
This is a repository copy of Adaptive neural network tracking control for underactuated 
systems with matched and mismatched disturbances.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/155129/

Version: Published Version

Article:

Liu, Pengcheng orcid.org/0000-0003-0677-4421, Yu, Hongnian and Cang, Shuang (2019) 
Adaptive neural network tracking control for underactuated systems with matched and 
mismatched disturbances. Nonlinear Dynamics. pp. 1447-1464. 

https://doi.org/10.1007/s11071-019-05170-8

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Nonlinear Dyn (2019) 98:1447–1464

https://doi.org/10.1007/s11071-019-05170-8

ORIGINAL PAPER

Adaptive neural network tracking control for underactuated

systems with matched and mismatched disturbances

Pengcheng Liu · Hongnian Yu ·

Shuang Cang

Received: 27 April 2018 / Accepted: 27 July 2019 / Published online: 8 October 2019

© The Author(s) 2019

Abstract This paper studies neural network-based

tracking control of underactuated systems with

unknown parameters and with matched and mis-

matched disturbances. Novel adaptive control schemes

are proposed with the utilization of multi-layer neu-

ral networks, adaptive control and variable structure

strategies to cope with the uncertainties containing

approximation errors, unknown base parameters and

time-varying matched and mismatched external distur-

bances. Novel auxiliary control variables are designed

to establish the controllability of the non-collocated

subset of the underactuated systems. The approxima-

tion errors and the matched and mismatched external

disturbances are efficiently counteracted by appropri-

ate design of robust compensators. Stability and con-

vergence of the time-varying reference trajectory are

shown in the sense of Lyapunov. The parameter updat-

ing laws for the designed control schemes are derived

using the projection approach to reduce the tracking

error as small as desired. Unknown dynamics of the
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non-collocated subset is approximated through neural

networks within a local region. Finally, simulation stud-

ies on an underactuated manipulator and an underac-

tuated vibro-driven system are conducted to verify the

effectiveness of the proposed control schemes.
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1 Introduction

Underactuated mechanical systems (UMSs) are rapidly

growing research fields that combine control and

robotics societies [1–8]. They have extensive appli-

cations such as UAVs, underground vehicles, space-

craft, humanoid robots and vibro-driven robots [9–12].

UMSs have more degrees-of-freedom (DOF) n than

independent control inputs m; thus, (n-m) DOF are not

directly controllable, which characterize the nature of

underactuation. This nature is made possible for the

UMSs to undertake complicated tasks with a reduced

number of actuators that in turn implies the reduc-

tion in weight and energy consumption. Challenge that

faced by control of underactuated systems is the exis-

tence of underactuation and some undesirable prop-

erties such as being in a non-minimum phase and/or

possessing an undetermined relative degree, which

makes conventional approaches not directly applica-
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ble, particularly for the issue of trajectory tracking

control. Design of the control schemes for UMSs

is intractable because of the internal dynamics and

non-holonomic property, and they are not feedback

linearizable [13]. Besides, the uncertainties in sys-

tem model, as well as the matched and mismatched

disturbances, make control of UMSs more challeng-

ing.

The complexity of control problem related to UMSs

can be reduced when the objective is merely to stabi-

lize a subset of the UMSs’ DOF. In the literature, a

great number of existing control system designs for

UMSs explore the concept of linearization through

partial feedback [14–18]. Linear systems can be uti-

lized to capture the underactuated dynamics within

a local range; however, global stabilization of the

underactuated dynamics is still unavailable under this

approach. Other prevailing techniques such as inverse

dynamics [19,20], sliding mode/variable structure [14,

21,22], energy/passivity-based approaches [17,23,24]

have been extensively exploited. Furthermore, practical

requirements are raised from the current applications,

in which the adaptability of UMSs is extremely cru-

cial when facing environments with uncertainties. For

instance, microrobotic systems work across vulnerable

media in restricted space for minimally invasive sens-

ing and risk intervention in pipeline inspection, endo-

scopic assistance, underwater exploration, etc. How-

ever, an exact dynamic model is intractable to obtain

due to the presence of frictions, unknown disturbances,

time-varying parameters, etc. As a result, adaptive con-

trol schemes for generic UMSs have attracted great

attentions. Considering uncertainties and ocean distur-

bances, a control system using leader–follower forma-

tion was studied in [25] for underactuated autonomous

surface vehicles. Dynamic surface control technique

and neural networks (NNs) were used to construct

the control scheme. A hierarchical sliding mode con-

trol system with adaptive and fuzzy inclusions was

studied for uncertain UMSs in [14], where differ-

ent layers of sliding surface are constructed to cope

with the uncertainties and disturbances and fuzzy

models are designed to approximate the nonlineari-

ties.

It is evident that description of dynamic couplings

between the actuated and passive subsystems of UMSs

is typically highly nonlinear. Therefore, it is plau-

sible to consider the employment of approximation

approaches to map the coupling between the torques

applied at the actuated subsystem and the resulting

accelerations of the passive subsystem, with the intent

of achieving control globally. As such, in this paper,

nonlinear control approach is investigated by employ-

ing multi-layer NNs. NNs have versatile features such

as learning capability mapping and parallel process-

ing. An attractive feature of NNs is that their synaptic

weights are online updated without any offline learn-

ing phases. NNs have the property of robustness; thus,

they have been widely applied in various robotic sys-

tems to address the stabilization problem [26–28]. The

issue of tracking control of UMSs based on NNs has

attracted extensive attentions. Optimal motion control

using NNs and stochastic adaptive concepts was stud-

ied towards the Pendubot in [29] and a WIP system in

[30]. For UMSs with full-state constraints containing

a Moore–Penrose inverse term, an adaptive NN con-

trol system was proposed in [31]. In [31], the authors

developed two decentralized output feedback control

systems based on adaptive NN to tackle with immeasur-

able states and unknown time delays in UMSs. Towards

a wheeled mobile robot that is non-holonomic with

unknown parameters and uncertain dynamics, an adap-

tive tracking control scheme was presented in [32] to

tune the kinematic controller gain online and minimize

the tracking error in velocity. A bio-inspired tracking

control scheme based on NNs was developed in [33]

for an underactuated surface vessel with unknown sys-

tem dynamics. A cart–pendulum system with unknown

dynamics was studied in [34], and a trajectory track-

ing control scheme of the pendulum subsystem based

on adaptive NN was designed instead of considering

the position of the cart. In [35], an output feedback

control system based on NNs was proposed for track-

ing control of a spherical inverted pendulum. A com-

bined PID and neural network compensation approach

was proposed in [36] to control a wheel-driven mobile

pendulum system, and the results were experimen-

tally analysed. From the literature, it is noted that rela-

tively few studies have addressed the issue of tracking

control for UMSs, particularly when the disturbance

exists in the non-collocated subsystem, which is mis-

matched with the control actions. Also, it is noted that

very few reported studies towards this topic have pre-

sented rigorous analysis of trajectories of the closed-

loop system for UMSs. Therefore, trajectory tracking

control for UMSs with uncertainties and disturbances

is still an open problem and requires in-depth investi-

gations.
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Through the utilization of the unique physical prop-

erties of the UMSs, the overall underactuated system

breaks down into two subsystems, i.e. a fully actu-

ated subsystem and an unactuated (passive) subsys-

tem. Radial basis neural network (RBFNN) has sim-

ple structure and fast convergence rate, and it can

overcome the local minimum problem; therefore, it

is utilized as a nonlinear function approximator of

uncertain dynamics of the unactuated (passive) sub-

system of the UMSs. The NN control has the abil-

ity of universal approximation, and it has been thor-

oughly studied on discrete-time system [37–40] and

continuous-time systems [41–44]. There are very lim-

ited studies using NN to approximate the system

dynamics of UMSs. In this paper, we develop NN-

based adaptive tracking control schemes to cope with

the internal uncertain dynamics and external distur-

bances, and auxiliary control variables are explic-

itly designed to close the unactuated feedback loops.

RBFNN is adopted to approximate the mismatched

system uncertainties, and the adaptive control algo-

rithm is constructed to estimate the NNs approximation

error and the bounded mismatched disturbance. The

combination of NN approximation, variable structure

control and adaptive approach makes the constructed

new controller more robust, and as such, errors result-

ing from trajectory tracking, parameter uncertainties,

mismatched external disturbances and NN approxi-

mation are counteracted. Theoretical background of

these methods is presented with rigorous analysis and

developed in detail for some examples. The schemes

promote the utilization of linear filters in the control

input such that the system robustness is improved.

Stability of the system dynamics and convergence

of the time-varying reference trajectories are demon-

strated using Lyapunov analysis. In addition, adapta-

tion laws for the NNs weights of the proposed con-

trol systems are derived from the above procedure. The

main contributions of this paper are summarized as fol-

lows:

1. Stabilization for fully actuated systems is well

established in terms of the time-varying trajectories

through adaptive control. However, its application

and extension to the UMSs are not straightforward.

This paper proposes the adaptive control schemes to

encompass the conventional approaches and stabi-

lize the UMSs’ state space through design of auxil-

iary control variables that contain NN approximator

and robust compensator.

2. The parametric uncertainties and the matched and

mismatched disturbances are considered in the

design of the adaptive control schemes, which fea-

ture a generic model for the studies on underac-

tuated systems. It is noted that the mismatched

disturbances have been neglected in most of the

existing approaches for the tracking control of

UMSs.

3. Employing the adaptive control approach, com-

bined with variable structure and NNs, exact values

of the system base parameters are not required to

be known a priori.

4. Designing robust compensators to counteract the

matched and mismatched disturbances, and func-

tion approximation error of NNs and nonlinear

frictions can reduce the tracking error as small as

desired in finite time through selecting appropriate

parameters for the controller.

The rest of this paper is organized as follows.

Notations, assumptions, system dynamic model for

UMSs and preliminaries are presented in Sect. 2.

Section 3 gives the main theoretical results con-

cerning the adaptive NN tracking control systems

design for a UMSs. Validations of the effective-

ness of the proposed approaches are presented in

Sect. 4 through simulation studies on an underactu-

ated manipulator and a vibro-driven mobile system.

Finally, concluding remarks and perspectives are given

in Sect. 5.

2 Preliminaries and problem description

2.1 Notations

Let ‖.‖ denote any suitable vector Euclidean norm.

Specifically, ‖.‖p represents the p-norm of a given

vector. The Frobenius norm of the given matrix H =

[hi j ] ∈ Rn×m is defined as ‖H‖2
F = T r(H T H) =

T r(H H T ) =
∑

i, j h2
i j with T r(.) denoting the trace

operator. The Frobenius norm is associated with the

2-norm in a manner that ‖H x‖2 ≤ ‖H‖F‖x‖2 with

H ∈ Rn×m and x ∈ Rm . The trace operator has the

property of AT B = T r(ABT ) with ∀A, B ∈ Rn .

λmin(.) and λmax(.) are, respectively, the minimum and

maximum eigenvalue of the given matrix. In represents

the identity matrix of dimension n × n.
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2.2 Dynamic model and properties

The dynamics of n-DOF UMSs can be expressed in

the generalized coordinates via the Euler–Lagrangian’s

approach, given by

D (q, α) q̈ + C (q, q̇, α) q̇ + G (q, α) + Fv (α) q̇

+ Fc (q, q̇, α) + τd = B (q) τ (1)

where q = [q1, ... , qn]T ∈ Rn describes the vec-

tor of generalized configurations, α ∈ Rp is the vec-

tor of unknown parameters of the underactuated sys-

tem, mainly including the initial parameters and pos-

sible loading parameters (p indicates the number of

uncertain parameters), D (q, α) ∈ Rn×n is the inertial

matrix, C (q, q̇, α) ∈ Rn×n represents the centripetal

and Coriolis matrix, G (q, α) ∈ Rn denotes the grav-

itational torque/force, Fv (α) ∈ Rn×n is the viscous

friction coefficients, Fc(q, q̇, α) ∈ Rn models the non-

linear friction torques, τd denotes the unknown distur-

bances and unmodelled dynamics which are bounded,

B (q) ∈ Rn×(n−m) represents the input transformation

matrix and τ ∈ Rn−m is the vector of control inputs to

be constructed to obtain specific control objectives.

The Lagrangian dynamic model of the UMSs

described by (1) has the following beneficial properties

[6,45,46] that are employed in the design and analysis

of the control schemes in this paper:

Property 1 The inertia matrix D (q, α) is symmetric

and positive definite, i.e. D (q, α) = DT (q, α); it is

uniformly positive definite and has upper and lower

boundaries, which implies

0 < λmin (α) ‖x‖2 ≤ xT D (q, α) x ≤ λmax (α) ‖x‖2

< +∞,∀x ∈ R
n−m (2)

Property 2 The centripetal and Coriolis term

C (q, q̇, α) q̇ is quadratic in the generalized velocity

q̇ and satisfies

‖C (q, q̇, α) q̇‖ ≤ λ3 (α) ‖q̇‖2 (3)

where λ3 (α) is a bounded scalar constant.

Property 3 The above matrixes D (q, α) and

C (q, q̇, α) have the following skew-symmetric

interconnection

xT
[

Ḋ (q, α) − 2C (q, q̇, α)
]

x = 0,∀x ∈ R
n−m (4)

under an appropriate definition of C (q, q̇, α). This

property is a matrix version of energy conservation.

Property 4 The gravitational torque/force G (q, α) is

bounded and satisfies

‖G (q, α)‖ ≤ λ4 (α) (5)

where λ4 (α) is a bounded constant.

Property 5 The dynamic model (1) can be rewritten in

a linear form with respect to an appropriate selection of

the system’s initial parameters and load parameters α.

Furthermore, there exist a regressor matrix Y (q, q̇, q̈)

and a vector Y0(q, q̇, q̈) containing known functions,

given as follows:

D (q, α) q̈ + C (q, q̇, α) q̇ + G (q, α) + Fv (α) q̇

+ Fc (q, q̇, α) = Y (q, q̇, q̈) α + Y0(q, q̇, q̈) (6)

where Y (.) ∈ R(n−m)×p is the regressor matrix con-

taining known functions.

Remark 1 Based on Property 5, we introduce α̂ be the

time-varying estimation of α, and define D̂, Ĉ , Ĝ, F̂v

and F̂c be the corresponding affine matrices, respec-

tively, estimated from D, C , G, Fv and Fc through sub-

stitution α̂ for the real α. Then, the linear parametriz-

ability is given by

D̃ (q, α) q̈ + C̃ (q, q̇, α) ̺ + G̃ (q, α)

+F̃v (α) ̺ + F̃c (q, q̇, α)

= Y (q, q̇, ̺, q̈) α̃ + Y0(q, q̇, ̺, q̈) (7)

where α̃(t) = α̂(t) − α is the parameter estimation

error, ̺ ∈ Rn is an arbitrary vector and D̃, C̃ , G̃, F̃v , F̃c

represent the corresponding affine matrices of estima-

tion errors in the presence of the parameter estimation

error α̃.

Remark 2 Concretely, the unmodelled friction torque/

force F in (1) can be partitioned into two aspects as

F = Fv (α) q̇ + Fc(q, q̇, α) (8)

123



Adaptive neural network tracking control 1451

z1

z2

zn

φk-1(•)

φ1(•)

φ2(•)

φk(•)

Σ

Σ

Σ

Input Layer Neuron Layer Output Layer

W

χ1(z)

χ2(z)

χn(z)

Fig. 1 Structure of the RBFNN

where Fv (α) q̇ = [Fv1 (α) q̇1, Fv2 (α) q̇2, ... , Fvn (α)

q̇n]T is the viscous friction torque describing the

linear part and Fc (q, q̇, α) = [Fc1 (q1, q̇1, α) , Fc2

(q2, q̇2, α) , ... , Fcn (qn, q̇n, α)]T denotes the nonlin-

ear friction torques.

Definition 1 [47] UMSs’ DOF contains two sub-

sets, including the collocated subset whose cardinality

equals the number of control inputs and encompasses

the actuated DOF, and the non-collocated subset con-

tains the rest of the DOF which are passive.

Assumption 1 It is assumed in this paper that the

matched and mismatched external disturbances are

bounded.

Assumption 2 It is assumed that each subsystem is

equipped with encoder and tachometer for the position

and velocity measurement.

2.3 RBFNN approximation

The structure of RBFNN is presented in Fig. 1. The

universal approximation capability of RBFNN towards

any continuous nonlinear function χ (z) : Rn → R

over a compact set �z has been well established, which

can be expressed as

χ (z) = W ∗T φ (z) + ε (z) ∀z ∈ �z ⊂ R
n,

‖ε (z)‖ ≤ εN (9)

where z ∈ �z ⊂ Rn denotes the input vector of

dimension n, χ (z) is the unknown function to be

approximated, W ∗ = [W ∗
1 , W ∗

2 , ... , W ∗
k ]T ∈ Rk is the

bounded ideal synaptic weight vector with dimension

(or the NN node number) k > 1 (i.e.∀ positive con-

stant WN such that
∥

∥W ∗
k

∥

∥ ≤ WN and tr
{

W ∗T

k W ∗
k

}

≤

WN ), ε (z) ∈ R is a bounded approximation error

over the compact set, εN is an upper bound (posi-

tive constant) of the approximation error which sat-

isfies εN = sup
∥

∥χ̂ (z, W ∗) − χ (z)
∥

∥ and φ (z) =

[φ1 (z) , φ2 (z) , ... , φk (z)]T is the NN basis function

which is conventionally chosen as Gaussian functions

as

φi (z) = exp

(

−
‖z − Ci‖

2

2b2
i

)

, i = 1, 2, ... , k (10)

where vector Ci and bi represent the centre and the

width of the i-th receptive field.

The Gaussian function is chosen as NN basis func-

tion; it is well known that given a sufficient number

of NNs nodes and properly adopted centres and the

widths of the node, RBFNN is able to approximate any

unknown nonlinearities to arbitrarily close to a compact

set with any desired accuracy. Note that the approxi-

mation error ε (z) decreases along with the increase in

the number of NN node k.

It is noted that the bounded ideal weight matrix W ∗ is

merely a quantity utilized for analysis purposes, whilst

in practical control applications, the estimate Ŵ of W ∗

is utilized for practical approximation of unknown non-

linear function χ (z). As such, the estimation of χ (z)

is represented by

χ̂ (z) = Ŵ T φ (z) (11)

Based on the NN defined by (11), approximation error

of the nonlinear function can be described as

χ (z) − χ̂ (z) = W̃ T φ (z) + ε (z) (12)

where W̃ = W ∗ − Ŵ .

Assumption 3 χ̂ (z, W ∗) is the output of the NNs and

continuous; there exists a sufficient small positive con-

stant such that

max
∥

∥χ̂
(

z, W ∗
)

− χ (z)
∥

∥ ≤ ε0 (13)
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where W ∗ is typically defined as the optimal value of W

such that the approximation error ε (z) could be mini-

mized for all z ∈ �z as

W ∗ := arg minW∈Rk

{

sup z∈�z
‖χ (z) − W ∗T φ (z)‖

}

(14)

3 Control system design and stability analysis

It is assumed that for system (1), there are only m con-

trol inputs that are equipped with actuators; then, the

generalized coordinate vector q can be partitioned into

collocated and non-collocated vectors as

q:=[qc qn]T (15)

where qc ∈ Rm and qn ∈ Rn−m denote the actuated and

unactuated coordinate vector, respectively. The sub-

scripts “c” and “n,” respectively, indicate collocated

and non-collocated subsets.

Without loss of generality, the underactuated system

(1) can be rewritten into a partitioned form as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Dcc (q, α) q̈c + Dcn (q, α) q̈n + Ccc (q, q̇, α) q̇c

+ Ccn (q, q̇, α) q̇n + Gc (q, α) + Fvc (α) q̇c

+ Fcc (q, q̇, α) + τdc = τ

Dnc (q, α) q̈c + Dnn (q, α) q̈n + Cnc (q, q̇, α) q̇c

+ Cnn (q, q̇, α) q̇n + Gn (q, α)

+ Fvn (α) q̇n + Fcn (q, q̇, α) + τdn = 0

(16)

where τdc and τdn denote the bounded unknown dis-

turbances and unmodelled dynamics to the collocated

and non-collocated subsets, respectively.

Let the reference trajectories for the collocated and

non-collocated subsets be descried by the vector-valued

functions ‖qcd‖∞ ≤ ϑ1 and ‖qnd‖∞ ≤ ϑ2, respec-

tively, and assume that these functions are bounded in

norm and uniformly continuous on R+, and homoge-

nously on the same set, its first- and second-order

derivatives are bounded, well defined and uniformly

continuous. Introduce the trajectory tracking error

as

q̃c = qc − qcd , q̃n = qn − qnd (17)

which is to be stabilized to zero without the knowledge

of the system parametersα.ϑ1 andϑ2 are positive upper

bounds of the desired reference trajectories. Noting that

the design of ϑ1 and ϑ2 has to satisfy the zero dynamics

based on the non-holonomic dynamics, we have

Dnc (q, α) ϑ̈1 + Dnn (q, α) ϑ̈2 + Cnc (q, q̇, α) ϑ̇1

+ Cnn (q, q̇, α) ϑ̇2 + Gn (q, α)

+ Fvn (α) ϑ̇2 + Fcn (q, q̇, α) + τdn = 0 (18)

In the following, auxiliary kinematic vector variables

̺ = [̺c ̺n]
T and δ = [δc δn]

T are defined as

̺c = q̇cd − �cq̃c,

̺n = q̇nd − �n q̃n (19)

δc = q̇c − ̺c = ˙̃qc + �cq̃c,

δn = q̇n − ̺n = ˙̃qn + �n q̃n (20)

where ̺c, δc ∈ Rm and ̺n, δn ∈ Rn−m . δ denotes the

filtered error signal and describes the measure of track-

ing accuracy, ̺ is referred to as vector of the reference

trajectory, � = diag[�c Im×m, �n I(n−m)×(n−m)] with

�c and �n be positive constants selected by design-

ers. Ii×i denotes i × i identity matrix. It is noted that

the error dynamics of the underactuated systems can be

obtained by firstly introducing the tracking error from

collocated and non-collocated loops and then filtering

out the error signals. In this regard, we can encompass

the conventional adaptive control approaches and sta-

bilize the state space of underactuated systems. The

choice of �c > 0 and �n>0 guarantees that (20) is an

exponentially stable system for q. Therefore, the tra-

jectory q converges to an adjacent of qd exponentially

fast as long as the control system drives δ to an adjacent

of zero.

Applying the defined variables in the system dynam-

ics (17), we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Dcc (q, α)
(

δ̇c + ˙̺c

)

+ Dcn (q, α)
(

δ̇n + ˙̺n

)

+ Ccc (q, q̇, α) (δc + ̺c) + Ccn (q, q̇, α) (δn

+ ̺n) + Gc (q, α) + Fvc (α) q̇c + Fcc (q, q̇, α)

+ τdc = τ

Dnc (q, α)
(

δ̇c + ˙̺c

)

+ Dnn (q, α)
(

δ̇n + ˙̺n

)

+ Cnc (q, q̇, α) (δc+̺c)+Cnn (q, q̇, α) (δn +̺n)

+ Gn (q, α)+Fvn (α) q̇n +Fcn (q, q̇, α)+τdn = 0

(21)
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The corresponding lumped error equation can be

yielded as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Dcc (q, α) δ̇c + Dcn (q, α) δ̇n + Ccc (q, q̇, α) δc

+ Ccn (q, q̇, α) δn + τdc = τ

− Yc(q, q̇, ˙̺c, ˙̺n, ̺c, ̺n)αc

Dnc (q, α) δ̇c + Dnn (q, α) δ̇n + Cnc (q, q̇, α) δc

+ Cnn (q, q̇, α) δn + τdn = −χ (z)

(22)

where Yc (q, q̇, ˙̺c, ˙̺n, ̺c, ̺n) αc = Dcc (q, α) ˙̺c +

Dcn (q, α) ˙̺n + Ccc (q, q̇, α) ̺c + Ccn (q, q̇, α) ̺n +

Gc (q, α) + Fvc (α) q̇c + Fcc(q, q̇, α), χ (z) =

Dnc (q, α) ˙̺c + Dnn (q, α) ˙̺n + Cnc (q, q̇, α) ̺c +

Cnn (q, q̇, α) ̺n+Gn (q, α)+Fvn (α) q̇n+Fcn(q, q̇, α),

and αc = α̂c − α̃c, αn = α̂n − α̃n . The input χ (z) is

adopted as z = [q̃T , ˙̃q
T
, qT

d , q̇T
d , q̈T

d ].

The estimation of nonlinear function χ (z) =

−Yn (q, q̇, ˙̺c, ˙̺n, ̺c, ̺n) αn is expressed as

χ̂ (z) = Ŵ T φ (z) (23)

where Ŵ is the NN adaptation law, φ (z) is the basis

function.

Accordingly, (22) evolves to the following form

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Dcc (q, α) δ̇c + Dcn (q, α) δ̇n + Ccc (q, q̇, α) δc

+ Ccn (q, q̇, α) δn + τdc = τ

− Yc(q, q̇, ˙̺c, ˙̺n, ̺c, ̺n)αc

Dnc (q, α) δ̇c + Dnn (q, α) δ̇n + Cnc (q, q̇, α) δc

+ Cnn (q, q̇, α) δn + τdn = Ŵ T φ + W̃ T φ + ε

(24)

where W̃ = W ∗ − Ŵ .

Concretely, with these derivations, the adaptive con-

trol problem for underactuated systems can be formu-

lated as: given the reference trajectories qd ∈ Rn , find-

ing a nonlinear control law for τ such that for any

q(0) ∈ Rn subjecting to parameter uncertainty and

external matched and mismatched disturbances, the

tracking error q̃ and its derivative converge to zero in

finite time as t → ∞.

The following theorem presents NNs-based control

schemes that ensure the convergence of the closed-loop

signals.

Theorem 1 Consider the dynamic properties, assump-

tions and definitions, and apply the following control

laws to the uncertain underactuated system (24)

τ = τc + τn (25a)

τc = Ycα̂c − K1δc − ξ,

τn = − sgn (δc) ‖δn‖ |η| − K2sgn (δc) ‖δn‖ (25b)

where the Adaptation Algorithm 1 for the collocated

subsystem is designed as

˙̂αc = −ŴYcδc (25c)

and the auxiliary input η in (25b) is constructed as

η̇ = η
1

2n+1

(

−K3 ‖δn‖2 − ‖δn‖ Ŵ T φ + δT
n ζ
)

(25d)

with robust compensator ζ for the non-collocated sub-

system designed as

ζ = −
δn

‖δn‖ + μ
κ (25e)

and its adaptation law

κ̇ =
‖δn‖2

‖δn‖ + μ
(25f)

where K1 ∈ Rm×m , K2, K3 ∈ R(n−m)×(n−m) are

diagonal, constant positive definite matrixes and Ŵ ∈

Rp×p are positive definite matrixes. ξ and ζ are aux-

iliary robust compensators designed later for conve-

nience of stability analysis of the closed-loop system,

and they are designed to compensate for matched and

mismatched disturbances, and function approximation

error of NNs and nonlinear frictions. μ > 0 is selected

in a manner that
∫∞

0 μ dt < ∞. Then, the following

conclusions hold:

(1) tr
{

Ŵ T Ŵ
}

≤ WN holds.

(2) The control objective of global asymptotically sta-

bilization can be achieved;

(3) All signals within the closed-loop system are

bounded, and the trajectory tracking errors q̃ and
˙̃q will converge to zero asymptotically.

Proof Consider a candidate Lyapunov function as fol-

lows

V =
1

2
δT Dδ +

1

2
α̃T

c Ŵ−1α̃c +
1

2
tr
{

W̃ T ϒ−1W̃
}

+
2n + 1

2n
η

2n
2n+1 +

1

2
(κ − εT )2 (26)
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where εT ≥ ‖ε − τdn‖ denotes the upper bound of the

mismatched disturbance and approximation error.

Differentiating both sides of (26) and applying the

control laws (25) yield

V̇ = δT

([

τ − Ycαc

W T φ + ε

]

− τd

)

+ ˙̂αT
c Ŵ−1α̃c

+ tr{W̃ T ϒ−1 ˙̃
W } + (κ − εT )κ̇ + η

−1
2n+1 η̇

=
[

δT
c δT

n

]

[

−Ycα̃c − K1δc − sgn (δc) ‖δn‖ |η| − ξ − K2sgn (δc) ‖δn‖

W T φ + ε

]

− δT τd + ˙̂αT
c Ŵ−1α̃c + tr

{

W̃ T ϒ−1 ˙̃
W
}

+ (κ − εT )κ̇ + η
−1

2n+1 η̇

= −δT
c K1δc − δT

c K2sgn (δc) ‖δn‖ − δT
c ξ

− δT
c sgn (δc) ‖δn‖ |η| − δT τd + δT

n (W T φ + ε)

+ tr{W̃ T ϒ−1 ˙̃
W } + (κ − εT )κ̇ + η

−1
2n+1 η̇

= −δT
c K1δc − K2 ‖δc‖ ‖δn‖ − ‖δc‖ ‖δn‖ |η|

+ δT
n ε + δT

n W T φ − δT
c ξ − δT τd + tr

{

W̃ T ϒ−1 ˙̃
W
}

+ (κ − εT )κ̇ + η
−1

2n+1 η̇

= −δT
c K1δc − K2 ‖δc‖ ‖δn‖ − ‖δc‖ ‖δn‖ |η|

− δT
c ξ − δT τd + δT

n ε + δT
n W T φ + tr

{

W̃ T ϒ−1 ˙̃
W
}

− K3 ‖δn‖2 + (κ − εT )κ̇ − ‖δn‖ Ŵ T φ − δT
n ζ

= −δT
c K1δc − K2 ‖δc‖ ‖δn‖ − ‖δc‖ ‖δn‖ |η|

+ δT
n (ε − τdn) − δT

c ξ − δT
c τdc − K3 ‖δn‖2

−
‖δn‖2

‖δn‖ + μ
κ + (κ − εT )κ̇

+ tr
{

W̃ T ϒ−1(
˙̃

W + ϒδT
n φ)

}

≤ − δT
c K1δc − K2 ‖δc‖ ‖δn‖ − ‖δc‖ ‖δn‖ |η|

+ ‖δn‖ εT − δT
c ξ − δT

c τdc − K3 ‖δn‖2 −
‖δn‖2

‖δn‖ + μ
κ (27)

+ (κ − εT )κ̇ + tr
{

W̃ T ϒ−1(
˙̃

W + ϒδT
n φ)

}

⊓⊔

Towards the parameter drifting problem, the neural

weight adaptation law for Ŵ is constructed based on

the projection algorithm, given by

˙̂
W = −

˙̃
W =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ϒφδT
n −

δT
n Ŵ T ϒφŴ

WN
, i f tr

{

Ŵ T Ŵ
}

= WN and δT
n Ŵ T φ ≤ 0;

ϒφδT
n , i f tr

{

Ŵ T Ŵ
}

< WN or

i f tr
{

Ŵ T Ŵ
}

= WN and

δT
n Ŵ T φ > 0.

(28)

Corollary 1 Let Vtr1 � tr
{

Ŵ T Ŵ
}

and Vtr2 �

tr
{

W̃ T Υ −1(
˙̃

W + Υ δT
n φ)

}

and apply weight adapta-

tion law (28), then the following results hold for the

boundedness of Ŵ

(1) Vtr1 ≤ WN (29)

(2) Vtr2 ≤ 0 (30)

Proof (1) Recalling (28), it is evident that

(a) If Vtr1 = WN and δT
n Ŵ T φ > 0,

V̇tr1 = 2tr
{

Ŵ T ˙̂
W
}

= 2tr
{

Ŵ T ϒφδT
n

}

−

2δT
n Ŵ T ϒφ = 0.

(b) If Vtr1 = WN and δT
n Ŵ T φ ≤ 0, V̇tr1 =

2tr
{

Ŵ T ϒφδT
n

}

< 0.

(c) If Vtr1 < WN , the result 1) holds by itself.

(2) Adopting
˙̂

W in (28), it is apparent that

(a) If Vtr1 = WN and δT
n Ŵ T ϒφ > 0,

Vtr2 =
δT

n Ŵ T ϒφ

WN

tr
{

Ŵ T Ŵ
}

≤
δT

n Ŵ T ϒφ

WN

(

1

2
tr
{

W ∗T

W ∗
}

−
1

2
WN

)

≤ 0

(b) If
˙̂

W = ϒφδT
n , we have Vtr2 = 0. This com-

pletes the proof of Corollary 1. ⊓⊔

Substituting (30) into (27), the time derivative of

Lyapunov candidate function becomes

V̇ ≤ −δT
c K1δc − ‖δc‖ ‖δn‖ |η| − K2 ‖δc‖ ‖δn‖ − δT

c ξ

− δT
c τdc + ‖δn‖ εT

−
‖δn‖2

‖δn‖ + μ
κ − K3 ‖δn‖2 + (κ − εT )κ̇

= − δT
c K1δc − ‖δc‖ ‖δn‖ |η| − K2 ‖δc‖ ‖δn‖

− δT
c ξ − K3 ‖δn‖2 − δT

c τdc + ‖δn‖ εT

123



Adaptive neural network tracking control 1455

+ (κ − εT )

(

κ̇ −
‖δn‖2

‖δn‖ + μ

)

−
‖δn‖2

‖δn‖ + μ
εT

≤ − δT
c K1δc − ‖δc‖ ‖δn‖ |η| − K2 ‖δc‖ ‖δn‖

− δT
c ξ − K3 ‖δn‖2 − δT

c τdc

+ ‖δn‖ εT −
‖δn‖2

‖δn‖ + μ
εT

= − δT
c K1δc − ‖δc‖ ‖δn‖ |η| − K2 ‖δc‖ ‖δn‖

− δT
c ξ − K3 ‖δn‖2 − δT

c τdc +
‖δn‖ μεT

‖δn‖ + μ

≤ −δT
c K1δc − ‖δc‖ ‖δn‖ |η| − K2 ‖δc‖ ‖δn‖

− δT
c ξ − K3 ‖δn‖2 − δT

c τdc + μεT

≤ K1 ‖δc‖
2 − K3 ‖δn‖

2 − δT
c ξ − δT

c τdc + μεT

= −‖δ‖T K ‖δ‖ − δT
c ξ − δT

c τdc + μεT (31)

where K =

[

K1 0

0 K3

]

.

When no disturbance exerts on the collocated sub-

system (τdc = 0), i.e. the system is only subject to mis-

matched disturbances, we design the collocated robust

compensator as ξ = 0 and integrate both sides of (31)

from t = 0 to t = T as

V (T ) − V (0) ≤ −

∫ T

0

‖δ‖T K ‖δ‖ dt + εT

∫ T

0

μ dt

(32)

Considering that V (T ) ≥ 0 and
∫∞

0 μdt < ∞, we

have

limT →∞sup
1

T

∫ T

0

‖δ‖2 dt ≤
1

K

(

V (0) + εT

∫ T

0

μ dt

)

limT →∞
1

T
(33)

From the definition of the Lyapunov function V in (26)

and V̇ derived from (31–33), the global uniform bound-

edness of the filtered tracking error δc for collocated

subsystem and δn for non-collocated subsystem, the

parameter estimation error W̃ is guaranteed. From the

definition and assumption 1 of filtered tracking error

δ, it is evident that δ is bounded. The boundedness of

control input is obvious from (25). It can be concluded

that since δ = [δc δn]T ∈ Ln
2 ∩ Ln

∞, δc and δn are

continuous and δc → 0, δn → 0 as t → ∞, and

η ∈ L∞. From (25c), it can be shown that α̃c ∈ L
p
∞.

This in turn implies, based on property 1 and (25c), that

δ̇ ∈ Ln
∞, q̈ = [q̈c q̈n]T ∈ Ln

∞ and q̃ = [q̃c q̃n]T ∈ L2n
∞.

Therefore, q̃c and q̃n are uniformly continuous and

q̃ = [q̃c q̃n]T ∈ L2n
∞, and it is evident that q̃ → 0

as t → ∞.

Remark 3 The NNs are adopted to approximate the

mismatched system uncertainties, and the adaptive con-

trol algorithm is constructed to estimate the NN approx-

imation error and the bounded mismatched distur-

bance. The combination of variable structure control,

NN approximation and adaptive approach makes the

constructed new controller more robust, and such errors

resulting from trajectory tracking, parameter uncertain-

ties, mismatched external disturbances and NN approx-

imation are compensated.

For the case τdc �= 0 and ‖τdc‖ < βm , i.e. the sys-

tem is subject to both matched and mismatched distur-

bances, one can only conclude that δ is bounded from

(26) and (31), but α̃c and W̃ may become unbounded

as (31) merely contains a negative definite component

of ‖δ‖2 and no negative terms of α̃c and W̃ are appar-

ently included. As a result, the system may tend to be

unstable. To improve the robustness of Theorem 1, the

following adaptation algorithm is therefore proposed.

Adaptation Algorithm 2. Consider the following

adaptation law

˙̂αc= −Ŵ′α̃c−ŴYcδc (34)

Corollary 2 Consider the error equation (22) with the

sliding surface designed in (20) under the adaptive

NNs-based robust control law in (25), the following

corollary holds: If adaptation algorithm 2 is adopted,

the system error signals q̃, ˙̃q and α̃ converge to zero

asymptotically. If τdc �= 0 and ‖τdc‖ < βm , then the

system becomes globally uniformly ultimately stable

and the boundedness depends on τdc.

Proof Adopting Adaptation Algorithm 2 in function

(27), we have

V̇ =
[

δT
c δT

n

]

[

−K1δc − Ycα̃c − sgn (δc) ‖δn‖ |η| − K2sgn (δc) ‖δn‖ − ξ

W T φ + ε

]

− δT τd + ˙̂αT
c Ŵ−1α̃c + tr

{

W̃ T ϒ−1 ˙̃
W
}

+ (κ − εT )κ̇ + η
−1

2n+1 η̇

= −δT
c K1δc − ‖δc‖ ‖δn‖ |η| − δT

c ξ + δT
n (ε − τdn)
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− K2 ‖δc‖ ‖δn‖ − δT
c τdc −

‖δn‖2

‖δn‖ + μ
κ − K3 ‖δn‖2

+ tr
{

W̃ T ϒ−1
(

˙̃
W + ϒδT

n φ
)}

+ (κ − εT ) κ̇ − α̃T
c Ŵ′Ŵ−1α̃c

≤ − δT
c K1δc − ‖δc‖ ‖δn‖ |η| − δT

c ξ + ‖δn‖ εT

− K2 ‖δc‖ ‖δn‖ − δT
c τdc −

‖δn‖2

‖δn‖ + μ
κ

− K3 ‖δn‖2 + (κ − εT )κ̇ + tr
{

W̃ T ϒ−1(
˙̃

W + ϒδT
n φ)

}

− α̃T
c Ŵ′Ŵ−1α̃c

≤ −δT
c K1δc − ‖δc‖ ‖δn‖ |η| − δT

c ξ − δT
c τdc

− K2 ‖δc‖ ‖δn‖ − K3 ‖δn‖2 + μεT − α̃T
c Ŵ′Ŵ−1α̃c (35)

V̇ ≤ −K1 ‖δc‖
2 − K3 ‖δn‖2 − Ŵ

′Ŵ−1‖α̃c‖
2

− δT
c ξ − δT

c τdc + μεT

= −
∥

∥δ′
∥

∥

T
K ′
∥

∥δ′
∥

∥− δT
c ξ − δT

c τdc + μεT (36)

where K ′ = diag[K1, K3, Ŵ
′Ŵ−1] and δ

′
= [δc, δn,

α̃c]
T . ⊓⊔

Considering that Ŵ′ and Ŵ−1 are positive definite diag-

onal matrix, thus Ŵ′Ŵ−1 is a positive definite diagonal

matrix.

Case 1. For the case when τdc = 0, design the collo-

cated robust compensator as ξ = 0 and integrate both

sides of (36) from t = 0 to t = T as

V (T )−V (0) ≤ −

∫ T

0

∥

∥δ′
∥

∥

T
K ′
∥

∥δ′
∥

∥dt+εT

∫ T

0

μ dt

(37)

Considering that V (T ) ≥ 0 and
∫∞

0 μ dt < ∞, we

have

limT →∞sup
1

T

∫ T

0

‖δ′2‖dt

≤
1

K ′

(

V (0) + εT

∫ T

0

μ dt

)

limT →∞
1

T
(38)

Case 2. For the case when τdc �= 0 and ‖τdc‖ < βm , the

collocated robust compensator ξ is designed to satisfy

the following conditions

{

δT
c ξ ≥ 0

βm ‖δc‖ − δT
c ξ ≤ ρ

(39)

where βm is the upper bound of τdc and ρ is a positive

design scalar.

Theorem 2 Consider following control laws to the

uncertain underactuated system

τ = τc + τn (40a)

τc = Ycα̂c − K1δc − ξ, τn = −sgn (δc) ‖δn‖ |η|

− K2sgn (δc) ‖δn‖ (40b)

with the Adaptation Algorithm 2 designed in (34), and

the collocated robust compensator ξ designed using

hyperbolic tangent function as

ξ = βm tanh

(

nηrβmδc

ρ

)

(40c)

with ηr is a gain constant chosen as ηr = 0.2785 here,

and the auxiliary input η in (40b) is constructed as

η̇ = η
1

2n+1

(

−K3 ‖δn‖
2 − ‖δn‖ Ŵ T φ

)

(40d)

with the adaptation law for Ŵ based on the projection

algorithm, given by

˙̂
W = −

˙̃
W

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ϒφδT
n − βϒ ‖δn‖ Ŵ −

δT
n Ŵ T ϒφŴ

WN
,

i f tr
{

Ŵ T Ŵ
}

= WN and δT
n Ŵ T φ ≤ 0;

ϒφδT
n − βϒ ‖δn‖ Ŵ , i f tr

{

Ŵ T Ŵ
}

< WN or i f tr
{

Ŵ T Ŵ
}

= WN and δT
n Ŵ T φ > 0.

(40e)

Then, it follows:

(1) tr
{

Ŵ T Ŵ
}

≤ WN holds.

(2) All signals in the collocated and non-collocated

systems are UUB.

Proof Consider the Lyapunov function as follows

V =
1

2
δT Dδ +

1

2
α̃T

c Ŵ−1α̃c

+
1

2
tr
{

W̃ T ϒ−1W̃
}

+
2n + 1

2n
η

2n
2n+1 (41)

The derivative of Lyapunov candidate function is

yielded as
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V̇ =
[

δT
c δT

n

]

[

−K1δc − Ycα̃c − sgn (δc) ‖δn‖ |η| − K2sgn (δc) ‖δn‖ − ξ

W T φ + ε

]

−δT τd + ˙̂αT
c Ŵ−1α̃c + tr

{

W̃ T ϒ−1 ˙̃
W
}

+ η
−1

2n+1 η̇

= − ‖δc‖ ‖δn‖ |η| − δT
c K1δc − K2 ‖δc‖ ‖δn‖

−δT
c ξ − δT

c τdc − K3 ‖δn‖2

+tr
{

W̃ T ϒ−1
(

˙̃
W + ϒδT

n φ
)}

+δT
n (ε − τdn) − α̃T

c Ŵ′Ŵ−1α̃c

≤ − ‖δc‖ ‖δn‖ |η| − K2 ‖δc‖ ‖δn‖ − δT
c K1δc − δT

c ξ

+ − K3 ‖δn‖2

+tr
{

W̃ T ϒ−1(−ϒφδT
n + βϒ ‖δn‖ Ŵ + ϒδT

n φ)
}

‖δn‖ εT − δT
c τdc − α̃T

c Ŵ′Ŵ−1α̃c

V̇ ≤ −δT
c K1δc − Ŵ

′
Ŵ−1 ‖α̃c‖

2 − K3 ‖δn‖2 − δT
c ξ

−δT
c τdc + β ‖δn‖ tr

{

W̃ T
(

W − W̃
)}

+ δT
n εT (42)

⊓⊔

Let us decompose (42) into the following two parts

V̇1 = −K3 ‖δn‖2 + β ‖δn‖ tr
{

W̃ T (W − W̃ )
}

+ δT
n εT

(43a)

V̇2 = −Ŵ′Ŵ−1 ‖α̃c‖
2 − δT

c K1δc − δT
c τdc − δT

c ξ

(43b)

We have

(1) For V̇1, considering that

tr
{

W̃ T (W − W̃ )
}

= (W̃ , W )F −
∥

∥

∥
W̃

∥

∥

∥

2

F

≤
∥

∥

∥
W̃

∥

∥

∥

F
‖W‖F −

∥

∥

∥
W̃

∥

∥

∥

2

F
(44)

Substituting (44) into (43a), we have

V̇1 ≤ − λmin(K3) ‖δn‖2

+β ‖δn‖
∥

∥

∥
W̃

∥

∥

∥

F

(

Wmax −
∥

∥

∥
W̃

∥

∥

∥

F

)

+ εT ‖δn‖

= − ‖δn‖ (λmin(K3) ‖δn‖

+β

∥

∥

∥
W̃

∥

∥

∥

F

(
∥

∥

∥
W̃

∥

∥

∥

F
− Wmax

)

− εT )

Since

λmin(K3) ‖δn‖ + β

∥

∥

∥
W̃

∥

∥

∥

F

(
∥

∥

∥
W̃

∥

∥

∥

F
− Wmax

)

− εT

= β

(

∥

∥

∥
W̃

∥

∥

∥

F
−

Wmax

2

)2

− β
W 2

max

4

+λmin(K3) ‖δn‖ − εT (45)

To guarantee V̇1 ≤ 0, the following inequality needs

to be satisfied

‖δn‖ >
βW 2

max + 4εT

4λmin(K3)
or

∥

∥

∥
W̃

∥

∥

∥

F

>
Wmax

2
+

√

W 2
max

4
+

εT

β
(46)

Therefore, V̇1 is negative outside a compact set.

Based on the standard Lyapunov theorem extension,

the UUB of both δn and

∥

∥

∥
W̃

∥

∥

∥

F
is demonstrated.

Through (43b), the time derivative of V2 can be given

by

V̇2 ≤ −Ŵ′Ŵ−1 ‖α̃c‖
2 − δT

c K1δc +βm ‖δc‖− δT
c ξ (47)

Based on the above knowledge of the design require-

ment (39), the definition of V and V̇2, as well as the

assumption of boundedness of neural network weight,

we substitute the collocated robust compensator (40c)

into (43b) and yield

V̇2 ≤ −Ŵ′Ŵ−1 ‖α̃c‖
2 − δT

c K1δc + ρ

= −ϑT K4ϑ + ρ

≤ −λmin(K4) ‖ϑ‖2 + ρ (48)

where K4 = diag{Ŵ′Ŵ−1, K1} and λmin(K4) is the

minimum eigenvalue of the matrix K4. As a result, V̇2

is strictly negative outside the following compact set

�ϑ :

�ϑ =

{

ϑ(t)

∣

∣

∣

∣

0 ≤ ‖ϑ‖ ≤

√

ρ

λmin(K4)

}

(49)

Therefore, it is concluded that the filtered tracking error

δc for collocated subsystem and δn for non-collocated

subsystem, and the estimation error W̃ of the param-

eters are uniformly ultimately bounded. The tracking

error of collocated subsystem decreases whenever ϑ

is outside the compact set �ϑ , and thus ‖ϑ‖ is UUB.

Considering that all the signals included in the control

system (40) are UUB, it is therefore concluded that the

control system (40) is uniformly ultimately bounded.
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4 Simulations

In this section, simulation studies are conducted to

demonstrate the effectiveness of the designed control

schemes from the examples of an 2-DOF underactu-

ated manipulator and 2-DOF vibro-driven system [5].

The consideration behind is to investigate the effec-

tiveness towards both underactuated manipulation and

locomotion systems.

4.1 2-DOF underactuated manipulator

The two-link planar manipulator as shown in Fig. 2 has

its first link actuated and the second link unactuated.

Two revolute joints are used to connect link 1 and link

2, and in the horizontal plane, link 1 is able to rotate

360 degrees. The denotations are introduced as follows:

for link i, i = 1, 2, qi are the generalized coordinate

and the joint angle of each link, mi and li are the mass

and length, respectively. lci represents the length from

the previous joint to the COM of link i , and Ii is the

moment of inertia about the axis coming out of the page

and coming through the COM of link i .

The equations of motion of the manipulator can be

derived using the Lagrange’s approach as follows:

D (q) q̈+C (q, q̇) q̇+G (q)+Fv q̇+Fc (q, q̇)+τd = τ

(50)

where

D (q) =

[

m2

(

l2
1 + l2

c2 + 2l1lc2 cos q2

)

+ m1l2
c1 + I1 + I2 m2

(

l1lc2cosq2 + l2
c2

)

+ I2

m2

(

l1lc2cosq2 + l2
c2

)

+ I2 I2 + m2l2
c2

]

,

C (q, q̇) =

[

−m2lc2l1sinq2q̇2 −m2lc2l1sinq2(q̇1 + q̇2)

m2lc2l1sinq2q̇1 0

]

,

G (q) =

[

(m2l1 + m1lc1) gcosq1 + m2lc2gcos(q1 + q2)

m2lc2gcos(q1 + q2)

]

,

Fvq̇ + Fc (q, q̇) =

[

fv1q̇1 + c1sgn(q̇1)

fv2q̇2 + c2sgn(q̇2)

]

, τd =

[

a1sin(t)

a2sin(t)

]

, τ =

[

τ1

0

]

.

It is assumed that the moments of inertia are calcu-

lated in the form of Ii =
mi l2

i

12
. The unknown parame-

ters are chosen as α1 = m2

(

l2
1 + l2

c2

)

+m1l2
c1 + I1 + I2,

α2 = m2lc2l1, α3 = I2 + m2l2
c2, α4 = m2l1 +

m1lc1, α5 = m2lc2, and then the uncertain param-

Fig. 2 The 2-DOF underactuated manipulator

eter is α = [α1 α2 α3 α4 α5]T ∈ R5. Based on the

auxiliary kinematic vector variables defined in (20),

the collocated regressor Yc is therefore obtained as

Yc =
[

−˙̺1Yc2 − ˙̺2 − gcosq1 − gcos(q1 + q2)
]

with

Yc2 = −(2cosq2 ˙̺1+cosq2 ˙̺2−q̇2̺1sinq2−sinq2(q̇1+

q̇2)̺2).

Generically, the adaptive NN-based tracking con-

trol scheme in (40) is evaluated with matched and

mismatched uncertainties. The rationality of system

parameter values selection of the manipulator in this

section is configured from studies in the literature

as reported in [45] as follows: m1 = m2 = 2 Kg,

I1 = I2 = 0.2528 Kgm2, lc1 = lc2 = 0.75 m,

l1 = l2 = 1.5 m. The initial conditions are set as

q (0) = [q1 (0) q2 (0)]T = [0.09 − 0.09]T, q̇ (0) =

[q̇1 (0) q̇2 (0)]T = [0 0]T, and the reference trajectory

is given as q1d (t) = 0.5π(1 + sin (0.1t)) [45]. It is

noted that when the desired trajectory for q1 is cho-

sen, the prior knowledge of the desired trajectory for
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q2 can be achieved through convenient computation,

and it should satisfy the following constraint equation

D21q̈1 + D22q̈2 + C21q̇1 + C22q̇2

+ G2 + Fv1q̇ + Fc1 + τd1 = 0 (51)

The parameter values of friction and disturbance are

chosen as c1 = c2 = 0.02, a1 = a2 = 0.2. The band-

width of the first-order filter is set as � = [�1 �2]
T =

[12 30]T. In the simulation, parameters of the control

schemes are chosen to be K1 = 2I , K2 = 5I and

K3 = 20I . The adaptation gains are chosen as Ŵ′ = 8I

and Ŵ = 4I . Parameter values for the collocated robust

compensator are set as βm = 20, ρ = 0.5. In addi-

tion, the weight tuning parameter of the designed con-

trol schemes is chosen as ϒ = 0.005 and β = 0.1. The

rationality of these selections is configured using iter-

ative simulations.

Simulation results of the trajectory tracking perfor-

mance of the adaptive NN-based control system (40)

are presented in Fig. 3 with time-varying matched and

mismatched disturbances. The reference trajectory (red

solid line), the tracking trajectory (blue dashed line)

in Fig. 3, the trajectory tracking error in Fig. 4, the

control torque in Fig. 5 and the NN approximation

performance in Figs. 6 and 7 are portrayed. We can

see that the proposed scheme demonstrates good per-

formance under the model uncertainties, frictions and

time-varying external disturbances. It can be observed

from Fig. 4 that the system tracks the reference trajec-

tory accurately and the tracking error converges to a

small compact set after about 4s. The bounded control
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Fig. 5 Control input torque

input torque by using the designed control scheme is

shown in Fig. 5 with an upper bound of 50Nm and a

lower bound of −20 Nm. The RBFNN approximates

the nonlinear uncertaintiesχ (z) effectively from Fig. 7.

From the simulation studies, we can draw a conclusion

that the developed control system is able to adapt the

model uncertainties and is robust against the matched

and mismatched external disturbances.

4.2 2-DOF underactuated vibro-driven system

The simulation study in Sect. 4.1 considers an underac-

tuated manipulator with its base mounted on the work-

ing surface under uncertain dynamics and external dis-

turbances. The passive dynamics of the second link
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and the actuated dynamics of the first link are cou-

pled; thus, the unmodelled dynamics of the second link

may contribute additional time-varying inertia and non-

linearity to the manipulator dynamics. In this subsec-

tion, the context of an underactuated mobile robotic

model is considered as shown in Fig. 8. This under-

actuated vibro-driven robotic system was proposed in

[3] for which the actuated and unactuated dynamics are

strongly coupled.

In the presence of matched and mismatched external

disturbances, the underactuated dynamics of the vibro-

driven system are given as

D (q) q̈ +C (q, q̇) q̇ + K (q) q +G (q)+ F +τd = Bτ

(52)

Fig. 8 Schematic of the underactuated vibro-driven system

where D (q) =

[

ml2 −mlcθ

−mlcθ (M + m)

]

denotes the iner-

tia matrix, C (q, q̇) =

[

0 0

mlsθ θ̇ 0

]

is the Centripetal

and Coriolis matrix, K (q) =

[

k 0

0 0

]

represents the

generalized stiffness matrix, G (q) = [−mglsθ 0]T

represents the gravitational torques, F = [cθ̇ f ]
T

is

the friction forces, τd = [τdc τdn]T =

[

a1sin(t)

a2sin(t)

]

denotes the external matched and mismatched distur-

bances, B = [1 0]T is the input force matrix and τ ∈ R1

denotes the control input applied to the system.

In the simulation, the rationality of the parameter

values selection in this section is specified as follows:

the system parameter values are configured from the

studies in literature as reported in [48,49] as M =

0.5 kg, m = 0.138 kg, l = 0.3 m, g = 9.81 m/s2,

μ = 0.01 N/ms. Initial conditions of the system are

set as θ (0) = θ0 = π/3, θ̇ (0) = 0, x (0) = 0 and

ẋ (0) = 0. The simulation is conducted in 6.6s which

is one full motion cycle. The parameter values for

the matched and mismatched external disturbances are

chosen as a1 = a2 = 0.2. The bandwidth of the first-

order filter is set as � = [�1 �2]
T = [15 20]T . In the

simulation, the controller parameters are chosen to be

K1 = 10I , K2 = 20I and K3 = 50I . The adaptation

gains are chosen as Ŵ′ = 10I and Ŵ = 6I . Parame-

ter values for the collocated robust compensator are set

as βm = 20, ρ = 0.5. In addition, the weight tuning

parameter of the proposed control system is selected as

ϒ = 0.005 and β = 0.1. The rationality of these selec-

tions is configured using iterative simulations.

The trajectory tracking performance of the actuated

subsystem is presented in Fig. 9. It is observed from

the figure that although the response of the proposed
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Fig. 10 Trajectory tracking error

control scheme is slightly slower, the controlled pen-

dulum trajectory tracks the reference trajectory accu-

rately. The reference trajectory for the actuated subsys-

tem is chosen as shown in Fig. 9. The proposed control

system has a learning process that makes the estimated

parameters adapt to appropriate values.

The tracking error is shown in Fig. 10, from which

the tracking error converges to an adjacent and bounded

compact set near zero in finite time. The trajectory of

the vibro-driven system is presented in Fig. 11 showing

that the cart travels at the speed about 7cm within 6.6s.

The control torque is shown in Fig. 12 that demonstrates

the boundedness of the torque input. As demonstrated

in the system performance, the developed NN adaptive
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Fig. 12 Control torque

control scheme is capable of guaranteeing accurate tra-

jectory tracking of the actuated subsystem, and mean-

while, the passive subsystem can maintain a forward

locomotion at some desired velocity. Therefore, it is

concluded that the designed control system is efficient

in the presence of unknown nonlinear dynamic systems

and environmental disturbances.

5 Conclusions

In this paper, novel NNs-based adaptive tracking con-

trol schemes for underactuated systems with matched

and mismatched disturbances have been presented. The
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parametric uncertainties and matched and mismatched

external disturbances have been considered in the con-

troller design, which feature a generic model in the

research of underactuated systems. The mismatched

disturbances have been omitted in most of the existing

approaches for the tracking control of UMSs. Auxil-

iary control variables have been designed to establish

the controllability of non-collocated subset of underac-

tuated systems by using a universal approximation of

RBFNN, and approximation errors and external distur-

bances can be efficiently counteracted through design

of robust compensators. Employing the adaptive con-

trol approach, combined with variable structure and

NNs, the exact values of the parameters of the under-

actuated systems are not required to be known a pri-

ori. The stability of the overall system has been proved

by Lyapunov analysis, and it is shown that the track-

ing error can be reduced as small as desired in finite

time by choosing appropriate controller parameters.

The simulation studies on an underactuated manipu-

lator and an underactuated vibro-driven system have

shown the effectiveness of the proposed adaptive con-

trol systems.
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