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Towards hierarchical blackboard mapping on a whiskered robot

C.W. Foxa,∗, M. H. Evansa,∗, M. J. Pearsonb, T.J. Prescotta

aShefÞeld Centre for Robotics, University of ShefÞeld, Western Bank, ShefÞeld, S10 2TF, UK
bBristol Robotics Laboratory, Bristol, UK

Abstract

The paradigm case for robotic mapping assumes large quantities of sensory information which allow the use of

relatively weak priors. In contrast, the present study considers the mapping problem for a mobile robot, CrunchBot,

where only sparse, local tactile information fromwhisker sensors is available. To compensate for such weak likelihood

information, we make use of low-level signal processing and strong hierarchical object priors. Hierarchical models

were popular in classical blackboard systems but are here applied in a Bayesian setting as a mapping algorithm.

The hierarchical models require reports of whisker distance to contact and of surface orientation at contact, and we

demonstrate that this information can be retrieved by classiÞers from strain data collected by CrunchBot�s physical

whiskers. We then provide a demonstration in simulation of how this information can be used to build maps (but not

yet full SLAM) in an zero-odometry-noise environment containing walls and table-like hierarchical objects.

1. Introduction

Touch-based mapping has two principal applications.

Firstly, as a sole sensory system in environments where

other types of sensors fail, such as smoky or dusty

search-and-rescue sites, especially where covert (no sig-

nal emission) operation is required. Secondly, as a com-

plement to other sensors such as vision, with which it

can be fused or used as a �last resort� during adverse

conditions as in the sole sensor case.

However, the paradigm case for robotic mapping,

as in Simultaneous Localisation and Mapping (SLAM)

problems [53], instead considers a mobile robot with

noisy odometry and vision or laser scanners. Vision and

laser scanners provide large amounts of sensory infor-

mation, and have effectively unlimited range in indoor

environments. Such large quantities of input informa-

tion allow the use of relatively weak priors, such as in-

dependent grid cell occupancy or ßat priors over the be-

lief of small feature sets [53].

This study considers the touch-based mapping prob-

lem in which only sparse, local sensory information

is available. Proof that navigation from such sensors

is possible is readily found in biology: rats navigate

∗These authors contributed equally and are joint Þrst authors

Email addresses: charles.fox@sheffield.ac.uk

(C.W. Fox ), mat.evans.sheffield.ac.uk (M. H. Evans),

martin.pearson@brl.ac.uk (M. J. Pearson),

t.j.prescott@sheffield.ac.uk (T.J. Prescott)

through dark underground tunnels using their whiskers

[7, 2], having ranges of only a few centimetres. In

robotics, whisker sensors are relatively cheap in both

material and computational processing terms, and their

use has previously been considered in constrained tasks

[47, 46, 31, 30, 15]. The previous robotic attempts

at mapping from sparse local sensors have either used

the extremely strong generic prior that the whole world

is made entirely of north-south and east-west straight

edges [57] or have used relatively long range but sparse

ray sensors integrated over multiscans [3].

We will demonstrate touch-based mapping using a

mobile robot, CrunchBot, having six whisker touch sen-

sors only. First, it is shown that CrunchBot�s whiskers

are able to recover approximate position and orientation

reports about contacts with surfaces. Then it is shown

how these reports can be fused with strong priors to

recognise hierarchical objects such as tables and chairs,

as a step in building a map of the environment.

Fig. 1 gives an overview of the general framework for

perception and navigation with whiskers within which

this study operates. When biomimetically inspired by

rodents, whisker sensors have strain sensors at their base

only. When a rat investigates an object it palpates the

surface in a back and forth oscillatory sweeping be-

haviour known as �whisking� [55],[9]. It is thought that

whisking is important for gathering the most reliable

signals from whisker contacts [38]. Straight whiskers

can make two distinct types of contact with an object,
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Figure 1: A new framework for extracting contact parameters. After

initial contact a whisk behaviour allows the discrimination of object

location. If contact is made along the whisker shaft the agent must

move to reposition the whisker for subsequent contacts. If contact is

made at the whisker tip a robust discrimination of surface properties

can be made. Reports of surface properties can be used by other sys-

tems, such as for navigation or to construct complex object models as

in the present study.

contacting it either at their tip or their shaft. Tip con-

tacts are generally the most useful, because they pro-

vide a standardised, constrained setting (i.e. with the

contact point at a known location at precisely the end

of the whisker) from which surface properties such as

orientation and texture can be identiÞed [31],[15]. In

contrast, shaft contacts are less informative. For exam-

ple, an unknown distance to an object along the shaft

can confuse attempts to classify surface orientation and

texture [18]. Shaft contacts are rare in practice in both

rodents and mobile robots, occurring only when small

objects enter the Þeld of multi-whisker arrays between

the whisker tip points. In the scheme used here, a fea-

ture based radial distance estimator [13] is Þrst used to

make a decision of whether the contact is at the tip or

the shaft. If it is a shaft contact, then the robot should

use the radial distance information to move to another

location that is likely to yield a more useful tip contact.

Following a tip contact, we can read surface orientation

and texture information (and possibly speed of object

when there are moving objects in the world) and pass

them as an observation to a navigation or mapping sys-

tem.

This study provide an implementation of the dis-

tance and angle stages of this framework on Crunch-

Bot (Fig.2(a)). Individual components of such a system

have previously been investigated in isolation, including

whiskered texture recognition [15],[27],[11], [18],[34],

surface shape recognition [31],[25],[22],[13], and ob-

ject recognition [20]. These components have previ-

ously been tested under ideal laboratory conditions or

in individual mobile settings [44]; here we present steps

integrating them into a single platform for hierarchical

object recognition, along with results and observations

on their performance �in the wild� in a common arena

environment.

To compensate for the sparseness of the sensory in-

formation available from these distance-orientation re-

ports, we fuse themwith strong hierarchical priors about

objects in the world. Hierarchical object recognition

models were popular in classical AI in the guise of

�blackboard systems� [10, 37, 5] but have recently been

recast in terms of dynamically constructed Bayesian

networks [16, 36, 33, 52]. Here we provide an appli-

cation of Bayesian blackboards to robotic mapping. We

do not consider the full SLAM problem here, but in-

stead work in a simulation of CrunchBot having zero

odometry noise to avoid the localisation problem and

focus on mapping only. Related object-based mapping

models have recently appeared [54, 24, 49, 43] using

laser sensors to recognise and learn complex but non-

hierarchical spatial models. However as data available

through whiskers to CrunchBot is much sparser than

that from laser scanners, the required level of sensor

detail is unavailable, therefore we compensate with the

new mapping technique of fusing contact reports into

hierarchical models. For example, on recognising a

single table leg, we may infer the probable presence

the rest of the table, including other leg objects, and

edges and corners making up these legs, without ever

sensing them directly. To construct hierarchical ob-

jects, we use hypothesis priming and pruning heuris-

tics as in classical blackboard systems. However, fol-

lowing [16], we treat such heuristics as approximations

to inference in a dynamically-constructed, Monte Carlo

Markov Chain (MCMC) sampling Bayesian network,

whose observations are the distance-orientation reports

from the whiskers.

2. Methods

2.1. Whiskers.

CrunchBot�s six whiskers measure 160mm in length,

1.45mm diameter at the base tapering linearly to 0.3mm

at the tip. They are built from nanocure25 using an Evi-

siontec rapid prototyping machine. A magnet is bonded

to the base of the whisker and held in place by a plug of

polyurethane approximately 0.75 mm above a Melexis

90333 tri-axis Hall effect sensor IC [35]. This sensor

generates two outputs representing the direction of the

magnetic Þeld (in two axes) with respect to its calibrated

resting angle. These two 16-bit values are sampled by
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Figure 2: CrunchBot, a whiskered mobile robot platform.

a local dsPIC33f802 micro-controller which, in turn, is

collected using an FPGA conÞgured as a bridge to a

USB 2.0 interface. Up to 28 whiskers can be connected

to this FPGA bridge at one time. Using the vendor pro-

vided software driver and API (Cesys GmbH), a user

can request the data from all whiskers at minimum in-

tervals of 500µs (a maximum sample rate of 2kHz).

2.2. Robot platform.

CrunchBot is based on the iRobot Create base

(www.irobot.com) platform, with the whiskers

mounted in the cargo bay, being positioned on an

adjustable metal bar and rapid prototyped ball joint

mountings. These mountings allow adjustment of the

whiskers. For data collection experiments in the present

study, only four whiskers are used, conÞgured in the

horizontal plane to detect objects in an arena (the

other two whiskers scrape along the ßoor and are used

in other experiments, such as for texture discrimina-

tion in our previous study, [21]). We have also ex-

tended the cargo bay mounting to accommodate a net-

book PC, which is used for local control of the robot.

The netbook runs Ubuntu 10.10 on a single-core In-

tel Atom processor. A circular buffer in shared mem-

ory is used to make data from the Cesys driver avail-

able to other processes. The netbook hosts a Player

server (playerstage.sourceforge.net) which

provides high-level, networked API interfacing to the

Create�s serial port commands. Processes such as

texture and shape recognition and basic motor con-

trol run on the netbook, reading the raw data from

the fast circular shared memory buffer, and writ-

ing their results every 0.1s to a Python Pyro server

(pyro.sourceforge.net) on the remote desktop

which runs hierarchical object recognition and map-

ping.

2.3. Robot movement

Previous work has shown that accurate object locali-

sation with a whisker requires some measure of contact

speed [13], or of the applied forces and bending mo-

ments at the base of the whisker [25],[31], values that

are not always available in the mobile case as agent

movement will affect these contact properties. To ad-

dress these points a �body whisk� behaviour was in-

cluded in the robot program. As the whiskers were

not actuated the whole robot must rotate in a systematic

way. Upon initial contact with an object the robot Þrst

reverses away a short distance before rotating at π/24
radians per second towards the object, then rotating at

π/24 radians per second away from the object. This al-
lows this whiskers to move over the surface of the con-

tact object, collecting data about its location and orien-

tation. After the whisk the robot reverses again to clear

the object, then rotates in a random direction and moves

forward again.

2.4. Radial distance reporting

To determine whether an object has made contact

with any of CrunchBot�s whiskers at the tip or the shaft,

and to discriminate between contacts with the surfaces

or corners of objects, object localisation was imple-

mented. Previous work [13] has shown that peak de-

ßection magnitude could be used as a feature for radial

distance discrimination at a given speed. Whisker data

was recorded during the �body whisk� contact, and the

maximum whisker deßection was measured. Deßection

magnitude was taken as the Hall effect sensor output

voltage at peak deßection, which is proportional to the

bending moment. This feature f1 can be deÞned as,

f1 = maxtθ(t), (1)

where θ(t) is the time-dependent deßection magnitude
measured by the Hall effect sensor.

During the training phase a dataset was collected for

each whisker, consisting of 5 contacts at each point

along the whisker at 10mm intervals over a 50mm range

from the tip of the whisker. Though the whisker is

160mm long, only 140mm is external to the �follicle�.

A model was then generated of the relationship between

the deßection magnitude and the corresponding radial

distance to contact by Þtting a linear equation to the

training data in MATLAB. To Þnd an estimate of radial

distance r,
r = a1f1 + a0, (2)
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was Þtted to the data with a linear-in-the-parameters

regression on the line, giving a least-squares Þt for

(a0, a1) for each whisker.

2.5. Surface orientation reporting

A complementary data-driven approach to feature ex-

traction methods is to store instances of time series as

a set of templates for comparison to novel data. It

has been shown that simple k-means style templates on
strain time series from individual whiskers can be used

for discriminating contact distance classes in physical

simulation [22], and stationary robot hardware [12]. In

the present study we have access to four whiskers to-

gether, so we can train templates corresponding to sur-

face orientation classes from the 8-dimensional time se-

ries from the whole multi-whisker set (four whiskers,

each with vertical and horizontal strain channels). Ori-

entation reports could be used to inform complex object

models as in sec. 2.6. The rationale for this particular

approach is that a template method can utilise bulk data

from all whiskers to Þnd surface orientations, without

any of the geometric assumptions required when splin-

ing individual radial distance reports [31].

Ofßine training data was collected by programming

the robot to drive into a wall at Þfteen different angles

(20◦:160◦ in 10◦ intervals) four times. Data was aligned

to initial contacts, low pass Þltered (17Hz) to remove

oscillations caused by robot body movement, recorded

for 2s, and smoothed with a Þve-point moving average.

Templates were generated by averaging across three of

the four sets for each angle. Templates for each an-

gle comprised data of all eight channels from the four

whiskers to allow multi-whisker information to inform

classiÞcation.

During testing the fourth data set was used compared

to the averaged template using a sum of squared error

measure. The average squared error, e for each tem-
plate, Ti is computed over theN logged data points,

e(Ti) =
1

N

n
∑

t=1

(I(t) − Ti(t))
2. (3)

The template with the lowest sum of squared errors was

determined the winner, and the orientation of this tem-

plate recorded. This process was repeated four times,

each time using a different data set as the test set, and a

template constructed from the remaining three sets. In

this manner it is possible to generate a robust estimate

of mean classiÞer performance, while preserving indi-

vidual trial differences for inspection in the results.

Figure 3: Simulation screen-shot at low annealing temperature. A

single table hypothesis remains, aligned correctly with the physical

table.

Figure 4: Simulation screen-shot at high annealing temperature.

Many hypothesised (wire-frame) tables and legs are on the black-

board, primed by the shapelets (yellow rectangles) contacted by the

robot (cone)�s whisker sensors, in an arena containing a physical table

(pink).
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2.6. Hierarchical Object Models

CrunchBot�s task is to build a map of an arena popu-

lated by four-legged table-like objects as in Þgs. 4 and 3.

Such objects could include chairs and desks in a home

or ofÞce environment for example. In our object recog-

nition experiment, CrunchBot moves along a prede-

termined trajectory of location-angle poses, (xt, yt, θt)
around the arena (thoughwe discuss possibilities for au-

tonomous exploration in sec. 2.9), over discrete time

steps t. We assume that at each discrete time step t,
CrunchBot�s whiskers, w ∈ 1 : 6, each report egocen-
tric estimates of the radial distance r to, and surface ori-
entation φ, using the methods of previous sections, and
of contact texture1 τ of, any contacts made,

r̂t
w = rt

w + εr, (4)

φ̂t
w = φt

w + εφ, (5)

τ̂ t
w = τ t

w + ετ , (6)

where ε are i.i.d. Gaussian noises having zero mean and
standard deviations σw

r , σw
φ , σw

τ respectively. Assuming

perfect odometric localisation in the present study, these

estimates may be converted into allocentric Cartesian

coordinates to give tuples S(xS , yS, φS , τS) which we
call shapelets and which will be treated as observations

in graphical models.

Tables, T , are parametrised by tuples,

T (xT , yT , θT , wx
T , wy

T , wL
T , τT ), where x, y, θ is

the pose, wx
T and wy

T are width and breadth, wL is

the width of the (square) legs, and τ ∈ (0, 1) is a
texture parameter describing roughness or smoothness

of the material. A generative model of tables is used.

CrunchBot assumes a ßat prior probability density

generating tables in the world,

p(T (xT , yT , θT , wx
T , wy

T , wL
T , τT )|∅) = cT , (7)

where cT is a (non-normalising) constant.

If a table T exists, its presence causes (in the sense of
[41]) the presence of four leg objects,

L(xL, yL, θL, wL, τL, T ), (8)

wherewL is the width of the square table leg; xL, yL, θL

are its location and rotation, and τL is its texture, with

probability density

p(L(xL, yL, θL, wL, τL, T )|T (xT , yT , θT , wL
T , τT ))

1Texture reports are not yet implemented on the physical Crunch-

Bot, but can already be handled by our hierarchical framework in sim-

ulation so are included for completeness. In the present simulations

we assume all tables and reports have the same texture, τ = 1.

R
T2

T2

T1

T1

L4
L4

L1

L1

L2

L2

L3
L3

S1 S2 S3

Figure 5: Hierarchical object recognition. Left: Robot R (circle)

with six whiskers (lines) makes tactile contact with legs Lj (squares)

of a hypothesised table T1 (rectangle). The two contact points

(�shapelets�) on the right are sufÞcient to infer the location of the cor-

ner of leg L4. Coupled with prior knowledge about the shape and size

of tables, and the third shapelet, this can be used to infer that there is

a table either in the ground truth location or in a second conÞguration

T2 (dashed rectangle). Right: Bayesian network constructed to repre-

sent the same scenario. Square nodes are the shapelet observations.

= αL exp (−∆TL) , (9)

where α is a (non-normalising) constant, and the dis-

tance measure is

∆TL = min
i

(

(xi
T − xL)2 + (yi

T − yL)2

σ2
r

)

+

(

θT − θL

σθ

)2

+

(

wL
T − wL

σw

)2

+

(

τT − τL

στ

)2

, (10)

where 0 ≤ i ≤ 3, and (xi
T , yi

T ) are the coordinates
of the table�s four corners, and σw, στ are parameters

speciÞng standard deviations of the leg�s wL, τL values

conditioned on the table�s correspondingwL
T , τT values.

The inclusion of T in the parametrisation of L (eqn. 8)
means that L is the hypothesis that the leg was caused

only by table T rather than any other table or cause.
Shapelets are assumed to be generated by nearby legs,

p(S(xS , yS, θS , τS)|L(xL, yL, θL, wL, τL, T )) = αS exp (−∆LS)
(11)

where

∆LS =

(

r

σS
r

)2

+

(

f(θL) − θS

σS
θ

)2

+

(

τL − τS

σS
τ

)2

,

(12)

and r is the shortest radial distance from the perime-

ter of the leg to (xS , yS), computed by basic geometry,
f(θL) = θL + mπ/2 picks the angle of the correspond-
ing side m of the leg at this shortest-distance contact

point, and σS
r , σS

θ , σS
τ model sensor noise.

We also provide small null priors to allow legs and

shapelets to exist in the absence of any generative par-

ents. (These are required later, during construction on
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the blackboard, so that these objects can survive before

their parents are constructed),

p(L(xL, yL, θL, wL, τL, ∅)|∅) = cL, (13)

p(S(xS , yS , θS , τS)|∅) = cS , (14)

with constants such that the marginalised densities,

p(S(xL, yL, θL)) < p(L(xL, yL, θL)) < p(T (xL, yL, θL)),
(15)

i.e. larger objects are more probable to exist without

high-level causes than smaller objects are.

Unlike the parametrisation ofL on T in eqn. 8, we as-
sume that shapelets may be caused by mixtures of mul-

tiple leg hypotheses and by the null prior (eqn. 14). For

example if there are two legs very close together then

the density for observing shapelets in the area increases.

We assume that multiple causal sources combine using

noisy-OR semantics,

P (x|pa(x)) = 1 −
∏

xj∈pa(x)

(1 − P (x|xj)) . (16)

where pa(x) denotes the set of causing (�parents� in
Bayesian network terminology) objects of an object

(�node� in Bayesian network terminology) x such as a
leg, table or shapelet. As we use probability density

functions we require the continuous version of noisy-

OR, proved below,

Theorem

p(x|pa(x)) =
∑

xj∈pa(x)

p(x|xj). (17)

Proof

P (x|pa(x)) = 1 −
∏

j

(1 − Pj). (18)

with Pj = P (x|pa(x)j), the probability of x given the
jth possible cause. Consider the probability of a small
range of hypotheses,

δ3p(x|pa(x)) = 1 −
∏

j

(1 − δ3pj), (19)

where p are probability densities and P are correspond-

ing probabilities. Expansion terms with powers of δ that
are > 3 vanish, so

δ3p(x|pa(x)) = δ3
∑

pj . (20)

The δ3 terms cancel to yield

p(x|pa(x)) =
∑

pj , (21)

as required.

We allow legs to be caused by a mixture of their sin-

gle speciÞed parent (i.e. the T parameter in eqn. 9) and
null prior (eqn. 13), using a similar combination rule.

Tables are caused by the null prior only (eqn. 7).

Taken together, the equations in this section may be

viewed as a Bayesian network [40] for any given col-

lection of tables, legs and shapelets as shown in Þg. 5.

However, in addition to the previous causal probabil-

ities, we need to model the following constraints: (a)

tables always have four legs; (b) each table leg is at

a different corner of the table (we should not see two

legs attached to the same corner); (c) two objects of

the same type (table or leg) cannot overlap in physical

space. Standard Bayesian networks cannot model such

relations, as they are limited to joint distributions of the

form

P ({xi}i) =
∏

i

P (xi|pa(xi)). (22)

To model these additional constrains, we extend the

Bayesian network using undirected penalty factors, to

form the factor graph [32],

P ({xi}i) =
1

Z

(

∏

i

P (xi|pa(xi))

)

×

⎛

⎝

∏

ij

φc(xi, xj)φb(xi, xj)

⎞

⎠

(

∏

i

φa(xi)

)

, (23)

where Z is a normalising constant, and φa, φb, φc are

unnormalised penalty factors corresponding to the three

new constraints. Using superscripts for exponentiation,

these are

φa(xi) = ǫm
a , (24)

φb(xi, xj) = ǫv
b , (25)

φc(xi, xj) = ǫr
c , (26)

wherem is the number of missing legs iff xi is a table,

andm = 0 otherwise; v is a Boolean (0,1) value, true if
hypotheses xi and xj are of the same type and overlap

in physical space; and r is a Boolean, true if hypotheses
xi and xj are legs and share the same parent (modelling

this parent-sharing is why we parametrise L by T in

eqn. 8).
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Algorithm 1 Blackboard-inspired approximate

Metropolis-hasting proposals generation.

for each time step t do
update shapelet queue S by reading sensors
for each annealing inverse temperature β do
for each shapelet Si ∈ S do
propose and test parentHi fromQ(pa(Si))
if accepted, addHi to hypothesis set B

end for

for each hypothesisHi ∈ B do

r ← rand(0, 1)
if r < r1 then

propose death ofHi

if accepted, removeHi from B
else

if r < r2 then

propose parent change forHi

if accepted, replace Hi�s parent parame-

ter

else

if r < r3 then

propose childHj fromQ(ch(Hi)|Hi)
if accepted, add Hj to hypothesis set

B
else

propose parent Hj from

Q(pa(Hi)|Hi)
if accepted, add Hj to hypothesis set

B
end if

end if

end if

end for

prune all hypotheses not linked to any shapelet

directly or via a common ancestor.

end for

end for

Figure 6: Overhead view showing ground truth table conÞguration,

and locations (black dots) of the discrete poses occupied by the robot.

There are four angle poses at each location, facing in compass direc-

tions.

2.7. Hierarchical Object Inference

For a given set of shapelet observations and a set of

candidate hierarchical legs and tables, CrunchBot may

thus construct a factor graph. (We later describe how

such a set of candidates is obtained automatically). In-

ference would become highly complicated if CrunchBot

had an inÞnite memory for shapelets, so in the present

study we use a working memory (queue) of the seven

most recent shapelets, and discard all others. At each t,
new shapelets are read from the sensors, and inference

is performed with the aim of obtaining the Maximum

A Posterior (MAP) interpretation of their table causes,

before the next time step begins,

MAPt = arg{Tj} maxP ({Tj}j|{Sk}k). (27)

Thus CrunchBot currently � naively � treats each time

step as an independent inference problem. Limiting in-

ference to the most recent shapelets also has the effect of

working within a local �fovea� of attention: if no recent

shapelets are from distant areas, then only hypotheses

around CrunchBot�s location will be considered.

There is some subtlety in deÞning the meaning

of MAP states in continuous parameter spaces. In

the present study, we assume that discrete hypotheses

Hi(x, y, θ, Θ) (where H ∈ {S, L, T }) represent small
but non-inÞnitesimal collections of possible (x, y, θ)
poses, with probability

P (H((x− δ
2 , x+ δ

2 ), (y− δ
2 , y+ δ

2 ), (θ− δ
2 , θ+ δ

2 ), Θ))
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= δ3p(H(x, y, θ, Θ)), (28)

where δ is a small but nonzero constant, Θ are the re-

maining parameters, and p is the density.
CrunchBot uses the annealed [1] approximate

Metropolis-Hastings sampler of algorithm 1 to perform

inference. Unlike standard inference problems, object-

based mapping is a form of scene analysis task, i.e. the

number of objects in the world � and therefore the num-

ber and type of nodes in the network � is unknown in

advance. Algorithm 1 uses blackboard-like priming and

pruning heuristics integrated with the sampling, to con-

trol the size of the network. Each hypothesis in the cur-

rent �blackboard� set B maintains (amongst other pa-

rameters), pose parameters x, y, θ and a current parent.
The current parent may be another hypothesis, or may

be null. Importantly, hypotheses that are not currently

�true� (according to the sampler) are never stored in B.
The set B acts as a factor graph as detailed in the previ-

ous section, and may be thought of as the contents of a

blackboard [10].

To obtain unbiased samples from the true joint distri-

bution, Metropolis-Hastings sampling requires detailed

technical conditions to be met, which are complicated

by the jumps between factor graphs of different struc-

tures and sizes. Reversible jump methods [26] provide

a rigorous theoretical basis from which to deÞne accep-

tance probabilities based on reweighting proposals. Fu-

ture work should incorporate such theory, for now we

heuristically choose the Q distributions2 and ri thresh-

olds; and use the annealed original P distribution from

the factor graph as a simple Gibbs [1] acceptance prob-

ability,

P (accept Hi) = P β(Hi|mb(Hi)), (29)

where mb(Hi) is the Markov blanket of Hi containing

its parents, rivals riv(Hi), and children ch(Hi), β is

inverse temperature. The Markov blanket conditional is

P (Hi|mb(Hi)) = P (Hi|pa(Hi), cop(Hi), ch(Hi), riv(Hi))

=
1

Z

ΦaΦbΦcP (Hi|pa)P (ch|Hi)

P (ch|(Hi))P (Hi|pa) + P (ch|¬Hi)P (¬Hi|pa)

=
1

Z

ΦaΦbΦcp(Hi|pa)p(ch|Hi)

δ3(p(ch|Hi)p(Hi|pa) + p(ch|¬Hi)p(¬Hi|pa))
,

where Z normalizes the factors contribution ΦaΦbΦc

only; δ is the constant of eqn. 28; Φa =

2details can be found in the source code, however note that MH

sampling can operate on any proposal Q so its precise form is unim-

portant. Better results are obtained as the approximate Q becomes

close to the true P .

φa(Hi)
∏

j∈pa(i) φa(Hj) includes missing children of
Hi and also the missing child penalty for each parent

of Hi which would have a missing child in the case

where Hi is false; Φb =
∏

j∈mb(i) φb(Hi, Hj) and

Φc =
∏

j∈mb(i) φc(Hi, Hj). The update allows com-
putation to proceed using density functions rather than

probabilities, but depends on the choice of the small

constant, δ.
Newly proposed nodes must be linked to existing

ones, so it is necessary to locate all potential parents

pa(Hi). A threshold radius in pose space is used, which
limits this set to candidates which are close enough to

have non-negligible generating probabilities, i.e.

pa(Hi) := {Hj : P (Hi|Hj) ≫ 0}. (30)

For computational efÞciency it is useful to implement a

spatial hash-table to look up these nearby hypotheses.

This hash-table may also be reused to look up overlap-

ping hypotheses in the computation of φc.

2.8. Mapping task

To remove the complexities of noisy odometry local-

isation during mapping, a noiseless-odometry simula-

tion of CrunchBot in a world populated by six four-

legged, table-like objects was implemented. The sim-

ulation is coded in C++ using the ODE physics en-

gine (www.ode.org) for whisker contact detection.

Source code is available in the supplemental material.

The sensor noise levels are comparable to those found

in the physical classiÞers. The agent follows a Þxed se-

quences of poses around the world and runs algorithm 1

once at each pose. There are 10×10×4 poses, from 10
discrete x and y positions and four compass θ angles, as
shown in Þg. 6. To further simplify the present simula-

tion, tables and table hypotheses all have Þxed identical

wx
T , wy

T and τT parameters; and physical (but not hy-

pothesis) tables and have Þxed identicalwL
T parameters.

2.9. Entropy based exploration

While the mapping experiment uses a Þxed sequence

of CrunchBot locations, we performed a further exper-

iment to investigate a potential method for autonomous

exploration. Preliminary experiments suggested that

a common scenario which could enable exploration

is the presence of ambiguity between rival high level

table percepts, as illustrated in Þg. 3.4. In these

cases, CrunchBot�s whiskers have seen a set of shapelets

which enable the presence of one or two legs to be in-

ferred, but the conÞguration of the rival tables remains

ambiguous. In Þg. 3.4, the Gibbs sampler is switching
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between tables T 1 and T 2 which are equally valid ex-
planations of legs L1 and L2. We note that the presence
of T 1 and T 2 are strongly correlated with the presence
of legs (L3, L4) and (L5, L6) respectively. Therefore,
observing the presence or absence of shapelets caused

by any of these legs could resolve the high-level ambi-

guity about the tables.

This idea can be made precise by using a novel hierar-

chical version of well-known entropy-based exploration

methods (reviewed in [45]), integrated into the Bayesian

blackboard architecture. During mapping, CrunchBot�s

goal is to maximise knowledge about table locations

(i.e. construct a map showing the tables.) We can write

this goal as maximising entropy of the distribution over

sets (maps) of tables {Ti}i,

maxH({Ti}i) = max
{Ti}i

(−〈log P ({Ti}i)〉Ti
) (31)

Future work could explore ways to compute this entropy

exactly within the Bayesian blackboard framework; in

the present study we simplify the computation by quan-

tising a local region of space around CrunchBot into a

square occupancy grid, and working with the probabil-

ities that each grid cell is occupied by a leg or a ta-

ble instead of the full distribution over sets of tables.

As is common in occupancy grid methods, we assume

(strongly, but falsely) that cell probabilities are mutually

independent. Under these assumptions the local map

probability is,
∏

x,y

P (T (x, y)) (32)

where P (T (x, y)) is the table occupancy probability of
the cell at location (x, y). From this we further approx-
imate the entropy of the distribution over sets of tables,

by the sum of the grid cell entropies,

H({Ti}i) ≈
∑

x,y

H(T (x, y)), (33)

which is the new goal to minimise. We quantise Crunch-

Bot�s next possible (greedy) actions as movements to

the same set of grid cells, and assume that visiting a

cell will always Þnd any legs in that cell (as a result of

the body-whisks, and radial distance and orientation re-

ports). We ignore any evidence that may be collected

during the path to reach the action cell in our approxi-

mation. Let the action of moving to and observing the

cell (xa, ya) be a(xa, ya).
Performing action a(xa, ya) will (by assumption) an-

swer with certainty the Boolean question of whether or

not there is a leg L(xa, ya) in cell (xa, ya). It may also
reduce the entropy of the tables, by restricting possible

percepts to those matching the presence or absence of

this leg, as in Þg. 3.4. We can compute this potential

entropy change in advance, from the current location,

before the action is performed, by computing the distri-

bution of tables conditioned on the possible Boolean leg

state b,

{P (T (x, y)|L(xa, ya) = b)}x,y, (34)

then computing∆H =

H({T (x, y)}x,y|L(xa, ya))−H({T (x, y)}x,y|¬L(xa, ya))
(35)

=
∑

x,y

H(T (x, y)|L(xa, ya))−H(T (x, y)|¬L(xa, ya))

(36)

for each a(xa, ya). The action with the largest differ-
ence in entropy is the most informative about the table

distribution and is thus could be a useful candidate to

explore next.

In practice, we need a way to approximate equa-

tion 34. In the present study, we experimented by us-

ing samples of table sets {Ti}i drawn from the ex-

isting Metropolis-Hastings sampler. For each sample

of tables, the Boolean cell occupancies are computed

(by drawing the tables onto a grid using a graphics li-

brary, www.cairographics.org), then normalised occu-

pancy frequencies summed over samples used as ap-

proximations to occupancy probabilitiesP (T (x, y)). To
avoid estimation bias due to the changing annealing

temperature, we extended the annealing cycle with a

Þxed, high temperature phase at β = 1/7.5 for N = 20
steps before beginning to reduce the temperate for the

MAP optimisation annealing phase. The high temper-

ature was used to allow the sampler to jump often be-

tween minima, as at β = 1 there is little probability of
the rivals and missing children � which are necessary to

transition to alternative ambiguous table percepts � ever

occurring.

3. Results

3.1. Radial distance reports

Peak deßection magnitude for each contact is shown

in Fig. 3.1. Standard deviation of error for radial dis-

tance estimation is shown in Table 1.

Peak deßection magnitude for contacts along the

shaft of the whisker. Standard error for the regression

is 4.98mm

Standard classiÞcation error is very low, typically

less than 5mm over the 60mm range tested. For some

whiskers classiÞcation error is even lower, below 2mm.
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R

T1
T2

L1

L2

L3

L4

L5

L6

S1

S2

S3 S4

Figure 7: Typical ambiguous table scenario. Here the robot R has

reported shapelets S1 − 4 and inferred legs L1, 2 unambiguously.
But these legs are equally compatible with tables T1, 2 having legs
L3, 4 and L5, 6. Exploring any of these four legs would remove the
ambiguity about the tables.

R

S1

S2

S3 S4

Figure 8: Illustration of the foveal grid used in entropy mapping. The

grid covers a small local region around the robot, within the arena.

Table and leg occupancies are recorded in each cell and used to Þnd

regions of interest, such as the ambiguity-resolving legs of Þg. 3.4.

W 1 2 3 4 Combo

σ 2.78mm 1.82mm 4.37mm 5.68mm 4.98mm

Table 1: Standard classiÞcation error for radial distance estimation on

the CrunchBot mobile robot. Results are given for each whisker in

turn, and or all the whiskers together. W = whisker, σ = standard error
of classiÞcation
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Figure 9: Surface orientation discrimination error with a template

based classiÞer. Mean classiÞcation error is -2.2◦, standard error is

21.2◦

These results compare favourably with previous work

under highly controlled conditions where speed was

variable. This indicates that the noise in the odometry

is low enough to ensure a consistent contact force and

speed during the short periods of contact.

3.2. Surface orientation reports

Fig. 9 displays surface orientation estimation perfor-

mance for the template based classiÞer. Mean classi-

Þcation error is -2.2◦, standard error is 21.2◦. Classi-

Þcation performance is best for orientations near 90◦,

with larger errors being made for large and small orien-

tations. This may be due to fewer whiskers making con-

tact with the surface at the extreme orientations, provid-

ing less information to the classiÞer with which to base

a classiÞcation.

3.3. Hierarchical object mapping

The parameter values used were: cT = 0.4, cL =
0.1, cS = 0.05, ǫa = 0.3ǫb = 0.1, ǫc = 0.1, σr =
0.2, σθ = π/32, δ3 = 0.4. Here, σr and σθ were
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chosen to be similar to the noise levels found in the

physical experiments, while the other parameters were

set by hand trial-and-error to give good results in the

particular arena used in the simulation. The annealing

schedule was βi = exp{7.5 − 0.5i}. Steps in the infer-
ence are illustrated in the supplemental video material.

The MAP hypothesis sets from all poses are collated

and plotted onto a map of the arena in Þg. 10. Com-

paring against the ground truth in Þg. 6, the collated

plot shows that table hypotheses are usually found in the

correct locations, corresponding to the real tables. The

average number of whiskers contacting tables at each

pose having at least one table contact is 4.2±1.7. As we
would expect from such a sparse amount of data, there

are thus many incorrect hypotheses found in MAPs of

the form shown in Þg. 5. These are created from poses

which do not provide enough information about the ta-

bles to resolve ambiguities, for example when the robot

is close enough to touch two legs but no third leg as in

Þg. 5. Also of interest in the results are the many ta-

ble hypotheses perceived around the edge of the arena.

These are due to the agent observing shapelets from

contact with the walls around the arena. The system

does not (yet) have perceptual models of walls, so the

best available explanations for such shapelets are those

which postulate tables with legs at these shapelet loca-

tions. (This is a form of perceptual relativism: lacking

a WALL concept, the system explains the data using its

best available TABLE theories.) Similar plots for noise-

less and highly noisy sensor cases are shown in Þgs. 11

and 12 for comparison. In both cases, the approximate

locations of inferred tables are similar, though the accu-

racy of inferred table poses depends on the noise.

3.4. Entropy based exploration

While CrunchBot�s annealed Bayesian Blackboard

was sucessful in Þnding tables in the arena, it showed

less success in Þnding good exploration locations. We

have showed mathematically how to set up exploration

with hierarchical objects as a conditional entropy min-

imisation task, however we noted that computation of

eqn. 34 requires approximation and chose to use occu-

pancy frequencies from the high-temperature sampler

to approximate the occupancy probabilities. The result-

ing behaviour of the simulated CrunchBot was indistin-

guishable from randommovements, and CrunchBot did

not appear to explore disambiguating legs as in Þg. 7. .

Analysis of the entropymaps gives some idea of the fail-

ure of the approximation of eqn. 34, and examples are

shown in Þg. 13. The problem is that the entropy differ-

ences are dominated by the probabilities of the empty

space around the tables. Beginning with a ßat prior on

Figure 10: Montage showing collection of inferred tables from each

independent robot pose, for realistic [19] (σr = 0.1, σθ = π/32)

sensors.

Figure 11: Montage showing the collection of inferred tables from

each independent robot pose, for ideal, noiseless sensors.
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Figure 12: Montage showing the collection of inferred tables from

each independent robot pose, for very noisy (σr = 0.5, σθ = π/8)

sensors.

occupancy, and fusing in table percepts conditioned on

leg states, the problem is that some leg states are vis-

ited more times than others. So as well as adding to

the table distributions, the observations of empty space

also deepen the probability of non-occupancy there. As

we do not have access to an inÞnite number of obser-

vations, we do not reach the true occupancy distribu-

tions, but instead move towards them in proportion the

number of observations. But the number of observa-

tions differs according to the leg state, meaning that

the probability of non-occupancy for the background is

higher for leg states that are visited more by the sam-

pler. Thus the differences in background probability be-

tween common and uncommon leg states can become

large, and contribute more to ∆H than the actual ta-

ble distribution. This experiment shows that while the

mathematical model and initial approximations may be

sound, the frequency based approximation to the con-

ditional occupancy probabilities is poor in this setting,

and further work should be done to Þnd better approx-

imations. (This is potentially a large area of research,

for example a recent entire PhD thesis was devoted to

similar problems arising from a much more simpliÞed

grid environment, [45]).

4. Discussion

Map building with only CrunchBot�s whisker sen-

sors is a difÞcult task, and our previous paper [21] gave

some indication of the problems faced by conventional

particle Þltering and EKF SLAM style approaches to

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13: Examples of pairs (rows) of entropy maps. Each pair shows

the table grid cell occpancy probabilities, conditioned on the presence

(left) or absence (right) of a leg at some location in the arena. It can

be seen that the entropy change is dominated by the shading of the

background rather than the table distribution proper.
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the mapping and navigation problems. In contrast, the

present paper has shown how to combine signal pro-

cessing for extraction of information about distance and

surface orientation from physical whiskers with strong

hierarchical priors about objects to compensate for the

poverty and locality of the initial touch information.

After demonstrating that practical extraction of dis-

tance and orientation are possible on the real world, mo-

bile CrunchBot platform (unlike previous work which

has performed similar demonstrations in highly con-

strained, Þxed-base environments), we then showed

how these reports can be fused together using a

Bayesian Blackboard to perceive high level objects such

as tables that caused the reports.

Many simpliÞcations were made in the present black-

board implementation, which future versions of the sys-

tem should relax. The �maps� presented here are sim-

ply the collation of many independentMAPt inferences

made from the different poses, and no information is

shared between poses. Storing longer-term memories

of shapelets and fusing them into the inferences would

obviously allow a more reÞned map of the arena to be

constructed: at present each table shown in the results

has been inferred from typically 4.2±1.7 shapelets only,
which is extremely sparse. To avoid combinatorial ex-

plosion from handling many historical shapelets, one

approach would be to discard very old shapelets mem-

ories but preserve only the locations of recognised ta-

bles and other high level objects, similar to the approach

used in [16]. Such an approach raise interesting ques-

tions and analogies about the biological split between

perception of the immediate local present (thought to

occur in cortex), and perception of distinct locations and

the past (thought to occur in hippocampus [8]). The

present system makes no use of negative evidence, i.e.

the observed absence of shapelets on non-contacting

whiskers: future �null-shapelet� observations could re-

port that a shapelet-sized region has been swept out by

whiskers and found to be empty; these could then be

used to remove some of the ambiguous percepts. The

heuristic threshold constants in the proposal distribu-

tion should be replaced with Reversible Jump MCMC

reweightings to remove bias in the sampling distribution

(although in practice the heuristic thresholds can work

well, as ultimately only the annealed MAP is sought,

rather than an approximation to the whole distribution).

The template classiÞer was able to discriminate the

orientation of a surface but was not trained to discrim-

inate other sorts of contacts, for example with the cor-

ners of objects. In principle it is possible to train a tem-

plate classiÞer on every possible contact in the arena.

However collecting such a data set would be impracti-

cal, and the computations involved in comparing incom-

ing data to templates for every possible contact could be

cumbersome. An alternative approach is to extract fea-

tures from the tactile data, as was done radial distance

estimation in this paper, has been done in the Þeld of

haptic touch [51],[48] and is commonly used in vision

[29], and audition [4]. It has been proposed that cells

in the thalamus and cortex of the rat are encoding fea-

tures [42],[28] in this way. Though reliable features can

be extracted for radial distance estimation in this paper,

and contact speed on a stationary robot [13], it is un-

clear what other features can be extracted from whisker

deßection signals for discriminating different kinds of

object properties. In our own lab we are developing fea-

tures for whisker based tactile sensing of contact geom-

etry [14] and texture [18]. In future we hope to be able

to combine features for diverse tactile properties in rich

environments into a coherent system onboard a mobile

robot, which in turn would provide reports that could be

used as inputs to hierarchical object models as presented

in this study.

We showed how to frame the exploration question for

hierarchical objects in terms of entropy, in a related but

novel approach from standard entropy grid based map-

ping (known as Active SLAM, eg. [6]3), but found

an initial computational approximation to entropy to be

lacking for the implementation purpose. It is possible

that links to work of [45] may be useful to produce bet-

ter approximations here in future work.

Importantly, the present system operates in a world

having only one size and texture of table (though tables

may have different leg sizes). Enlarging the parameter

space to range over tables sizes and textures will allow

inference of more realistic four-legged objects such as

different kinds of chairs and desks. Other types of ob-

jects could also be introduced, such as walls, kitchen

units and radiators. The Bayesian blackboard architec-

ture is able to automatically select between rival object

models, treating them as rival hypotheses [16]. How-

ever, as the number of models and parameters grows,

sampling of course becomes less efÞcient. For exam-

ple, it becomes less probable that a perfectly-Þtting ta-

ble will ever be proposed. (Even though once proposed,

it will tend to remain accepted for having such a good

Þt.) Future work should investigate the use of �smart

proposals� which are classical heuristic object detec-

tors (e.g. Hough transforms to Þnd edges and corners)

but re-purposed as Metropolis-Hastings proposals in the

3This paper, together with [23, 50], also gives ideas for how fu-

ture CrunchBot versions could recover from getting lost during failed

inference, by monitoring uncertainty about location.
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Bayesian Blackboard. When combinedwith RJ-MCMC

acceptance probabilities, this gives a way to speed up

the proposals but retain the probabilistic semantics. Fur-

ther research should also extend the parameter space to

multiple textures, and incorporate our previous research

on CrunchBot�s texture recognising abilities [21]. The

hierarchical objects used on the blackboard have sim-

ilarities to those of classic inductive learning [56] and

modern versions of these algorithms could perhaps form

the basis for the automatic learning of new object types.

Future integration work should port CrunchBot�s

hierarchical mapping components from simulation to

its physical platform using a standard API such as

Player/Stage. The latter will involve handling the full

SLAM problem rather than just mapping � recall the

the reason simulation was used in the mapping part of

this article was that it allows us to assume zero odome-

try noise and ignore the localisation part of SLAM. We

have recently begun to demonstrate simple whiskered

SLAM in very small environments using grid maps [17]

which now provides a baseline to compare future hierar-

chical objects against. Using hierarchical objects maps

should improve performance, for example by enabling

CrunchBot to localise when encountering the back of a

table which was previously touched only from its front.

If localisation is achieved in this way, then it should be

possible to treat observations of tables and other objects

as landmarks in a standard EKF type approach. New

forms of loop-closure in SLAM may become possible

by again recognising different parts of the same hier-

archical object, for example CrunchBot may be able to

close a loop by recognising a previously unseen leg of

a previously seen table. Tracking of moving hierarchi-

cal objects may become possible by fusing CrunchBot�s

hierarchical models with the SLAP algorithm [39].
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