin-

uous space. The paper compares performance character-

istics of three parallel implementations for a simplified

large scale biological cellular system through a case

study of interacting cells which from the basis of many

immune system models. Types of interactions between
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cells (agents) and governed rules in the immune system

models makes the model complex enough to be used

as a case study to show the viability of using GPUs for

other cellular level biological system with the same type of

interaction pattern and complex behaviours.

Within the context of this paper, the model is imple-

mented using three differing levels of modelling abstrac-

tion within the Flexible Large Scale Agent Modelling

Environment for the GPU (FLAMEGPU) framework [11],

a flexible ABM environment for large-scale simulations

that enables modellers from diverse scientific domains

such as economics, biology and social sciences to eas-

ily write agent based models targeting GPUs [12]. We

extended our previous work by using different approaches

describing pairwise interactions which can be applied

more broadly to general cell-cell or cell-environment

interactions within an immune system model.

Our case study model is inspired by existing work

that was implemented by the Universal Immune System

Simulator (UISS) framework [13]. The UISS framework

models and simulates immune system related pathologies

on Central Processing Units (CPUs) and previously we

demonstrated the feasibility of applying GPUs to biolog-

ical cellular model by implementing a very common and

necessary biological cell behaviour in FLAME GPU [10].

The study showed the applicability of the technique to a

broader class of multi-cell biological system. This paper

explores different approaches of implementing the same

biological cell behaviour in FLAME GPU. Results from

this study shows the performance comparison of these

approaches.

The rest of this paper is organised as follows: The

“Related work” section surveys previous studies on the

application of GPU in Agent Based Modelling simulation,

specifically in the field of biological cell modelling.

“Methods” section presents design considerations

required for different parallel implementation of

the model. The “Results and discussion” section,

reports the results of and discusses our experimental

evaluation. Finally, we draw our conclusions in the

“Conclusion” section.

Related work
An immune system is an example of a complex system

comprising different types of interactions between a vari-

ety of cell types. There are various ways to model immune

systems. The most common approach is the use mathe-

matical equations such as ordinary differential equations

(ODEs) and partial differential equations (PDEs) [14–16].

One can capture entity changes over time while the later

can capture changes in both time and space but is complex

to solve. The equations are sometimes mathematically

sophisticated but the complexity of the model is based on

the number of equations describing the model. Generally,

they are designed to model specific aspects of the immune

response and rely on global information. Therefore, these

models have difficulty exhibit the fluctuations typically

observed in immunology [17]. In other words, biological

phenomena cannot be easily captured using mathematical

representations [18, 19].

Agent based methods provide ways of representing the

heterogeneity of the entities as well nonlinear interac-

tions among agents [20–23]. In ABM, agents interact

with the environment or other individuals in continu-

ous or discrete space. Arbitrary complex knowledge can

be captured with agents in ABM. There are various

existing works on agent based immune system mod-

els implemented using different levels of abstractions

(continuous space, continuum or hybrid). Agent based

Artificial Immune System (AbAIS) [24] framework uses

a hybrid architecture where heterogeneous agents evolve

over a cellular automata environment. In this framework,

agents are modelled using a genetic approach. CAFISS

[25] models cell-cell interactions in a grid where each cell

has a bit string . The scalability of the model using this

approach is questionable due to the large overhead caused

by the use of separate thread for each cell. Each immune

system cell in this approach runs its own thread. Cell to

cell communication is performed through events.

ImmSim [17] is a framework based on cellular automata

where entities interact with other and diffuse through

lattice site. In this mode, individuals consider possible

interactions based on the given probability rule. The

framework has been developed in APL2, which due

to language constraints limits the scale of simulations

executed. Later, parallel version of ImmSim, C-ImmSim

[26] were developed with the focus on scalability and

performance. C-ImmSim is an advanced immune system

simulation based on ImmSim with added features that

allows simulations at the cells and molecules levels. The

framework exploits task parallelism on distributed com-

puters to reduce simulation runtimes and enable larger-

scale simulations.

ImmunoGrid [27] uses C-ImmSim as an underly-

ing framework. It uses grid technologies which allows

very large and complex simulation size matching a real

size immune system through distributed computing.

Simmune [28] is a framework to model cell-cell and cell-

molecule interactions where similar to ImmSim, cells do

not have states. Simulating complex and detailed interac-

tion using Simmune framework is very computationally

expensive. Sentinel [29] is another framework based on

the principles of ImmSim with environment is divided to

grids and individuals can move between locations.

Jacob, Litorco and Lee[22] presented a swarm agent

based 3D model of immune system in continuous space

using Breve simulation [30]. Agents move randomly in

the continuous space and only interact with those within
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their local radius. The visualisation and continuous space

approach impose constraints on the simulation size [31].

Generally, simulating large scale complex models is com-

putationally expensive.A possible solution is the use of

Graphic Processing Units (GPUs). GPUs have been used

to accelerate scientific application and proven to achieve

significant performance for computationally problematic

cases. There are several studies on the application of

GPUs to biological systems [32–35]. There are several

existing works on parallel implementation of the immune

system model simulation in continuous space [1, 9, 36].

PI-FLAME [36] is a GPU-accelerated viral infection

response simulator using continuous space, which

demonstrates up to 13x reduction in simulation runtime

compared to a serial CPU based implementation.

Chimeh et al. [10], implemented a specific type of cell

interactions known as pairwise interaction in immune

system model (common in biological cellular level

systems) employed heavily throughout UISS [13]; a uni-

versal immune system simulator framework. UISS is a

hybrid simulator combining ODEs and ABM in a discrete

environment. Pairwise agent interactions occur between

agents within each discrete location, which are assumed

to be well-mixed, following stochastic processes. The

UISS simulator is implemented for serial execution on

CPUs, but design decisions were made to improve com-

putational and memory efficiency, I.e. the use of dis-

crete space rather than continuous space. Implementing

a fine-grained data-parallel version of the model is non-

trivial due to the extensive use of pairwise interactions

which require conflict resolution in a parallel environ-

ment. Using FLAME GPU to simulate the simplified

model with only two cell agent types with pairwise inter-

actions, Chimeh et al. demonstrated that the technique is

computationally more efficient than the serial counterpart

and demonstrated the addition of a novel atomic based

approach for reproducing equivalent serial behaviour.

Moreover, recently, the thermostatted kinetic theory

methods have been employed for the modelling of var-

ious complex systems, e.g: cancer and immune system

competition, social systems. The method is the combina-

tion of the mathematical formalism of ODEs and PDEs

and interaction driven modelling of the ABM[37–39].

Methods
We implement a simplified version of the pairwise inter-

action that exists in human immune systems and almost

all models of biological systems. An example of this

interaction can be seen between B cells (an immune

system cell type that is part of the adaptive immune

system) and antigens, or between Antibodies and Anti-

gens. Our model uses the FLAME GPU library to map

our model description to GPU executable code. In this

section we describe the FLAME GPU framework used

for our implementations; the properties and behaviour

of our simplified pairwise model; and provide implemen-

tation details of the three alternate methods of parallel

implementation.

FLAME GPU

Developed since 2008, FLAME GPU framework is a gen-

eralised large scale ABM framework that employs the

parallel architecture of Graphic Processing Unit (GPU)

to enable real time model interaction and visualisation.

FLAME GPU abstracts away the complexity of the GPU

architecture from the users (modellers) by providing a

high-level modelling syntax, based on a formal state-

machine representation. The software aims to allow mod-

ellers from any domain to write a model to target GPUs

capable of simulating millions of interacting individuals

without the need to obtain specialist knowledge typically

required to effectively program GPU architectures.

FLAME GPU is a template-based simulation environ-

ment that maps formal description of agents into simula-

tion code. Agent representation is based on the concept

of a communicating X-Machine where communication

is performed via message lists. An overview of the fea-

tures and capabilities of the FLAME GPU simulation

platform has been demonstrated through an example in

[12]. Figure 1 shows FLAME GPU code generation pro-

cess which automatically translates a high level model

description to optimised GPU code described in a series

of code generation templates.

However, these types of interactions can be modelled

and implemented in several way, each of which may have

advantages and disadvantages. To extend this work we

have created multiple implementations of a model char-

acteristic of cellular immune system simulations, for a

common interaction pattern.

Model

A simplified model was designed to enable the evalu-

ation of alternate highly parallel implementation strate-

gies for pairwise interactions, typical of cellular immune

system simulations. The pairwise interaction pattern is

non-trivial in a highly-parallel environment with several

alternate methods of implementation. For these types

of model, the simulation environment can be modelled

using either continuous space or using discrete space,

and typically as a toroidal environment with wrapping in

two axis.

The proposed model is designed to be suitable for

implementation using either spatial modality. When using

discrete space, the environment is assumed to be well-

mixed within each discrete position. In continuous space,

random sampling of uniform distributions can be used

to achieved a well-mixed environment. For the purposes

of this model and benchmark we will only consider a
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Fig. 1 The FLAME GPU modelling process. An XSLT template processor translates a user defined XMML model into simulation code to be linked

with the behavioural function scripts to produce a custom simulation executable

single location in the discrete environment. The model

is designed for continuous time simulation, rather than

discrete event simulation. The duration of a simulation is

determined by the Simulation Length. The number

of simulation iterations required will vary based on this

and the length of time elapsed per simulation iteration.

The proposed model contains two populations A and B.

These populations could represent different cells, proteins

or other biological entities. For instance, the populations

could represent B Cells and Antigens; or Antibodies and

Antigens, in either continuous or discrete space. Some

agents may be categorised based on certain properties. To

account for this A agents have a value which represents the

type of A. The number of types of A can be controlled

through a model parameter.

Individuals from each population aim to interact with

an individual population, in a mutually exclusive pairwise

interaction. I.e. One A will interact with one B at a given

point in time. The interactions are rate-limited, once an

agent has interacted with a member of the other popu-

lation it will not interact with another until a period of

time has elapsed, referred to as a MACRO_TIMESTEP. To

ensure reliable agent populations for benchmarking, once

a pairwise interaction occurs agents simply record the

event and progress. In a more realistic model, interactions

would likely result in changes to the agent population,

with existing agents being removed from the simulation,

or new agents being created. Additionally, the interac-

tion is probabilistic in nature, subject to implementation

specific parameters. This enables each implementation to

be calibrated to produce similar behaviour. For the pur-

poses of calibration, each agent also records the number

of interactions it achieves over the duration of the sim-

ulation. This can then be aggregated across the whole

population at the end of the simulation.

Three implementations of this model are described:

a continuous-space particle-like implementation; a

discrete-space Monte Carlo style implementation; and

a discrete-space collection-based implementation using

agents which represent populations of multiple similar

individuals.

Implementation 1: particle

This fine-grained implementation of the model represents

individual A and B agents as points within continuous

toroidal space. Agents randomly move within the con-

tinuous environment, i.e. Brownian motion. Interactions

between agents occur when in close proximity to a mem-

ber of the other population. Additional stochasticity could

be introduced through an additional probabilistic test,

rather than solely relying on proximity. The rate of inter-

action is controlled through themaximum speed of move-

ment of individuals and the interaction radius, controlled

as model parameters.

The fine-grained nature of this implementation

requires relatively short timesteps compared to alternate

higher-level implementations. Each simulation itera-

tion progresses time by a MICRO_TIMESTEP, where

many MICRO_TIMESTEPs are required for a single

MACRO_TIMESTEP to have occurred. This means that

a larger number of simulation steps are required. As

the individual simulation iterations are shorter than the

MACRO_TIMESTEP described in the model, and inter-

actions are rate-limited, agents become dormant after a
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successful interaction. While dormant, agents continue to

move around the environment but are not involved in any

potential interaction. Once an agent has been dormant for

a full MACRO_TIMESTEP it once again becomes active.

Figure 2 shows the state machine employed within the

FLAME GPU model, representing the process for a single

iteration. At the start of each iteration Agents from both

the A and B populations execute their respective MOVE

function. This uses Random Number Generation (RNG)

to calculate a new position for the individual. Additionally,

any agents which are dormant will reduce the time until

their next interaction can occur.

In the second layer, A agents output a message broad-

casting their location in continuous space and other pub-

licly visible properties required by B agents, such as their

unique identifier and type. The message list produced is

then iterated by each agent in the B population in the third

function layer. Each B agent selects the closest member of

the A population within the local interaction radius and

outputs a message containing it’s intent.

Next, A agents iterate the interaction message list in the

CONFIRM INTERACTION B agent function, to deter-

mine which member of the B population is the closest.

Internal state of the A agent is then modified accordingly,

and a final message is output, confirming the success-

ful interaction to the relevant B agent. This message

allows the B to also update it’s internal state, including

the dormant status, in the final agent function CONFIRM

INTERACTION A. This process is repeated at each simu-

lation iteration.

Implementation 2: Monte Carlo

This Monte Carlo style implementation uses a higher-

level of abstraction than the previous particle-based

implementation, which probabalistically approximates

the interactions between agents at a discrete location.

Individual A and B agents are assumed to be well-mixed

within a site of the discrete environment. The environ-

ment would typically be a square or hexagonal toroidal

lattice, but for the purposes of this paper only a single

large lattice site is considered. A relatively large timestep

is used for this implementation, the MACRO_TIMESTEP.

A shorter timestep is not required due to the coarse

nature of the simulation, which does not include finely-

grained temporal behaviour. The probabilistic pairwise

interaction is deterministically processed using a process

of rank-generation, sorting and matching.

Figure 3 shows the FLAME GPU implementation state-

diagram for the Monte Carlo implementation. Initially, at

the beginning of each iteration, agents from each popu-

lation are assigned a unique rank within the respective

A or B population, in the GENERATE_RANK method.

These ranks are assigned randomly to different individu-

als per-simulation iteration, to avoid bias towards agents

based on location within the list of agents. Each agent

broadcasts their rank to a message list per population

(along with other publicly visible information such as

unique identifier).

Agents in each population then iterate messages from

their own population, to find their own position within

the rank list of that population. I.e. A agents iterate all

A RANK messages, counting the number of individuals

with a lower value rank (indicating a higher priority)

than themselves. Counting the number of agents within

the population with a lower rank improves the robust-

ness of the model, by enabling the use of non-sequential

integer ranks (in cases where agents may have been

removed from the simulation) or non-integer rank val-

ues. The position within the population is then broad-

cast by each agent to a separate message list per

population.

Finally, in the third layer, agents from each population

iterate messages from the opposing population to find the

individual within the other list at the same position within

the rank list. If populations are different sizes some agents

will not have a matching member of the other population.

Agents with sufficiently low rank within the population,

based on the parametrised interaction rate, are allowed

to interact and modify their state accordingly. Additional

variance could be introduced with a per-interaction prob-

abilistic test.

Implementation 3: collection agents

The Collection implementation does not directly map

individual members of the Apopulation to individual

agents. Instead, agents which represent a collection of

similar individuals are used, referred to as AC agents.

Individual agents are used to represent individual mem-

bers of the B population, although collection-collection

interactions would be viable. This approach is only appli-

cable to models where a population of entities can be

grouped into collections of similar individuals, and where

the specific actions of individual members of the group are

not important.

AC agents and B agents are modelled in discrete-space,

i.e. a toroidal lattice with uniform mixing of agents per

lattice site, although this implementation only considers

a single lattice site. Each simulation iteration represents

a larger MACRO_TIMESTEP, requiring fewer iterations

than finer-grained implementations.

This approach is only suitable where the individuals

from the A population can be categorised into a collec-

tion of similar agents, where the individual characteristics

and behaviours are not important. I.e. members of the

same type of antigen which exist in the same discrete loca-

tion. AC agents have a variable, quantity containing

the number of individual As of that type represented by

the AC agent. In this case, the probabilistic interaction is
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Fig. 2 FLAME GPU state diagram for the particle implementation of pairwise cell interaction model. The diagram shows the order of agent functions

(black rectangles) and interactions between agents via message lists (coloured rhombuses) through a single iteration of the main simulation loop.

Within a layer, indicated by blue dashed boxes, functions may execute concurrently. In the first function layer A agents and B agents both execute

their respective move behavioural function, where individuals move using Brownian motion. In the second layer, A agents execute the Output

Location function, broadcasting their location within the simulation environment to the A Locationmessage list. This message list is iterated

by B agents in the Select + Declare Target function, where B agents select the A agent they wish to interact with and broadcast it into

the B Interactionmessage list. In the fourth layer, A agents iterate the B Interactionmessage list, deciding which B interaction they will

participate in and output a message as confirmation. Finally B agents iterate the confirmation messages to discover if they were successful, and if so

they behave appropriately
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Fig. 3 FLAME GPU state diagram for the Monte Carlo implementation of pairwise cell interaction model. The diagram shows the order of agent

functions (black rectangles) and interactions between agents via message lists (coloured rhombuses) through a single iteration of the main

simulation loop. Within a layer, indicated by blue dashed boxes, functions may execute concurrently. For the Monte Carlo implementation, A agents

and B agents both execute their respective Generate Rank functions in the first layer. The ranks of each respective agent type are output in to

respective message list, A Rank and B Rank. In the second layer, agents from each population iterate the message list from their own population

to find the location within the rank-list, before broadcasting this information to the other type of agent via the relevant Find Position +

Broadcast function. Finally, in the third layer, Agents iterate messages form the opposing population to determine if they are able to interact

based on their position within their population and also information about the opposing population

controlled by an interaction rate for a given B to interact

with an A as a parameter.

Figure 4 shows the implementation state-diagram. In

the first function layer, AC agents output their publicly

visible properties to a message list, including the num-

ber of individuals represented and the category or type

of A. B agents then iterate the quantity messages, and

probabilistically attempt to interact with a single individ-

ual from the collection. This is implemented using an

atomic operation, an operation which is guaranteed

to occur without the impact of a concurrent thread. If the

probability test passes within the B INTERACT method,

the B agent attempts to atomically subtract 1 from the

quantity value stored in the message. If this succeeds

then the interaction is considered successful, otherwise, if

the atomic operation could not reduce the quantity or the

agent did not pass the probability test, then the B agent

will attempt to interact with another A represented by a

different AC. In the third and final layer, AC agents re-read

the message they originally output, to update their own
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Fig. 4 FLAME GPU state diagram for the collection implementation of pairwise cell interaction model. The diagram shows the order of agent

functions (black rectangles) and interactions between agents via message lists (coloured rhombuses) through a single iteration of the main

simulation loop. Within a layer, indicated by blue dashed boxes, functions may execute concurrently. In the first function layer, AC agents output

their publicly visible information to the quantitymessage list. This information includes the type and quantity of A which the AC agent

represents. B agents then execute the B Interact function in the second layer. Each B agent iterates the message list, attempting to interact

with AC agents where appropriate. This depends on their being sufficient quantity for an interaction to occur, implemented using atomic

operations on the message data. Finally, in the third layer once all possible interactions have occurred, AC agents iterate the modified quantity

message list to find the message they originally output, and update their local data such as quantity to match the modified message data

state regarding the number of remaining A represented

after interactions have occurred. The quantity value is

then reset for the next iteration to ensure a consistent

population for benchmarking purposes.

The use of the atomic operation prevents poten-

tial concurrency issues, but also introduces some fac-

tors to be considered. Atomic operations can prevent

race-conditions - where multiple agents (threads) would

potentially believe they had successfully reduced the

quantity value, but in fact the limited quantity had

already been exhausted. In order to reduce serialisation

within the implementation and the number of atomic

operations performed, rather than attempting a probabil-

ity test per A represented it is preferable to perform a

single test per B-AC interaction. This requires an alter-

nate probability threshold, calculated using the binomial

probability. Furthermore, the use of atomic operations in a

highly parallel environment introduces non-determinism,

subsequent runs of the same simulation may not pro-

duce the same behaviour. In many-core processors such

as GPUs, the order in which threads execute is not guar-

anteed. This results in the atomic operations potentially

being issued in different orders, and therefore different

agents may succeed in different interactions on subse-

quent simulations. However, as many simulations are

required due to the highly stochastic nature of the model

this variation should be absorbed during aggregation of

many simulation runs.
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Implementation calibration

Although we are not calibrating a model to real-world

data, we calibrated the three implementations to produce

the same aggregate behaviour for a fair system level per-

formance comparison. This was manually performed at a

single scale, targeting an average number of interactions

per MACRO_TIMESTEP of 512 for simulations contain-

ing 1024 Bs, 1024 As and 32 types of A. The simulation

duration was set to 1000, with a MACRO_TIMESTEP of

10, and a MICRO_TIMESTEP of 0.1. Table 1 shows the

model parameters used for each implementation, and the

observed aggregate interaction rate.

Results and discussion
To evaluate the runtime performance of each implemen-

tation, a range of simulations were carried out varying the

populations scales and therefore agent density. The num-

ber of As and number of Bs represented by the simulation

were varied for all implementations, between 28 to 219.

Additionally, the number of types of A and therefore AC

population were also varied for the collection imple-

mentation, with values of 128, 512, 1024, 4096, 16384

and 65536. Each simulation was repeated 3 times, using 3

seed values for RNG, and the runtime of each repetitions

is recorded. All benchmarks were performed using on a

Ubuntu 16.04 workstation containing an Intel Core i7-

6850k and NVIDIA TITANVGPU running Ubuntu 16.04

and driver Nvidia 418.40. Applications were built using a

modified version of FLAME GPU 1.5, GCC 7 and CUDA

10.0, optimised for the Nvidia Volta GPU architecture

(SM_70).

Figure 5a and b show the average simulation runtime

as the A population and B population are varied for the

particle and Monte Carlo implementations respectively.

Figure 6 shows the average simulation runtime for the

collection implementation, as the total number of As, Bs

and the number of types of AC are varied.

Table 1 Calibration Parameters

Parameter Particle Monte
Carlo

Collection

MACRO_TIMESTEP 10 10 10

MICRO_TIMESTEP 0.1

Maximum Speed
(normalised environment)

0.01

Interaction Radius
(normalised environment)

0.0177

Interaction Probability 0.00068 0.00068

Interactions per
MACRO_TIMESTEP

511.6 513.0 511.0

Contains the calibration parameters and resulting interaction rate for the simple

cross-calibration

The particle-based implementation generally shows the

longest simulation runtimes of all the implementations.

This can mainly be attributed to the greater number of

iterations required than the alternate implementations

and the fine-grained movement of individuals, the imple-

mentation is less work-efficient. On the other hand, the

implementations are relatively simple and intuitive to

understand, with simple logic to determine successful

pairwise interactions. At smaller scales, up to around 214

As or Bs there is only a minimal increase in runtime

as the population increases. At this scale of simulation

the TITAN V GPU is not being sufficiently utilised to

mask the overhead costs and latency of GPU computing.

Once the agent populations become larger and the device

achieves high levels of utilisation are achieved, simulation

runtimes increase at a greater rate. The main increase in

runtime above 214 agents can be attributed to the cost

of iterating larger message lists, as the density of the

simulation environment increases. In this case only local

messages are iterated, reducing the number of messages

to be iterated by each agent. Additionally, the stochastic

nature of these simulations which rely on RNG can have a

measurable impact on the performance of the simulations.

Each simulation case was repeated 3 times with the same

seed, but also using 3 different RNG seeds to account for

this. The seed alone accounted for a variance of ±1.7% of

the mean runtime for a given simulation configuration.

The Monte Carlo style implementation shows the

broadest range of simulation runtime. Small scale simula-

tions run quickly compared to the particle based imple-

mentation, as fewer simulation iterations are required.

As the populations are increased however simulations

become much slower. In part, this is due to the relatively

expensive generation of unique rank values per iteration,

which becomes more costly as the number of rank val-

ues to be scattered grows. This accounts for the consistent

simulation runtimes for simulations with 219 A agents or

B agents, which are some of the slowest of all 3 imple-

mentations. The size of message lists to be iterated also

contributes to the poor performance at large scales.

The collection implementation which uses the AC col-

lection agents exhibits different performance characteris-

tics dependent upon the number of AC agents used, shown

by facets (a) to (f ) in Fig. 6. Typically this implementation

shows better performance than the particle based simula-

tor, due to the reduced number of iterations required, and

better performance than the Monte Carlo based imple-

mentation for most AC populations. For low numbers of

AC agents such as in Fig. 6a and b with low populations

of B agents performance is consistent as the number of

As represented increases. However, for larger B popula-

tions and larger quantities of A, performance degrades

significantly. This is due to atomic contention. When large

numbers of atomic operations are issued to the same
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Fig. 5 Average simulation runtime for the particle and Monte Carlo implementations. Average simulation run time against population size the a

particle and bMonte Carlo model implementations. Average run time in seconds across 3 repetitions of 3 random seeds as the populations of A

agents and B agents are scaled

memory address concurrently, parallelism is reduced as

the atomic operations must be resolved in serial, result-

ing in an increased runtime. For larger numbers of AC

agents, the average quantity is reduced, resulting in

a smaller loss of performance due to atomic contention;

although the total runtime increases as message lists are

larger. Additionally, simulations with fewer AC individ-

uals do not make good use of the highly parallel GPU,

which may have a significant impact on simulator runtime

in more realistic models with more complex interaction

behaviours.

For larger populations of AC agents, such as Fig. 6f,

performance is relatively consistent regardless of the num-

ber of A represented, as atomic contention is less of an

issue, and the number of agents and therefore threads

is consistent. Larger populations of B show a reduction

in performance, as the number of threads increases and

over-saturate the GPU, resulting in serialisation.

Each implementation has advantages and disadvan-

tages, with respect to both modelling and simulator

performance, with no clear optimal implementation

approach for all use-cases. The particle-style implementa-

tion has poor work-efficiency and therefore relatively poor

performance compared to the alternate approaches, but

the modelling approach may be advantageous due to its

intuitive nature and fine-grained data capture. The Monte

Carlo style implementation has good performance char-

acteristics for smaller models, but performance does not

scale well with problem size, showing the broadest range

of simulation runtimes of the three implementations. This

approach does have advantages regarding the modelling

approach, with a high degree of reproducibility, but with

coarser data-capture. Lastly, the collection implementa-

tion shows the best performance of the three approaches

for larger-scale simulations, with the best performance-

scaling behaviour. However, when only a small num-

ber of collection agents are used to represent a larger

overall population, significant performance degradation

is observed due to both low device-utilisation and high

levels of atomic contention and therefore serialisation.

Additionally, the collection style is morememory-efficient

than the other implementations for the same popula-

tion, enabling larger simulations without the need for a

multi-GPU or multi-node simulation.

Both the model and the set of benchmarks have

several limitations which would benefit from further

exploration. The abstract model only considers a sin-

gle site in discrete space. In less-abstract models the

environment would typically be represented by a square

or hexagonal lattice, with toroidal wrapping. Essentially

we have been varying the density of the simulations

with scale. It would be interesting to evaluate the per-

formance impact of scaling populations with a fixed

average initial density to evaluate scaling towards natu-

ral size simulations, by modelling multiple lattice sites.

Ideally this would involved additional agent behaviours

to mimic the movement between sites in the environ-

ment. This should show better performance scaling than

observed by increasing density, as message lists can be

optimised, reducing the number of messages iterated by

each agent.

The approach could also be extended to interactions

involving more than two agents, however once more indi-

viduals are involved it will become more challenging to

find an approach which does not add further seriali-

sation or synchronisation steps which should be min-

imised in a many-core parallel environment to maintain

performance.

Additionally, the benchmark model does not vary the

populations as the simulations progress. This is useful for
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Fig. 6 Average simulation runtime for the collection implementation. Average simulation run time for the collection implementation of the model.

Average run time in seconds across 3 repetitions of 3 random seeds as the B agent population and the total number of A represented and the

number of AC agents are varied (sub figures (a) to (f))

understanding the performance impact of the modelling

approach, but is not representative of a more realistic

model.

Lastly, RNG can have a significant impact on the per-

formance of some models, such as the particle implemen-

tation. The total impact of random number generation

is relatively small for this abstract model, but with more

realistic models where probabilistic interactions result in

the creation or death of agents the effects of RNG will be

amplified.

Conclusion
This paper is the extended version of work published

in [10] which proved the feasibility of applying GPU

to implement a hybrid pairwise interaction model rep-

resentative of an agent based immune system model.

Previous paper showed using FLAME GPU to simulate

the simplified model with only two cell agent types with

pairwise interactions using the collection approach, we

demonstrated that the technique is computationally more

efficient than the serial counterpart.
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There are various ways to model this type of interac-

tions. This paper explored three different parallel imple-

mentation of this specific type of cell interactions (in both

discrete and continuous space) known as pairwise that is

very common in biological cellular level systems.

Our results showed that each implementation has its

own advantages and disadvantages with respect to sim-

ulator performance and model characteristics; and there

is no universally optimal solution. Based on our exper-

imental results, among three different form of imple-

mentations presented in this paper, the Collection style

implementation offers the highest levels of performance

for large-scale simulations. This approach would be well

suited for models where agents can be grouped into

collections of similar agents and capturing individual

behaviours is not required. For smaller scale simulation

models where agents cannot be grouped into collection

of similar individuals, the MC implementation offers bet-

ter performance. Due to due to a greater number of

higher-precision timesteps required for the same sim-

ulation duration, the Particle implementation performs

relatively poor compared to the other two approaches.

However, this method offers more detailed microscopic

behaviour and is suitable for use in GPU simulations.
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