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Abstract We combine aftershock relocations, source mechanisms, teleseismic Pwave backprojection, and

Global Positioning System data inversion to constrain complex faulting geometry of the 2018MW 7.9 offshore

Kodiak earthquake. Relocated aftershocks delineate several N-S trends including a prominent 110-km-long

segment, as well as broad NE-SW trends. Global Positioning System modeling and backprojection indicate

that the NE-SW trending left-lateral strike-slip segments released most energy dominating far-field crustal

deformation and radiated wavefield. Backprojection infers fast E-to-W rupture propagations superimposed

on a slower S-to-N migration. We propose a five-segment model of the rupture that was partially driven by

dynamic triggering.

Plain Language Summary In the early morning hours of 23 January 2018, a magnitude 7.9

earthquake struck ~300 km offshore Kodiak Island, Alaska, in the outer rise region of the

Alaska-Aleutian subduction zone. While the moment tensor for the earthquake suggests predominantly

strike-slip faulting, the true complexity of the source has only become evident through analysis of

multiple data sets (aftershock locations and source mechanisms, Global Positioning System deformation,

and teleseismic P wave backprojection). Our analysis indicates simultaneous rupture on a system of N-S

and NE-SW oriented conjugate faults. The N-S faults correlate with plate bending faults imaged by seismic

imaging and high-definition bathymetry. The NE-SW faulting trends do not coincide with locations of

oceanic plate fractures but correlate with orientations of fault planes of previously recoded earthquakes in

the area. Rupture propagation during the earthquake did not follow a continuous path and was partially

driven by dynamic and static stress triggering. The modeling results indicate that left-lateral strike-slip

segments released most energy thus dominating the radiated wavefield and the resulting crustal

deformation. The Mw 7.9 offshore Kodiak earthquake is another example of a complex rupture of the

oceanic lithosphere.

1. Introduction

In the early morning hours of 23 January 2018, a magnitude 7.9 earthquake struck ~300 km offshore Kodiak

Island, Alaska, in the outer rise region of the Alaska-Aleutian subduction zone. While the moment tensor for

the earthquake suggests predominantly strike-slip faulting, the true complexity of the source has only

become evident through analysis of multiple data sets.

The Alaska-Aleutian subduction zone extends for ~3,800 km from the Gulf of Alaska westward to the

Komandorsky Islands and accommodates relative motion between the Pacific and North American Plates.

The characteristics of this tectonic boundary, such as convergence direction and rate, trench separation,

and degree of coupling, vary widely along its extent (Freymueller et al., 2008). The nature of outer rise seis-

micity also changes along the arc: Typical normal faulting outer rise events are more common in the central

and western Aleutians (west of 160°W) and nearly absent in the eastern Aleutians and southern Alaska

(Christensen & Ruff, 1988). Very few earthquake source mechanisms are cataloged for the outer rise region

offshore Kodiak. Those that do exist do not indicate a uniform pattern of faulting. An mb 5.4 event occurred

a few months after the great 1964 MW 9.2 Alaska earthquake and featured typical outer rise normal faulting

(Stauder & Bollinger, 1966). An MW 6.0 earthquake in 1999 east of the current sequence was a reverse faulting

event and an MW 4.9 earthquake in 2017 was a strike-slip event with a similar focal mechanism to the 2018

MW 7.9 earthquake (Figure 1).
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A series MW 7.2–7.8 strike-slip events occurred in the northeast Gulf of Alaska in 1987–1988 on a system of

conjugate and parallel faults in an area with very little historic seismicity (Hwang & Kanamori, 1992; Lahr

et al., 1988) (Figure 1, inset). However, seismic reflection data provide clear evidence that these faults were

active long before the earthquake sequence began (Reece et al., 2013). These events were followed by more

examples of complex faulting in oceanic lithosphere. The 1998 MW 8.1 Balleny Islands (Antarctic Plate) earth-

quake ruptured faults that did not correlate with any known features on the ocean floor and may have

involved subevents on different fault planes (Henry et al., 2000). The 2000 MW 7.8 Wharton Basin earthquake

(off Sumatra) involved ruptures of both NS and EW trending fault planes during the mainshock (Abercrombie

et al., 2003; Robinson et al., 2001). The 2004 MW 8.1 Tasman Sea earthquake reactivated old structures with a

new mechanism, rupturing an old spreading ridge in a strike-slip event (Robinson, 2011). More recently, the

2012 Wharton Basin sequence involved multiple M > 8 subevents within a complex set of faults intersecting

at highly oblique angles (Meng et al., 2012).

These examples are a reminder that the far-field observations are often an aggregate over a series of sub-

faults. The studies above suggest that this may be particularly common in oceanic crust, where the preexist-

ing fabric may not necessarily align with the dominant stress directions. In these cases, stress release might

be most easily accommodated through a complex set of subfault ruptures instead of occurring along a single

canonical fault line.

Several fracture zones have been identified in the vicinity of the 2018 offshore Kodiak Island earthquake such

as the Aja Fracture Zone to the south (Matthews et al., 2011; Pitman III & Hayes, 1968). In addition, seismic

reflection and high-resolution bathymetry have revealed numerous approximately N-S trending faults

(Reece et al., 2013), which were interpreted as preexisting fractures in the Pacific Plate spreading fabric that

have been reactivated as predominately normal plate bending faults by Pacific Plate subduction. This sea

floor fabric bears striking resemblance to that imaged in the Wharton Basin region (Singh et al., 2017).

Figure 1. Regional map showing background seismicity (M > =3, 1990–2017, yellow circles), 2018 aftershocks (M > =3 and 4, black and red circles, respectively),

moment tensors and locations of previously recorded events in the outer rise region (white squares) and the 23 January 2018 MW 7.9 earthquake (circle indicates

location of the centroid). Inferred fracture zones are shown by white lines, and the megathrust is marked by red line. Inset figure shows location of the study area

within the regional frame and locations of the 1987–1988 Gulf of Alaska earthquakes (NAP = North American Plate; PP = Pacific Plate; YT = Yakutat Terrane).
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We combine analysis of the aftershock locations, seismic moment tensors, teleseismic Pwave backprojection,

and Global Positioning System (GPS) displacements to constrain complex faulting during the 23 January 2018

MW 7.9 earthquake.

2. Methods and Results

2.1. Aftershock Relocations and Source Mechanisms

The Alaska Earthquake Center analyzed over 2,800 aftershocks through the end of March 2018. Due to the

offshore location, the magnitude of completeness is higher than that of the catalogs on land, at M = 3.0.

The aftershocks illuminate a complex network of ruptured subfaults (Figure 2).

To better resolve aftershock locations, we employ the earthquake relocation technique GrowClust (Trugman

& Shearer, 2017). First, we subset the catalog to include earthquakes with M > 3.3, resulting in 515 events.

Eliminating the smallest magnitude events improves computational efficiency and removes the most poorly

constrained events. Using hypoddpy (Krishner, 2015), for each aftershock we link up to 20 neighboring events

that have at least four phase arrivals in common at nearby seismic stations. This produces 6,239 event pairs

with an average offset of ~8 km between linked events (on the order of the location uncertainty for these

offshore events). In total, >90,000 P phase and >28,000 S phase pairs are selected, band-pass filtered from

1 to 5 Hz, and 5 s of data are extracted around each phase (�1 to +4 s) prior to cross correlation. The resulting

cross correlations are used as input to the GrowClust program. Within GrowClust, we use a maximum station

distance of 600 km, a maximum root-mean-square residual of 1 s to join clusters, and a minimum of five

events required to perform a cluster shift test. We allow earthquakes within 20-km catalog distance and

15-km relocated distance to join clusters and allow up to 10 km of shift. These parameters result in 420 earth-

quakes being relocated, with root-mean-square differential time residuals of ~1 s for both P and S phases.

We used 14 moment tensor solutions from National Earthquake Information Center ComCat catalog that

range in magnitudes between MW 4.1 and 5.1 and centroid moment tensor (CMT) solutions from global

CMT catalog for the mainshock and the largest aftershock (MW 5.5, 24 January 00:04 UTC).

The overall aftershock distribution illuminates several sharp N-S and broad NE-SW trends (Figure 2). We iden-

tified four distinct aftershock groups associated with possible fault planes labeled as S1–S4 in Figure 2b. The

Figure 2. Map of the aftershocks and moment tensors: black = M > =3 aftershocks from Alaska Earthquake Center catalog, yellow = relocated aftershocks. Gray

beach balls are from National Earthquake Information Center ComCat catalog (MW 4.1–5.1), and red beach balls are the centroid moment tensors from global

CMT catalog for the mainshock and the largest aftershock (MW 5.5, 24 January 00:04 UTC). Inset map (a) shows a subset of relocated aftershocks that demonstrates

right-lateral faulting along NS trending faults. Inset (b) shows a proposed fault segment model.
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most prominent is the 110-km-long N-S trend S1 with the mainshock epicenter located near its southern end.

Neither catalog nor relocated aftershocks indicate a single, well-defined E-W striking trend. Instead,

epicenters in the region west of S1 are distributed over a broad NE-SW trending zone (S2) and form

several clear N-S streaks ~10 km long (Figure 2a). Focal mechanisms for aftershocks along these streaks

show right-lateral strike-slip faulting. There is also a broad 70-km-long NS aligned cluster northeast of the

main S1 segment (S4). However, no connecting structure between the main segment and this northeast

segment is clear in the aftershock locations (S3).

The focal mechanisms for aftershocks within S1 and S4 segments predominantly indicate right-lateral strike-

slip motion. A cluster of reverse faulting aftershocks is concentrated near the southern end of the main S1

lineation. These are located just north of the identified fracture zone and may indicate rupture interaction

with this structural barrier. One of the only two normal faulting aftershocks is associated with the S4 after-

shock cluster and indicates NS-fault planes (it was the largest aftershock). The second normal faulting after-

shock is located in the middle of the S2 segment and indicates a west or SW trending fault plane. Its location

is close to the mb 5.5 normal faulting event in 1964.

2.2. Teleseismic P Wave Backprojection

We backprojected teleseismic P waves recorded at 298 broadband stations in continental Europe to

image the kinematic rupture process of the MW 7.9 mainshock (Figure 3a). The backprojection techni-

que utilizes very few prior assumptions on fault parametrization, Green’s functions, or rupture velocity

and thus can robustly constrain the spatiotemporal evolution, rupture extent, and rupture speed of

large complex earthquakes (Fan & Shearer, 2016; Ishii et al., 2005; Meng et al., 2012; Wang et al.,

2016; Zhang et al., 2012). In this study, we adopted the Multitaper-MUSIC array processing technique

that provides superior resolution to separate closely spaced sources (Meng et al., 2011). We collected

Figure 3. Kinematic rupture process revealed by teleseismic Pwave backprojection. The circles are color coded by time and sized by power (see panel e) to represent

the location of high-frequency radiators at different time frame. Red star is the MW 7.9 epicenter, and white circles are M > =3 aftershocks. Inset map (a) shows

distribution of stations used for backprojection. Inset (b) shows a proposed fault segment model. (c) Rupture distance along the EW direction (positive distance

indicates rupture to the east of the hypocenter); dashed lines are reference rupture speed of 3 km/s. (d) Rupture distance along the NS direction (positive distance

indicates rupture to the north of the hypocenter); the dashed line indicates reference rupture speed of 1.4 km/s. (e) Beam power of the radiators as a function of time.

GCMT = global centroid moment tensor.
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coherent waveform data from the ORFEUS data center (http://orfeus-eu.org/webdc3/). The seismograms

are filtered in the band of 0.5 to 2 Hz and empirically aligned with the first 5 s of the P wave arrivals.

This correction procedure assumes that the first arrivals originated from the hypocenter (Ishii et al.,

2005) and provides a static correction of travel time due to 3-D path effects. The aligned data are

then backprojected using a 1-D reference velocity model to pinpoint when and where difference

source regions were radiating energy.

The results suggest complex conjugate ruptures and segmentation along several faults trending approxi-

mately NS and approximately EW—observations that are remarkably consistent with the aftershock locations

(Figure 3). The earthquake initiated as a relatively low energy bilateral rupture along a NS trending fault (S1)

near its southern end with the first notable energy burst at around 10 s (Figures 3d and 3e). Between 20 and

30 s, the rupture leaps ~60 km NW from the earthquake epicenter (S1.5 segment, Figure 3c). From 30 to 50 s,

the dominant release occurs along a continuous E-to-W trending path with a rupture speed of 3 km/s (S2 seg-

ment, Figure 3c). Beyond 50 s, radiators are less energetic. This late energy appears well constrained to a

region north and east of the rest of the rupture. It likely represents another fault segment near the northern

end of S1 with the strike in the westerly direction and predominant propagation path from east to west (S3).

The rupture speed on S3 is around 3 km/s, similar to that on S2 (Figure 3c). The aftershock locations clearly

image a 70-km-long NS oriented fault segment (S4), which corresponds to high-frequency (HF) radiators at

around and after 65 s. Beyond 75 s, backprojection is no longer viable because the teleseismic P waves lack

coherency. The overall rupture extent is ~100 km in the NS direction, which is consistent with the aftershock

Figure 4. Observed and modeled static GPS displacements (a) and estimated slip on fault segments (b). Black arrows and

small colored circles are observed horizontal and vertical displacements. White arrows and large colored circles are model-

predicted horizontal and vertical displacements. Warm colors indicate uplift at GPS stations in (a) and left-lateral slip on

segments in (b); cool colors indicate subsidence and right-lateral slip. Gray points are aftershocks. Background beige color

represents accretionary prism in the model; green represents lithosphere. Red lines are faults (Koehler et al., 2012). Also

shown are Coulomb stress changes imparted to the megathrust. (b) Three-dimensional view of inferred slip distribution.

Gray points are aftershocks; colored circles are high-frequency radiators from backprojection (Figure 3). GPS = Global

Positioning System.
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zone extent. The average NS rupture speed is (~1.4 km/s), is lower than the two EW ruptures. The rupture pat-

tern is overall highly complex, as inferred for the previous oceanic plate events.

2.3. GPS Modeling

Following the offshore Kodiak earthquake, University NAVSTAR Consortium made available a data set of

processed coseismic displacements at Plate Boundary Observatory GPS stations in Alaska (Figure 4). We

first explore whether the GPS displacement field could have been produced by slip on the north striking

faults. We build a slip model consisting of segments S1, S1.5, and S4 and estimate the final static coseis-

mic slip on these segments from the horizontal and vertical GPS displacements using a Monte Carlo

method assuming a homogeneous half-space Earth model, all slip planes vertical, slip pure right-lateral,

and strike 0° (supporting information Text S1). The horizontal displacements predicted by the resulting

slip model show a systematic azimuthal misfit to the horizontal GPS displacements (Figure S1). The

inferred slip model and misfit do not improve by assuming that the segments have a westward dip

(Figure S2) or allowing for a normal component of slip (Figure S3). We next add segments S2 and S3

to the model; to reduce the number of free parameters, we assume again that all segments are vertical

and restrict slip to be pure right lateral on S1, S1.5, and S4 and pure left lateral on S2 and S3. We test

different values for the strike of S2 and S3 (Figures S4–S7). The resulting models fit the GPS significantly

better than those with only the north striking segments, but all have unconvincing attributes. Some mod-

els feature the highest slip at the far northeast of the aftershock distribution (Figure S4 and S5), where

backprojection indicates minimal HF radiation, while the other features a less one-sided slip distribution

but underpredicts the displacements at stations to the northeast (Figure S7). Allowing for nonvertical dips

again does not change the inferred slip or the misfit (Figure S6). This suggests that the displacements

may have been proportionally amplified by an aspect of the earthquake or setting that the homogeneous

half-space model does not account for.

To assess whether this effect may have been related to heterogeneous elastic properties, we construct a 3-D

Earth model of the southern Alaska margin that includes the Prince William Complex, an accretionary wedge

that likely extends from the trench to the southeast coast of Kodiak (Plafker et al., 1994; Figure 4, supporting

information Text S2, and Figures S8 and S9). Elastostatic modeling suggests that this sedimentary wedgemay

have acted like a cushion: Compared to a homogeneous Earth model, it would damp the displacements on

Kodiak relative to those northeast of the earthquake (Figure S10), producing the apparent proportional

amplification of the latter in the GPS displacements. Incorporating this heterogenous model into the inver-

sion where S2 and S3 strike 253° yields a slip distribution that is more consistent with the distribution of

HF radiators (Figure 4b) and brings the predicted displacements on the northeast into a better agreement.

We thus choose this as our preferred GPS-based model (Figure 4b). Most of the slip is inferred on the seg-

ments S2 and S3, and indeed, an inversion using only those segments fits the GPS nearly as well as the

five-segment model (Figure S11) The total coseismic moment release in the GPS-based model (computed

as the sum of S · A · μ, where S is the slip, A is the area of each patch, and μ is the shear modulus along each

patch, here 45 GPa as per the heterogeneous Earth model) is equivalent to a Mw = 7.81 earthquake. We cal-

culate (supporting information Text S3) that this slip distribution would have imparted a Coulomb stress

increase of ~0.5 bar to the Alaska subduction zone along the nearby trench (Figure 4).

3. Discussion

The 2018 Mw 7.9 Offshore Kodiak earthquake is another example of a complex rupture of the oceanic litho-

sphere. The source complexity is evidenced by the aftershock distribution, which extends over a>100 × 100-

km region and includes several well-defined N-S lineations but no clear E-W trends. At the same time, GPS

modeling of crustal deformation and finite source modeling with teleseismic recordings (https://earth-

quake.usgs.gov/earthquakes/eventpage/us2000cmy3#finite-fault) favor left-lateral faulting on faults striking

south of west. The backprojection results presented in this study also support complex rupture model featur-

ing rupture in both N-S and E-W directions.

P wave first-motion analysis, location of the epicenter, and backprojection results all point to the rup-

ture initiation as a right-lateral strike-slip earthquake on a N-S oriented fault plane, with predominant

propagation to the north, but also some propagation to the south. However, instead of simply conti-

nuing along this faulting plane, the rupture bifurcated into a left-lateral strike-slip conjugate fault plane
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westward. The most energetic backprojection radiators coincide with

the location of the global CMT near the point where the two pro-

posed planes would intersect (Figure 3). The GPS modeling also

required significant motions on this westerly trending fault plane

(Figure 4 and supporting information). At the same time, a number

of smaller right-lateral strike-slip ruptures were triggered along NS

oriented plate bending faults (Figure 2a).

Additional complication of the rupture process occurred between 20 and

30 s when the HF radiators suddenly shifted 60 km NW of the epicenter

to a region that is seemingly disconnected from the main rupture

propagation (Figure 3).

To test triggeringmechanisms during the mainshock rupture, we compute

the progression of static Coulomb and dynamic stress. We use the elastic

component of RELAX (Barbot & Fialko, 2010a, 2010b) to compute

Coulomb stress changes between subfaults using the fault segments

and slip distribution in the preferred GPS model (Figure 4) assuming a

shear modulus of 45 GPa, a Poisson’s ratio of 0.25, and an effective friction

coefficient of 0.4 (King et al., 1994). We again assume that slip is pure right-

lateral and pure left lateral on the north striking and SW trending fault seg-

ments, respectively. We find that progressive Coulomb stress changes

throughout the rupture are predominantly negative and would have

inhibited failure (Figures 5a–5c), reminiscent of the 2012 Wharton Basin

earthquake, which twice ruptured into compressional quadrants (Meng

et al., 2012). The only positive stress changes are those on segment S4 fol-

lowing the ruptures of segments S1 and S2 (Figure 5d), which could have

conceivably promoted failure on that segment at that point in the rupture.

The results otherwise do not suggest static triggering as a plausible

mechanism for the propagation and diffusion of the rupture, and so we

turn to dynamic triggering.

To address the effect of dynamic triggering from S1 to S1.5 and S2, we

compute the synthetic three-component velocity seismograms using the

frequency-wavenumber integral method (Zhu & Rivera, 2002). Moment

tensor of S1 and the fault orientation of S2 are taken from the global

CMT inversion (Figure 3). Figure 5e is an example of the seismogram

at (55.95°N, 149.82°W), where we see the cluster of HF radiators on

S1.5 and S2. The amplitudes of the radial component are more pro-

nounced than the transverse component, suggesting that Rayleigh

waves play a dominant role of triggering the rupture. Moreover, the tim-

ing of the radiators on HF matches with the pulses of the seismogram.

According to Jaeger and Cook (1979), peak dynamic stress can be

inferred from the velocity:

σd ¼ Gu=vs (1)

where G is the shear modulus, u is the peak velocity, and vs is the phase velocity. In this study, we use a shear

modulus of 30 GPa and a constant Rayleigh waves velocity of 3.5 km/s (Miyazawa & Brodsky, 2008). The peak

ground velocity is about 0.78 cm/s, and the corresponding peak stress change is around 0.67 bar, above the

threshold of triggering of around 0.1 bar (Brodsky & Prejean, 2005; Hill & Prejean, 2015). Therefore, the HF

radiators observed on S1.5 and S2 can be dynamically triggered by the Rayleigh wave radiated from S1.

In summary, we hypothesize that the dynamic stress change played a significant role in triggering N-S sub-

fault rupture S1.5 ahead of the main rupture front reaching that area and promoted westerly bifurcation of

the rupture onto a conjugate fault plane S2. The static stress changes were significant enough to possibly

promote the rupture of S4.

Figure 5. Results of the static and dynamic stress triggering tests.

Progressive Coulomb stress changes throughout the rupture. Stress

changes imparted by slip on (a) the southern half of S1 to S1.5; (b) the

southern half of S1 to S2; (c) the full length of S1 to S3 and S4; (d) S1 and S2 to

S3 and S4. (e) Synthetic three-component velocity seismograms recorded at

55.95°N, 149.82°W. The blue dashed line marks the timing of the high-fre-

quency radiators of back projection on subfault S2.
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4. Conclusions

Complex faulting of the 2018 MW 7.9 offshore Kodiak earthquake involves simultaneous rupture on a system

of N-S and NE-SW oriented conjugate faults. The N-S faults correlate with plate bending faults imaged by seis-

mic imaging and high-definition bathymetry (Reece et al., 2013). The NE-SW faulting trends do not coincide

with locations of oceanic plate fractures but correlate with orientations of fault planes of previously recoded

earthquakes in the area. Rupture propagation during the earthquake did not follow a continuous path and

was partially driven by dynamic and static stress triggering. We propose a model with five ruptured subfaults.

The teleseismic P wave backprojection and GPS modeling results indicate that NE-SW trending left-lateral

strike-slip segments released most energy thus dominating the radiated wavefield and the resulting

crustal deformation.
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