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ABSTRACT Electroencephalography (EEG)-based brain-machine interface (BMI) is widely applied to

control external devices like a wheel chair or a robotic arm, to restore motor function. EEG is useful to

distinguish between left arm and right arm movements, however, it is difficult to classify the different

movements on one arm. In this paper, a two-step single-trial classification method is proposed to recognize

three movements (make a fist, hand extension and elbow flexion) of left and right arms: (1) distinguish

between left arm and right arm movements by decoding event-related (de) synchronization (ERD/ERS)

and (2) recognize the specific movement of this arm using corticomuscular coherence as features. Four

healthy subjects are employed in a cue-based motor execution (ME) experiment. In Step one, ERD and

post-movement ERS are found over the contralateral sensorimotor area; in Step two, for each movement,

only the beta-band coherence between C3/C4 and the corresponding agonistic muscle is significant. The

classification results show the best accuracy of Step one and Step two is 88.10% and 93.33%, respectively.

This proposed method achieves a total accuracy of 82.22%. This study demonstrates that our method is

effective to classify different movements on one arm, and provides the theoretic basis and technical support

for the practical development of BMI-based motor restoration applications.

INDEX TERMS Arm movement classification, BMI, EEG-EMG coherence, ERD/ERS, motor restoration.

I. INTRODUCTION

As a direct means of communication combining human

brain with the external devices, the electroencephalography

(EEG)-based brain-machine interface (BMI) can be

considered as being the main way of communication for

people affected by motor disabilities [1]–[3]. Some external

devices such as wheel chair, robotic arm and neuroprosthet-

ics, are controlled by BMI to restore motor function [4]–[8].

Bypassing the conventional neural muscular conduction path-

way, human motion intentions can be decoded directly into

machinery commands through BMI [9]. This helps patients

with neuromuscular disorder to restore motor function and

regain their independence in daily life [10], [11].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jing Liang.

EEG signals’ low signal-to-noise ratio is the main reason

to lead to a low decoding accuracy for EEG-based BMI

applications [12]. When we collect the EEG signals through

surface electrodes placed on the scalp, the noise levels are

increased because of multiple artefacts (motion of electrodes

and cables, gel drying, electrode polarization, etc.). To this

problem, lots of previous studies have focused on looking

for reliable features and pattern recognition algorithms to

improve the classification accuracy of EEG signals [13], [14].

Event-related (de) synchronization (ERD/ERS) patterns [15]

have been considered as important features to distinguish

between left hand and right hand movements, according to

the attenuation/increase phenomenon of EEG amplitude dur-

ing motor imagery (MI) or motor execution (ME) [16], [17].

Pfurtscheller et al. [18] found the ERD/ERS features in

alpha frequency bands (9-14 Hz) and beta frequency bands
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0 could be used to distinguish between left hand and right

hand motor imageries, and the online classification accuracy

was approximately 80% in all 3 subjects. Huang et al. [19]

observed the ERD/ERS over the contralateral sensorimotor

area to the hand movements for both MI and ME, and the

offline classification accuracy was as high as 88%. To date,

ERD/ERS features have been applied in cursor, wheel chair

and neuroprosthetics control as well. The classification accu-

racy of left hand and right hand movements in some of these

researches has been close to 90% [20], [21].

EEG is useful to distinguish between left hand and right

hand movements, however, it is difficult to classify the

different movements on one arm. Due to the complexity of

upper limb movements in daily life, how to recognize motion

intention of one arm is especially important, which could

make the neuroprosthetics and robotic arm assist daily life of

users effectively [22]–[24]. For this reason, some researchers

have focused on the classification of different movements on

one arm using EEG signals, but the classification accuracy

is still less than 50% resulting from the limited spatiotem-

poral resolution [25]. Therefore, using EEG signals only

is hard to improve the classification accuracy of different

movements on one arm. Corticomuscular coherence (CMC)

measured between EEG and electromyography (EMG) helps

to understand the cortical control for limb movements [26].

When a muscle contracts, a functional coupling relation-

ship exists between the contralateral sensorimotor cortex and

this muscle in several different frequency bands [27], [28].

So EEG-EMG coherence can be used as the feature to clas-

sify different movements. Most previous researches used

EEG-EMG coherence to understand the corticomuscular

functional connection [29], [30]. To the best of our knowl-

edge, EEG-EMG coherence has not been applied as a feature

in classification of movements on one arm yet.

This study aims to use a novel BMI paradigm to classify

different movements on one arm. In this paradigm, a two-step

single-trial classification method is proposed to recognize

three movements (make a fist, hand extension and elbow

flexion) of left and right arms: (1) distinguish between

left arm and right arm movements by decoding ERD/ERS

and (2) recognize the specific movement of this arm using

EEG-EMG coherence as features. Advanced feature extrac-

tion and classification algorithms were used for single-trial

EEG signal processing. Then we tested whether this pro-

posed method is reliable enough to decode different motion

intentions of one arm.

II. MATERIAL AND METHODS

A. SUBJECTS

4 healthy 25- to 30-year-old subjects (3 males and 1 female,

all right handed according to the Edinburgh inventory [31])

participated in our experiment. Before the experiment, all

subjects signed the informed consents, and let them know the

experimental procedure. The ethical clearance committee of

Zhejiang University reviewed the experimental protocol and

approved it.

FIGURE 1. One subject in the experiment. After the EEG electrodes and
EMG electrodes were attached and all signals were normal, subjects sit
before the screen, and kept their forearms semi-extended and palms
supinated. Both shoulders and all fingers were relaxed. To maintain the
attention level of subjects during recording, a quiet and dim-light
experimental environment was provided.

B. EXPERIMENTAL PARADIGM

After the EEG electrodes and EMG electrodes were attached

and all signals were normal, subjects sat before the screen,

and kept their forearms semi-extended and palms supinated

(see Figure 1). Both shoulders and all fingers were relaxed.

To maintain the attention level of subjects during record-

ing, a quiet and dim-light experimental environment was

provided. In addition, some unnecessary movements such

as blinks, eye movements and body movements should be

avoided after the visual cue. A 19-inch CRT screen was used

to present the visual cues with a 1.2◦ visual angle.

In this ME experiment, each subject completed totally

360 trials (random sequences of 60 trials × 6 movements,

see Table 1). Each trial lasted 7 seconds [17], and the tim-

ing of one trial is shown in Figure 2. A beep sound and

a cross at second 2 meant the start of this trial. Then,

at second 3, a visual cue selected in one of six (a left/right

arrow and a word) appeared in the center of the screen. The

six different cues were ‘‘←fist’’, ‘‘←hand’’, ‘‘←elbow’’,

‘‘→fist’’, ‘‘→hand’’ and ‘‘→elbow’’, which indicated the

different movements: make a left fist, left-hand extension,

left-elbow flexion, make a right fist, right-hand extension

and right-elbow flexion, respectively. Subjects performed the

ME naturally for 4 seconds, until the cue disappeared at

second 7. After a random duration (2-5 seconds) for short

pause, the next trial would start.

Subjects started movements immediately when the cue

appeared in each trial, and were instructed to have a 10-min

rest between every 60 trials to avoid mental or muscle

fatigue [32]. To avoid body movements and fatigue dur-

ing the 60 trials, we took two actions: (1) a camera was

used to observe subjects to ensure that they did not make

unnecessary movements (eye or tongue movements) after the
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TABLE 1. The descriptions of six movements in this study.

FIGURE 2. Timing of the BMI paradigm used in the experiment. A beep
sound and a cross at second 2 meant the start of this trial. Then,
at second 3, a visual cue selected in one of six (a left/right arrow and a
word) appeared in the center of the screen, which indicated the different
movements. Subjects performed the ME naturally for 4 seconds, until the
cue disappeared at second 7. After a random duration (2-5 seconds) for
short pause, the next trial would start.

cue appearance, performed movements correctly, and were

attentive and awake; (2) median frequency (MF, a frequency

domain feature of EMG) of muscles of left and right arms

were observed to avoid muscle fatigue. A decrease of MF

means muscle fatigue [33]. Additionally, they could have a

break anytime during the experiment if they were too fatigued

to continue the arm movements. The duration of experiment

for each subject was approximately 2.5 hours.

C. TRIAL EXCLUSION

We identified all trials offline, and excluded the trials

including the EEG artifacts of blinks, eye movements or body

movements from the following analyses. For EMG record-

ings, trials that contained bilateral movements (EMG

activities in both arms) were excluded.

D. DATA ACQUISITION

28 EEG channels (P6, P4, P2, Pz, P1, P3, P5, CP6, CP4,

CP2, CPz, CP1, CP3, CP5, C6, C4, C2, Cz, C1, C3, C5,

FC6, FC4, FC2, FCz, FC1, FC3, FC5) were selected to

collect EEG signals using an EEG cap connecting with an

actiCHamp EEG signal amplifier (Brain Products, Gilching,

Germany). The placements of reference electrode and ground

electrode were at left mastoid and position Fz, respectively.

After wearing the cap, conductive gel was used to reduce

impedance between electrodes and scalp. According to the

recorder software (Brain Vision), electrode impedance was

visually observed to keep lower than 5 k�. EEG signals were

low-pass filtered at 100 Hz, high-pass filtered at 0.5 Hz, and

sampled at 500 Hz. A 50-Hz notch filter was set to remove

line interference.

EMG data were collected from digitorum superficialis,

extensor digitorum and biceps brachii of both left and

right arms, corresponding to the agonistic muscle of three

movements: make a fist, hand extension and elbow flexion,

respectively [34], [35]. Six MyoScan EMG sensors (Thought

Technology Ltd., Canada) were used for six muscles’ EMG

recordings. Sensors’ main parameters include: measuring

range is 0-2000 µV, input impedance is higher than 10 k�,

CMRR is higher than 130 dB, and input/output gain is 500.

Before attaching the electrodes, alcohol and conductive gel

were used to clean the skin and reduce impedance between

electrodes and skin, respectively. Six EMG sensors with tri-

ode electrodes were placed on the midline of the muscle belly

of targeted muscles according to [36]. The inter-electrode

distance was 2 cm. EMG signals were low-pass filtered at

150 Hz, high-pass filtered at 5 Hz, and sampled at 500 Hz.

A 50-Hz notch filter was set to remove line interference.

MATLAB R2017a (MathWorks, Inc., Natick, USA) was

used to calculate and analysis all data in the experiment.

E. FEATURE EXTRACTION AND CLASSIFICATION

In this paper, we proposed a two-step single-trial classification

method to classify different movements on one arm:

(1) distinguish between left and right arm movements by

decoding ERD/ERS and (2) recognize the specific movement

of this arm using EEG-EMG coherence as features. The

procedure of feature extraction and classification of two steps

were as follows.

1) STEP ONE: DISTINGUISH BETWEEN LEFT

AND RIGHT ARM MOVEMENT

• ERD/ERS visualizations:

The collected EEG signals were filtered at 8-30 Hz

(alpha and beta frequency bands) which includes most

important movement information [18]. All movements

were divided into two classes (Class L and Class R),

i.e. left arm movement (Class 1-3) and right arm move-

ment (Class 4-6). For Class L and Class R, EEG power

of C3 and C4 channels within two frequency bands

(8-12 Hz and 14-30 Hz) during 0-7 s were averaged over
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all trials and all subjects. The ERD/ERS curves are cal-

culated as a percentage of EEG power decrease/increase

relative to the reference period (0.5-1.5 s in this experi-

ment) [15], according to the equation below

ERD/ERS% = (P− R)/R× 100, (1)

whereP is the EEG power of targeted period, andR is the

EEG power of reference period. Grand average topogra-

phies based on ERD/ERS curves and time-frequency

maps generated by fast Fourier transformation (FFT)

with 100-ms Hanning windows were used to visualize

ERD/ERS patterns [37].

• Feature extraction:

By referring to the ERD/ERS curves and time-frequency

maps, the best time period and frequency band for each

subject were chosen to gain the strongest ERD/ERS. The

selected time period was windowed by 200-ms time seg-

ments to extract features. As a general algorithm, com-

mon spatial pattern (CSP) was used in our experiment

for feature extraction, which calculated spatial filters for

discrimination between two brain states (corresponding

to Class L and Class R) successfully [38]. In order to

find the optimal spatial filters, the CSP algorithm can

maximize variance differences between two classes to

obtain highly distinguishable features [39]. Each trial’s

EEG data were transformed into a C × N matrix M ,

where C represents the channel numbers (28 channels

in this study) and N represents the sample numbers per

channel. The normalized covariance matrix is

Cov = MM ′/trace(MM ′), (2)

where ′ means the transpose of this matrix, and trace(x)

is the sum of the diagonal elements of x. For each

class, the averaged covariance matrix Cov is given by

averaging all trials of this class (Class L or Class R). The

composite spatial covariance matrix is calculated by

Covc = CovL + CovR. (3)

By eigenvalue decomposition, Covc is transformed into

Covc = EcλcE
′
c, where Ec is eigenvector matrix of λc,

and λc is the diagonal matrix of eigenvalues. With the

whitening matrix

W =

√

λ−1c E ′c, (4)

CovL and CovR can be transformed into

SL = WCovLW
′ and SR = WCovRW

′. (5)

SL and SR share the same eigenvector matrix U , i.e.,

if SL=UλLU
′ and SR=UλRU

′ then λL+λR= I , (6)

where I is the identitymatrix, and the sum of eigenvalues

of SL and SR is 1. After spatial filtering, the raw matrix

M can be decomposed to

Z = PM , (7)

where P = U ′W is the projection matrix. We used the

variances of firstm rows and lastm rows of the new time

series Zi as the features, which can distinguish between

the two classes best. The feature vector of i-th trial can

be calculated as

f ij = log













var ij
2m
∑

j=1

var ij













, (8)

where var ij is the variance of the j-th row of Zi, j =

1, 2 . . . 2m. One feature vector included 2m feature val-

ues (variances).

• Classification:

We applied linear discriminant analysis (LDA) [40],

multi-layer perceptron (MLP) [41], Gaussian support

vector machine (Gaussian SVM) [40], and sparse

Bayesian extreme learning machine (SBELM) [42]

which were commonly used in previous studies for

EEG classification. The classification performance and

computational time were compared and analyzed. For

classification model, the inputs were feature vectors

f ij of CSP, and the output was one of the two classes

(Class L or Class R). All data (Class L and Class R)

were separated into two parts: 80% data as training

set and 20% data as testing set. To obtain more effec-

tive information and select the optimal model, 10-fold

cross-validation was used in model training. Training set

was separated into 9 folds for training and 1 fold for

validation randomly.

2) STEP TWO: RECOGNIZE THE SPECIFIC

MOVEMENT OF ONE ARM

After we got the classification result of Step one, EEG-EMG

coherence was applied to recognize the specific movement

of this arm. The raw EEG signals and EMG signals were

filtered at 8-30 Hz. The filtered EEG signals of C3 and

C4 and the filtered EMG signals of three muscles of this arm

were extracted during second 3-7 (4-s time period after cue).

Analysis of the EEG-EMG coherence was performed using

200-ms time segments with a 100-ms overlap (39 segments

in 4 seconds).

• Feature extraction:

EEG-EMG coherence is helpful to understand the

corticomuscular functional connection in muscle fatigue

and motor recovery [27], [43]. In our work, EEG-EMG

coherence was used as a feature in classification of

different movements on one arm. By FFT with a 2-Hz

frequency resolution, coherence between EEG (x) and

EMG (y) can be expressed as

Cxy(f ) =
Pxy(f )

Pxx(f )× Pyy(f )
, (9)

where Pxx(f ) is the autospectra of x at frequency f ,

Pyy(f ) is the autospectra of y at frequency f , and Pxy(f )

128188 VOLUME 7, 2019
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FIGURE 3. The raw EMG data (a) and EEG data (b) of one trial of Class 5 (Right-hand extension) obtained from a representative subject.

is the cross-spectrum between Pxx(f ) and Pyy(f ). Pxy(f )

is calculated as

Pxy(f ) =
1

n

n
∑

s=1

xs(f )y
∗
s (f ), (10)

where xs(f ) is the FFT of the s-th segment of EEG at fre-

quency f , ys(f ) is the FFT of the s-th segment of EMG at

frequency f , n is the number of segments, and ∗ indicates

complex conjugation. The range of coherence is 0 to 1,

where 1 indicates a perfect linear relationship. If the

value exceeded the α% confidence limit, the coherence

was considered to be significant. The α% confidence

limit can be calculated by the following equation

CL(α) = 1− (1−
α

100
)

1
n−1 (11)

with α of 95% corresponding in this study to the

confidence limits of 0.076 (n = 39). For each trial,

totally 72 coherence values, i.e., 3 muscles × 2 EEG

channels × 12 frequencies, formed the feature vector

which was feeded into the classifier.

• Classification:

We applied the same four classifiers in Step one for

EEG-EMG coherence classification. The classification

performance and computational time were compared

and analyzed. The inputs were the feature vectors from

EEG-EMG coherence, and the output was one of the

three classes of movements in one arm, i.e., make a

left/right fist, left/right-hand extension, and left/right-

elbow flexion. All data (Class L or Class R) were sepa-

rated into two parts: 80% data as training set and 20%

data as testing set. The same 10-fold cross-validation

method in Step one was used in model training.

F. DATA ANALYSIS

In this study, accuracy was used for evaluation of

classification models, calculating by

accuracy =
TP+ TN

TP+ TN + FP+ FN
, (12)

where TP means true positive, TN means true negative, FP

means false positive and FN means false negative. Precision,

recall and F-score were used for evaluation of classification

performance of different classes. Precision shows the ratio

of predicted TPs to all predicted positives, and recall shows

the ratio of predicted TPs to all actual positives. They are
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FIGURE 4. ERD/ERS curves (left side) and grand average topographies (right side) of left arm movement (a) and right arm movement (b).

calculated by

precision =
TP

TP+ FP
and recall =

TP

TP+ FN
. (13)

As an extension of accuracy, F-score combines the precision

and recall, which is expressed as

F − score =
2× precision× recall

precision+ recall
. (14)

III. RESULTS

After experiment, trials including artifacts were excluded

according to trial exclusion process. The remaining data

were further analyzed and processed. The raw EEG data

and EMG data of one trial of Class 5 (right-hand extension)

obtained from a representative subject are shown in Figure 3.

Figure 3(a) shows 7-second raw EMG records of six muscles

in left and right arm. The subject performed right-hand exten-

sion movement, so we can see the extensor digitorum muscle

activity in right arm. Figure 3(b) shows 7-second raw EEG

records of C3 and C4 channels.

A. STEP ONE: DISTINGUISH BETWEEN LEFT

AND RIGHT ARM MOVEMENT

1) NEUROPHYSIOLOGICAL ANALYSIS OF ERD/ERS

To visualize the ERD/ERS curves of Class L and Class R,

EEG power of C3 and C4 channels within two frequency

bands (8-12 Hz and 14-30 Hz) during 0-7 s are averaged

over all trials and all subjects. The ERD/ERS curves are

calculated as a percentage of EEG power decrease/increase

relative to the reference period, and displayed in the left side

of Figure 4. The ERD/ERS curves show a strong ERD and a

closely following post-movement ERS over the contralateral

area during second 4-7 (1-4 s after cue), while a weak ERS

is observed over the ipsilateral area. Besides, ERD can be

seen in both alpha and beta frequency bands, while ERS

is more significant in beta bands. Then, the grand average

topographies of alpha and beta bands at second 4.5 (ERD)

and second 6.5 (ERS) are calculated for further analysis,

as shown in the right side of Figure 4.

Figure 5 shows examples of time-frequency maps for left

arm (Class L) and right arm (Class R) movements from

four subjects. The time-frequency maps of C3 and C4 chan-

nels which display the best ERD/ERS are illustrated. The

black lines at second 3 indicate the cue appearance. Blue

color and red color represent the power decrease (ERD pat-

tern) and power increase (ERS pattern), respectively. For S1,

S2 and S4, ERD is found around second 4-6 (1-3 s after

the cue) rather than from second 3 immediately because

of the response delay, and post-movement ERS is found

around second 6-7 when subjects stopped arm movements;

ERD is observed in both alpha and beta frequency bands

(8-30 Hz) over the contralateral sensorimotor area to the arm

movements, and ERS is observed mainly in beta frequency

band over the contralateral sensorimotor area to the arm

movements. Comparing with ERD, ERS is short in dura-

tion but highly recognizable. However, ERD and ERS are

less obvious for S3. According to the time-frequency maps,

the optimal frequency band of each subject is: 10-14 Hz for

S1, 12-16 Hz for S2, 16-22 Hz for S3 and 8-12 Hz for S4.

2) CLASSIFICATION RESULTS

For each subject, the optimal time period and frequency

band of each subject were chosen to extract features and

classify according to Figure 4 and Figure 5. Four classifiers

(LDA, MLP, Gaussian SVM and SBELM) were trained to

recognize the left arm movement or right arm movement.

Figure 6 shows the confusion matrix and average accuracies

of four classifiers over all subjects. The values of entries of

128190 VOLUME 7, 2019
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FIGURE 5. Examples of time-frequency maps for left arm (Class L) and right arm (Class R) movements from four subjects.

FIGURE 6. Confusion matrix and average accuracies of four classifiers (in %) in Step one over all subjects.

this matrix stand for average value± standard deviation. The

main diagonal and off-diagonal entries indicate the correct

classification and the incorrect classification, respectively.

SBELM and Gaussian SVM have a better classification per-

formance than LDA and MLP in Step one. SBELM achieves

a highest average classification accuracy of 88.10%±1.09%

in Step one and is slightly higher than Gaussian SVM

(86.78%±2.02%). The accuracies of right arm move-

ment (82.58%±2.74%, 84.33%±3.27%, 88.21%±3.63%

and 88.87%±4.79%, respectively) are higher than those

of left arm movement (81.79%±3.54%, 82.46%±4.81%,

85.35%±4.72% and 87.33%±3.82%, respectively) in four

classifiers. The average precisions, recalls and F-scores

of two classes of four classifiers in Step one over all

subjects are shown in Figure 7. The high precision and

recall generally mean the good performance of the classi-

fier (SBELM: average precision = 0.8811±0.0083, average

recall= 0.8810±0.0109). The average F-score of SBELM is

0.8810±0.0013.

B. STEP TWO: RECOGNIZE THE SPECIFIC

MOVEMENT OF ONE ARM

1) EEG-EMG COHERENCE ANALYSIS

After the classification result of Step one was obtained,

we knew which arm moved. For each subject, the trials with
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FIGURE 7. Average precisions, recalls and F-scores of two classes of four classifiers in Step one over all
subjects.

FIGURE 8. The EEG-EMG coherence of one trial of Class 4, Class 5 and Class 6 obtained from a representative subject.

correct classification in Step one proceeded to Step two.

The raw EEG signal and EMG signal of each trial were

filtered at 8-30 Hz. The filtered EEG signals of C3 and

C4 and the filtered EMG signals of three muscles of this arm

were extracted during second 3-7 (4-s time period after cue).

EEG-EMG coherence was calculated with a 2-Hz frequency

resolution. The data of one trial of Class 4, Class 5 and

Class 6 obtained from a representative subject are shown

in Figure 8. Coherence is considered to be significant if

the value exceeds the confidence limit (0.076 in this study).

For each class, only the coherence between C3/C4 and the

corresponding agonistic muscle in the beta band (14-30Hz) is

significant, i.e., C3/C4-flexor digitorum superficialis in Class

4 (peak value: 0.391(20Hz)/0.305(22Hz)), C3/C4-extensor

digitorum in Class 5 (peak value: 0.475(22Hz)/0.218(22Hz))

and C3/C4-biceps brachii in Class 6 (peak value:

128192 VOLUME 7, 2019
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FIGURE 9. Confusion matrices (in %) of left arm and right arm movements and average accuracies of four classifiers in step two over all subjects.

0.419(24Hz)/0.164(24Hz)), respectively. Besides, for each

class, the coherence between contralateral EEG channel (C3)

and the corresponding agonistic muscle is more significant

than the coherence between ipsilateral EEG channel (C4) and

the corresponding agonistic muscle.

2) CLASSIFICATION RESULTS

EEG-EMG coherence across two EEG channels, three

muscles and twelve frequencies was used as a feature in

classification of Step two. For each subject, four classi-

fiers were trained to classify different movements on one

arm. Figure 9 shows the confusion matrices of left hand

and right arm movements and average accuracies of four

classifiers in Step two. SBELM and Gaussian SVM have

a better classification performance than LDA and MLP in

Step two. SBELM achieves a highest average classification

accuracy of 93.33%±2.17% in Step one and is slightly

higher than Gaussian SVM (92.58%±2.51%). The accura-

cies of elbow flexion movement (Class 3: 88.34%±4.43%,

91.57%±3.96%, 95.46%±3.25% and 96.23%±4.04%,

respectively; Class 6: 90.48%±3.43%, 91.12%±5.11%,

94.53%±2.60% and 95.03%±3.94%, respectively) are

higher than those of other two movements for both sides in all

four classifiers. There is no significant different between the

accuracy of left arm movement and the accuracy of right arm

movement through t-test (p > 0.05). The average precisions,

recalls and F-scores of six classes of four classifiers in

Step two over all subjects are shown in Figure 10. SBELM

achieves the higher average precision (0.9334±0.0120) and

average recall (0.9349±0.0246) than the other three clas-

sifiers. The average F-score of SBELM is 0.9340±0.0119.

Step two does extremely well in classifying right hand exten-

sion (Class 5, F-score: 0.8955, 0.9119, 0.9403 and 0.9460,

respectively) in four classifiers. Movements such as make

a left fist (Class 1, F-score: 0.8843, 0.9024, 0.9253 and

0.9344, respectively), left elbow flexion (Class 3, F-score:

0.8808, 0.9003, 0.9370 and 0.9456, respectively) and right

elbow flexion (Class 6, F-score: 0.8924, 0.9033, 0.9268 and

0.9385, respectively) also are detected very well in four

classifiers. Combining the best classifier which achieves the

best classification performance in Step one and Step two,

we get a final accuracy of 82.22% (average accuracy using

SBELM in Step one × average accuracy using SBELM in

Step two) for this two-step single-trial classification method.

IV. DISCUSSION

By using EEG related to natural motions, we can combine

human brain with external environment, not only for healthy

users, but for patients with neuromuscular disorder. EEG is

useful to distinguish between left arm and right arm move-

ments, however, it is difficult to classify the different move-

ments on one arm. For solving this problem, we proposed a

two-step single-trial classification method in this study.
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FIGURE 10. Average precisions, recalls and F-scores of six classes of four classifiers in Step two over all
subjects.

In Step one, we used ERD/ERS patterns to distinguish

between left arm and right arm movements. We observed a

strong ERD over the contralateral area and a week ERS over

the ipsilateral area during the arm movements, and a strong

post-movement ERS when subjects stopped arm movements.

ERD can be seen in both alpha and beta frequency bands,

while ERS is more significant in beta bands. The reason

of these facts is that the underlying neuronal populations

synchrony will be low duringME orMI, resulting in an ERD;

the motor cortex networks will deactivate (inhibit) and/or

reset when the ME or MI stops (post-movement), resulting in

a short-live ERS [15], [16]. As shown in Figure 4, ERD can

be seen in both alpha and beta frequency bands (8-30 Hz),

while ERS is more significant in beta bands. As shown in

Figure 5, ERD and ERS over the contralateral and ipsilateral

sensorimotor areas were highly recognizable for S1, S2 and

S4, while they were less obvious for S3. The possible reason

is that S3 belongs to the portion of ‘‘BCI Illiteracy’’ user

(estimated 15-30%) who do not show the expected sensori-

motor rhythms [44]. Besides, the contralateral ERD pattern

were more obvious during right arm movement than during

left arm movement. This may be because all subjects were

right handed. Since the cortical control mechanisms are dif-

ferent between dominant hand and non-dominant hand, ERD

at alpha and beta frequency bands occur over the contralateral

sensorimotor area when dominant hand moves, whereas over

the bilateral sensorimotor areas when non-dominant hand

moves [45]. After extracting features fromERD/ERS patterns

by CSP, four classifiers were trained, and achieved a best

classification accuracy of 88.10%±1.09%.

After we obtained the classification result of Step one,

EEG-EMG coherence was applied to recognize the specific

movement of this arm in Step two. For each class, only

the coherence between C3/C4 and the corresponding ago-

nistic muscle in the beta band (14-30Hz) was significant,

as shown in Figure 8. This is because each movement in

this study only leads to the corresponding agonistic muscle

contraction, i.e., flexor digitorum superficialis contraction in

Class 1 and 4, extensor digitorum contraction in Class 2 and 5

and biceps brachii contraction in Class 3 and 6. During the

agonistic muscle contraction, functional coupling between

cortex and this muscle in time and frequency domains is

revealed by calculating the coherence between EEG and

EMG, but no functional coupling between cortex and other

muscles is found [26]. The differentiable EEG-EMG coher-

ence values of each class formed the feature vector and

achieved a well performance (the best average accuracy is

93.33%±2.17%) in classification of different movements on

one arm. According to Figure 9, the accuracies of elbow flex-

ion movement are higher than those of other two movements

for both sides. The possible reason is that the elbow flexion

movement has a stronger functional coupling relationship

than the other two movements, resulting in the better EEG-

EMG coherence features for classification.

In our experiment, we compared four classifiers in Step one

and Step two. Gaussian SVM and SBELM achieved the better

classification performance than LDAandMLP. This probably

is due to their regularization property and their immunity to

the curse-of-dimensionality [41]. SBELM achieved a high-

est average classification accuracy and was slightly higher

than Gaussian SVM in two steps, which leaded to the best

final accuracy of 82.22%. This may be because SBELM is

able to automatically exclude redundant hidden neurons and

derive a compact model with high generalization capability
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TABLE 2. Average computational time of two steps and total time of four
classifiers (s) over all subjects.

for further improving EEG classification [42]. We also com-

pared the computational time of four classifiers during model

training in Step one and Step two. This was done under

MATLAB R2017a on a Windows laptop with 2.5 GHz CPU.

As shown in Table 2, LDA, MLP and SBELM (total time:

5.41s±0.39s, 6.58s±0.49s and 4.05s±0.44s, respectively)

took much shorter time than Gaussian SVM (total time:

40.64s±1.12s). Overall, SBELM was the optimal classifier

in our study because of the high classification performance

and computational efficiency.

The classification performance using EEG-EMG

coherence to classify different movements on one arm is

much better than that using only EEG features in some exist-

ing studies. Quandt et al. [25] used spatiotemporal patterns

in the time series of EEG to classify four finger movements

(press button with four different fingers) in one hand, only

resulting in an average accuracy of 43% over all subjects.

Most of these research mainly focused on the feature opti-

mization and classification algorithms of EEG. In some new

feature extraction methods, filter bank strategy can design

filter banks to decompose MI EEG into different frequency

bands and obtain the optimal frequency band through feature

selection method [46]; temporally constrained sparse group

spatial patterns (TSGSP) can simultaneously optimize filter

bands and time window within CSP to further boost clas-

sification accuracy of MI EEG [47]; deep learning method,

like convolutional neural network (CNN), directly faces to

the raw signal and helps to extract the most discriminant

features (high-level features) for MI EEG classification

based on receptive field and weight sharing [48]. Some

new classification methods, like sparse representation-based

classification (SRC) scheme and sparse group representation

model (SGRM), outperform the conventional classifiers and

improve the efficiency of MI-based BCI [49]. The effective-

ness of these method have been verified, but they cannot

fundamentally improve the classification performance of

different movements on one arm. The reason is that non-

invasive EEG is a signal with low signal-to-noise ratio and

limited spatiotemporal resolution, and may be insufficient

to recognize the weak changes of different movements on

one arm. Therefore, an additional input information (EMG)

was applied in this study. According to the classification

performance of Step two, we verified that using EEG-EMG

coherence can classify different movements on one arm effec-

tively. However, these feature optimization and classification

algorisms may affect the classification performance of our

proposed method. The other existing studies on classification

of different movements on one arm used EMG or/and motion

information (angle, acceleration, etc.). One advantage of our

method in comparison with these methods is that subjects

were not required to perform movements in a fixed veloc-

ity or fixed force (but did it naturally), because the magnitude

of force in mild level and moderate level will not affect

the EEG-EMG coherence [50]. This fact lets our method be

applicable in muscle weakness or stroke patients who cannot

provide the completed EMG signals or motion information

but can still move their arms. It is also the reason why we

don’t use only EMG in our study.

EEG artifacts of blinks, eye movements or body move-

ments may affect BMI applications seriously [51]. During

the ME experiment, a camera was used to observe subjects

to ensure that they did not make unnecessary movements

(eye or tongue movements) and correct movements were

performed. In addition, after the experiment, we identified

all trials offline and excluded the trials including the EEG

and EMG artifacts from the following analyses. These two

operations ensured the data used for analysis without the

artifact contamination.

Previous studies proved that muscle fatigue can affect

EMG signals seriously [52]. To avoid this, subjects had a

rest of 5-10 minutes between every 60 trials in our experi-

ment. Furthermore, subjective stop and objective observation

were applied to ensure fatigue-free data. Although the effect

of muscle fatigue is not our focus of this paper, it is still

necessary to do the fatigue test.

Our future work covers the following two aspects to

address limitations in this study: (1) feature optimiza-

tion/selection and classification algorisms are not our focus

of this paper, but these methods may affect the classification

performance. Some new feature extraction methods (like fil-

ter bank strategy, TSGSP and deep learning), and some new

classifiers (like SRC scheme and SGRM) will be investigated

further. (2) The current results demonstrate that our method

are applicable to the classification of different movements

on one arm for healthy and young adults, but BMI is also

applied in patients affected by motor disabilities and various

age groups. Therefore, an extensive testing on these people

will be planned in our future studies.

V. CONCLUSION

In summary, our findings help solve an important problem of

different movements classification on one arm. A two-step

single-trial classification method is proposed to recognize

three movements (make a fist, hand extension and elbow

flexion) of left and right arms: (1) distinguish between left

hand and right arm movements by decoding ERD/ERS and

(2) recognize the specific movement of this arm using EEG-

EMG coherence as features. The classification results show

the accuracy of Step one and Step two is 88.10% and 93.33%,

respectively. This proposed method achieves a total accuracy

of 82.22%. This study demonstrates that our method is effec-

tive to classify different movements on one arm, and provides

the theoretic basis and technical support for the practical

development of BMI-based motor restoration applications.
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