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Whiskered texture classification with uncertain contact pose geometry

Mathew H. Evans, Martin J. Pearson, Nathan F. Lepora, Tony J. Prescott and Charles W. Fox

Abstract— Tactile sensing can be an important source of
information for robots, and texture discrimination in partic-
ular is useful in object recognition and terrain identification.
Whisker based tactile sensing has recently been shown to be
a promising approach for mobile robots, using simple sensors
and many classification approaches. However these approaches
have often been tested in limited environments, and have not
been compared against one another in a controlled way. A wide
range of whisker-object contact poses are possible on a mobile
robot, and the effect such contact variability has on sensing has
not been properly investigated. We present a novel, carefully
controlled study of simple surface texture classifiers on a large
set of varied pose conditions that mimic those encountered
by mobile robots. Namely, single brief whisker contacts with
textured surfaces at a range of surface orientations and contact
speeds. Results show that different classifiers are appropriate
for different settings, with spectral template and feature based
approaches performing best in surface texture, and contact
speed estimation, respectively. The results may be used to
inform selection of classifiers in tasks such as tactile SLAM.

I. INTRODUCTION

Tactile information can provide an agent with reports of

object location and identity. Whisker sensors have some

unique advantages over more complex sensors such as

fingertips, including mechanical simplicity, and cost [21],

and rodents provide proof that excellent tactile sensing is

possible using only whiskers [3]. Simple shape recognition

from whiskers is possible with simple features [5], [11]

or static beam equations [18]. Tactile surface identification

remains an active research topic, broadly focussing on the

two tasks of terrain identification – where the surface is

continuous [15],[19], and object discrimination – where each

contact with the surface is discrete (such as in whisking

robots [23]). Texture identification for object discrimination

would be useful in robot tasks such as tactile SLAM [4],

[12]. Many machine learning approaches have been used

to establish some benchmarks for texture discrimination in

constrained, idealised poses, with both artificial fingertips

[2] and whisker-like sensors [15]. However these have been

performed in isolation in unique whisker-object contact set-

tings, and have not been compared against one another in an

independent controlled study for more realistic poses.

We define a pose as the angle with which a whisker makes

contact with a textured surface, and the speed that whisker
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Fig. 1. Whisker pose geometry. A textured surface (blue) is presented
to the whiskered agent (grey). Contact speed V and surface angle θ are
unknown, but affect texture discrimination.

is moving as contact it made. The way a whisker contacts

a surface affects the deflection signals. It has been shown

previously that texture discrimination is more difficult when

whisker pose is unknown or variable [9] as is the case for

contacts made by mobile robots in unknown environments.

Surface angle is known to broadly affect texture discrim-

ination [13], but has not been investigated systematically

or classified from single whisker contacts (though multi-

whisker template classifiers have successfully discriminated

surface angles on a mobile robot [12]).

Contact speed is uncertain in many cases, including un-

certain robot body velocity from odometry noise; uncertain

angular whisker velocity during active whisking (the os-

cillatory whisker movements generated by rats to explore

environments, and control the duration and force of contacts

[3]); and the possibility of contact with moving objects in the

environment. While other studies [5],[22] have considered

contact distance along the whisker shaft as a further variable,

we have found in practice [12] that almost all real-world

contacts for mobile robots occur at the tip of the whisker,

and the few that do not can be used to reposition the robot

to obtain a tip contact [11].

To address this problem of discriminating textures with

brief contacts at an uncertain whisker pose we have devel-

oped an artificial whisker and XY positioning robot system

to generate large datasets and comprehensively explore the

whisker-object contact parameter space. This system allows

us to understand how different contact parameters that vary

with mobile robot whisker pose interact to affect whisker

deflections. Using this system we compare three existing
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Fig. 2. The XY positioning robot (a) from above, to show the range
of movement available. Textured surfaces were fixed to the angled corner
stimulus and presented to the whisker at different angles and speeds. (b)
The robot from the side.

texture, whisker pose and contact speed classification meth-

ods: template based classification [6], spectral template based

classification [7] and feature based classification [16], [13],

[5]. These methods were chosen for their recent track record

in classifying whisker data, and accuracy when only a

small training set is available. The remainder of this paper

describes the XY positioning robot data collection procedure,

then specifies the classifiers. Results for each classifier are

detailed before being discussed with a view to interpretation

and mobile robot applications.

II. METHODS

A. Artificial whisker and XY positioning robot

A tapered, flexible plastic whisker [20],[7] ∼5 times scale

models of a rat whisker, was mounted into an inflexible

rubber-filled ‘follicle’ case. A tri-axis hall effect sensor

mounted in the follicle case measures the deflection of a

magnet fixed to the base of the whisker shaft. The hall

effect sensor IC was programmed to generate two voltages,

corresponding to the magnitude of the whisker base de-

flection in two directions, x and y. An XY-table (Yamaha-

PXYX, Yamaha Robotics) was used (Figure 2), having a

movement range of 350 × 650mm, and able to move up to

720mm/s. Repeatability of the robot is ±0.01mm, and the

maximum load it can carry is 1.5kg. Objects are carried by

the robot into the artificial whisker, which is fixed to the

table as this allows us to control the contact as carefully as

possible. Moving the whisker into an object would cause the

whisker to oscillate unpredictably during movement between

contacts, and as a result each contact would be slightly

different. A controller (Yamaha RCX 222, 2-axis robot con-

troller) takes instructions from a PC through an RS232 cable,

and the controller interprets the instructions, completes path

integration, and drives the motors. Instructions for the robot

are generated inside a MATLAB (www.mathworks.com)

loop, and can be easily updated during robot operation,

depending on the whisker input.

B. Data collection for angle, speed and texture estimation

A right angled corner stimulus was designed for presenting

textures to the whisker on the XY positioning robot. This

textured object is shown in Figure 2 (a). The stimulus

consists of an angled strip of aluminium suspended from

the XY positioning robot on an pole. Textured sandpapers

were affixed to the aluminium surface using double sided

adhesive tape. A range of contact speeds was chosen to limit

any damage that could occur to the whisker from the large

stimulus during high velocity impacts. 6mm/s was the lower

bound on speed, with an upper bound of ≈106mm/s, with an

interval of ≈7mm/s, providing 11 different speeds. Surface

angle ranged from 10◦–80◦, in increments of 10◦. When the

stimulus was angled at 0◦ or 90◦ the contact was equivalent

to a point contact along the shaft so was not considered a

tip–surface contact for this experiment. Four textures were

chosen, three grades of sandpaper (P80, P180, and P600) and

a smooth aluminium surface. Eleven speeds, eight angles

and four textures results in 352 different combinations.

Contact combinations were randomly interleaved during data

acquisition to limit any effects of changing whisker prop-

erties during the trial. For each contact combination the

whisker was deflected by the robot in both a clockwise and

anticlockwise directions (-ve and +ve in x), ensuring that the

whisker did not bend over time through repeated unilateral

deflections. The experiment was performed twice to generate

sufficient data for classification.

A simple biomimetic robot control algorithm was im-

plemented to restrict whisker object contacts to brief, light

touches. The robot was programmed to move an object into

the whisker at a given speed until a deflection threshold

was crossed, at which point the robot retracted the object

as fast as possible (720mm/s). Temporal latency for the loop

is ≈300ms from initial contact due to the controller duty

cycle. Whisker deflections were processed at 4kHz. Data

from each trial was stored separately. Deflections from the

clockwise robot movement trials (-ve in x) were converted

so all data samples were equivalent. Trials were ordered into

arrays by robot movement direction, contact speed, surface

angle and texture. Each trial was aligned to peak deflection,

and shortened to only the 6000 samples either side of peak

deflection (1.5s).

C. Classifier specification

Data was separated into training and test sets that were

each complete data sets of 8 angles, 11 speeds, and 4 textures

(a total of 2,112,000 samples per set). Signals were placed

in the training or test sets at random from the original data.

In each case classifiers were developed on the training sets,

and performance was determined on the test set.

1) Time–domain template based classification for angle,

speed and texture discrimination: An input signal is stored

as a template, then compared to new data from the test set.

During the test phase, trials were taken at random from the

test set as inputs to the classifier. An element-wise sum of

squared errors calculation was made between the input I and

each template Ti,

e(I, Ti) =

n∑

t=1

(I(t) − Ti(t))
2, (1)



where n is the length of the template in samples. The tem-

plate with the lowest sum of squared error was determined

the winner, and a recording was made in an output array

of the estimated speed and radial distance to contact of the

input trial.

2) Spectral template based classification for angle, speed

and texture discrimination: A fast Fourier transform (FFT)

was performed on the filtered data in MATLAB, The MAT-

LAB FFT function returns the discrete Fourier transform

(DFT) of the input signal (x) of length N , computed with a

fast Fourier transform (FFT) algorithm,

X(k) =

N∑

j=1

x(j)ω
(j−1)(k−1)
N , (2)

where ωN = e(−2πi)/N is the N th root of unity.

The absolute of the DFT is then stored as a template for

comparison with DFTs of incoming test data as in the

template classifier described above.

3) Feature based classification for angle, speed and tex-

ture discrimination: Inspection of the data showed that peak

deflection magnitude could be used as a feature for speed

discrimination under conditions of varying contact angle

and texture. Deflection magnitude was taken as the Hall

effect sensor output voltage at peak deflection, which is

proportional to the bending moment M . Feature f1 can be

defined as,

f1 = maxtM(t), (3)

where M(t) is the deflection magnitude varying with time,

measured by the Hall effect sensor in volts. Note that t(f1) =
t(maxtM(t))

In previous preliminary work [8] it was shown that the

latency to peak or slope of the initial whisker deflection

could be used as a measure of surface angle. To test this

idea comprehensively we implemented the same classifier

here. Taking the amplitude of deflection f1, and the time of

peak deflection t(f1), we can find feature f2 the slope of

deflection,

f2 =
f1

t(f1)
. (4)

To perform a feature based classification for texture dis-

crimination, centroid energy features such as those described

in [16] and [13] were extracted from the signal. After the

data had been IIR (infinite impulse response) notch filtered

to remove the resonant frequency of the modulation centroid,

f3, was taken as the frequency with most energy in the DFT

(X, see equation 2) of the signal x after X1−5Hz is set to

zero,

f3 = arg max abs(X[6Hz−1kHz]). (5)

The modulation energy, f4, was defined as the energy of

the DFT at the modulation centroid (the magnitude of energy

at f3),

f4 = max abs(X[6Hz−1kHz]). (6)

Finally a total power feature, f5, was defined as the total

energy in the FFT below 1kHz,

f5 =

1kHz∑

6Hz

|X|, (7)

where FFT(1:5Hz) were set to 0.

In both the contact pose geometry and frequency

case a model was generated of the relationship between

each feature and the corresponding contact property with

regression, (using the polyfit toolbox in MATLAB

http://bit.ly/polyfitn). Using linear least squares

a model is generated that can be used to classify new data.

Three arguments are required for generating the model, a

vector of independent variable values, a vector of dependent

variable values, and a model specification, namely the degree

of the polynomial. A second degree polynomial was chosen

as preliminary studies showed it provided good results.

The independent variables for contact pose geometry were

features f1 for contact speed, f2 for surface angle, f3, f4

and f5 for surface texture.

An additional combined feature classifier was built to see

if combining the texture features f3, f4 and f5 into a single

model could improve classification. Polynomial regression

was used to develop a model comprising all three texture

features, as above. A fourth degree polynomial was chosen

as preliminary studies showed it provided good results. After

the angle, speed and texture of a test data file is estimated

with the model the output is rounded to the nearest integer

to make a classification.

4) A note on the analysis: Results are presented for

each classifier in turn for surface angle, speed and texture

estimation. The performance is compared by calculating

the accuracy and precision of angle, speed and texture

classification by the reporting of mean and standard errors

for classification. Confusion matrices are given for each

classifier, as imaged arrays only to give a visual indication

of classifier performance.

Cohen’s Kappa κ [1] is given as a summary statistic,

providing a measure of classification accuracy that is scaled

for the number of classes involved. Formally κ is defined

in terms of total accuracy (hit rate or PO, O for observed

value), and chance performance PE (E for expected value)

by,

κ =
PO − PE

1 − PE
. (8)

In this way performance can be compared for each of

the contact parameters even though they are over different

classification ranges [10]. The value will fall between 0 and

1, with 1 indicating perfect classification and 0 indicating

chance performance. Scores below 0.2 are deemed poor

classification. In a 2 choice discrimination, a κ of 0.5 would

be equivalent to a hit rate of 75% (50% = chance).

III. RESULTS

Typical whisker deflections for each condition are shown

in Figure 3.
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Fig. 3. Typical whisker deflections from the artificial whisker, for different angles, speeds and textures. Texture varies by column, angle varies by row.
Colour indicates contact speed, blue = 36mm/s, green = 72mm/s, red = 108mm/s. Note large differences in the amount of oscillatory ringing in some trials.

A. Template based classification of angle, speed and texture

Figure 4 shows the confusion matrices for simultaneous

angle, speed and texture classification using a template

classifier on raw data. Cohen’s κ for each parameter: Angle

= 0.27, Speed = 0.25, Texture = 0.24. Cohen’s κ for texture

independent of contact pose = 0.24. Mean and standard errors

for classification, when classified simultaneously: Angle,

mean (µ) = 0.71◦, standard error (σ) = 15.6◦; Speed, µ =

-2.7mm/s, σ = 14.22mm/s; Texture, µ = -0.02, σ = 1.23.

B. Spectral template based classifier results for angle, speed

and texture discrimination

Figure 5 shows the confusion matrices for simultane-

ous angle, speed and texture classification using a spectral

template classifier. Cohen’s κ for each parameter: Angle =

0.44, Speed = 0.14, Texture = 0.46. Cohen’s κ for texture

independent of contact pose = 0.42. Mean and standard errors

for classification, when classified simultaneously: Angle,

mean (µ) = -1.08◦, standard error (σ) = 13.8◦; Speed, µ

= -2.78mm/s, σ = 22.4mm/s; Texture, µ = 0.14, σ = 1.00.

C. Feature based classification of angle, speed and texture

Figure 6 shows the confusion matrices for feature based

speed and angle classification using features f1 (magnitude

of deflection), f2 (slope of deflection), and texture classifi-

cation using features f3 (modulation centroid), f4 (centroid

energy) and f5 (total energy). Cohen’s κ for each parameter;

angle = 0.11, speed = 0.43, texture (f3) = 0.06, texture (f4)

= 0.03, texture (f5) = 0.15. Cohen’s κ for each parameter

independent of each other; angle = 0.3, speed = 0.25, texture

(f3) = 0.08, texture (f4) = 0.21, texture (f5) = 0.27. Cohen’s

κ for texture discrimination by combining features with

multinomial regression was 0.12.

Table I shows the mean and standard error for classifica-

tion with each feature, when classified simultaneously.
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Fig. 4. Confusion matrices for classification of angle (a), speed (b), and texture (c) with the raw signal template classifier over all contacts. Scale on the
right indicates correct classifications. Brightness indicates larger numbers, and better classification
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Fig. 5. Confusion matrix for classification of texture with a spectral template based classification. Scale on the right indicates correct classifications.
Brightness indicates larger numbers, and better classification.

TABLE I

MEAN AND STANDARD DEVIATIONS OF CLASSIFICATION ERROR FOR

ALL FIVE FEATURES.

f1 f2 f3 f4 f5 Combined

Mean 1.80mm/s 0.17◦ 0.43 -0.07 0.05 -0.09
Std Err 12.12mm/s 18.6◦ 1.10 1.22 1.09 0.97

D. Comparing the classifiers

Figure 8 compares Cohen’s κ for the best version of each

method, namely the low pass filtered template, the frequency

template, a ‘best case’ feature classifier (f1 for speed, f2 for

angle and f5 for texture). Mean and standard errors for each

method are compared in Figure 7.

IV. DISCUSSION

We have presented the first results for whiskered texture

classification in a controlled classifier comparison study, un-

der varying contact pose (varying surface angle and speed).

These variations occur in real mobile robot settings, where

the classifications would be useful for tasks such as object

detection for tactile SLAM [12]. We found that classification

results vary a great deal across the different methods, with

classifiers performing better for some parameters than for

others. No method performed well across all conditions.

This was not apparent in the original presentations of the

classifiers [16], [13], [7], [6]. Figure 8 compares the results

for each classifier using Cohen’s κ. The best classifier for

angle estimation was spectral templates. The same spec-

tral template classifier was also most successful in texture

discrimination. Spectral templates have been successful at

whisker based texture discrimination in the past [7], therefore

it is no surprise that it is successful here. Surface angle was

also successfully classified by the spectral template classifier,

which may be unexpected. Speed classification was most ac-

curate with the feature based classifier, with all other methods

performing poorly. Again this may be expected in light of

the success had with feature based speed discrimination [5].

This split in classifier success between different methods for

different parameters may indicate that the salient features

in the signals for texture and angle vary together, while

speed discrimination is somehow orthogonal. More work

needs to be done to develop a clearer understanding of the
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Fig. 6. Confusion matrices for classification with the feature based classifier; of angle with f2 (a), speed with f1 (b), and texture with f3 (d), f4 (e)
and f5 (f). (c) Confusion matrix for classification of texture with the multinomial feature based classifier, using features f3, f4 and f5 over all contacts.
Brightness indicates larger numbers, and better classification
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Fig. 7. Mean and standard error of classification for the best version of each method for angle (a), speed (b) and texture (c). Template: raw data template;
FFT Temp: spectral template; Feat: a ‘best case’ feature classifier (f1 for speed, f2 for angle and f5 for texture)

way surface angles and textures, and contact speeds affect

whisker deflections and how these effects interact. The XY

positioning robot system will be central to these efforts.

There appeared to be no advantage to classifying tex-

ture independently of the contact pose parameters, and for

some classifications Cohen’s κ remains below 0.2, and is

a poor classification (0 is chance performance), indicating

that many of the features and classifiers presented here are

not succeeding in classifying the data. In previous studies

it has been shown that information about the whisker–object
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Fig. 8. Cohen’s κ for each method for classification of surface angle
(blue), object speed (red) and surface texture (yellow). Template: raw data
template; FFT Temp: spectral template; Feat: a ‘best case’ feature classifier
(f1 for speed, f2 for angle and f5 for texture). Note contrasting classifier
performance across parameters.

contact pose geometry can improve whisker sensing [9],[13].

It is difficult to determine why this has not been the case

here. It may be that better classifiers could be built, or more

successful features could be extracted, for example using a

machine learning feature extraction approach such as PCA.

In previous studies a Gaussian classifier was used for feature

based texture discrimination [13]. This kind of classifier

may be more effective than a polynomial at combining

information from a number of features, or for discriminating

properties that interact.In addition, larger data sets may be

useful for training classifiers to be robust to small within–

trial variations. Inspection of the raw signals in Figure 3

shows oscillatory ringing after contact on some trials but not

others. This ringing does not seem to be associated with a

particular contact parameter, but may be due to the whisker

tip interacting with a surface uniquely on different trials. It

may be that trying to classify so many parameters effectively

and at the same time may to too difficult a task for one

whisker making a single brief contact. This may be the

limit of single whisker sensing, and improvements would

no doubt be gained through pooling of information across

whiskers. For example using multiple-whisker classifiers, as

used previously for surface angle discrimination on a mobile

robot [12].

It may be possible to combine classifiers such as those

presented here in a mixture of experts [17], or with boosting.

Probabilistic methods, some of which have been successfully

applied to whisker sensing such as Bayesian blackboards [14]

and sequential analysis [19], are ideally suited to optimally

combining information from a number of sources. In this way

many low-resolution reports of touch events can be combined

across whiskers and over time to make high-level inferences

about objects and surfaces in the environment.
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