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Abstract 

Melting flow and heat transfer of electrically conductive phase change materials subjecting to a 

variable magnetic field are addressed in a cavity enclosure. The top and bottom walls of the cavity 

are adiabatic, and the sidewalls are isothermal at different temperatures. The temperature of the 

hot wall is higher than the fusion temperature of PCM (Tf), and the cold wall is at the fusion 

temperature or lower. At the initial time, the cavity is filled with a solid saturated PCM. In the 

vicinity to the hot wall, there is an external line-source magnet, inducing a magnetic field. The 

location of the magnetic source (Y0) can be changed along the hot wall. The cavity domain is 

divided into two parts of the liquid domain and the solid domain. The moving grid method is 

utilized to track the phase change interface at the exact fusion temperature of Tf. The governing 

equations for continuity, flow and heat transfer associated with the Arbitrary Lagrangian-Eulerian 

(ALE) moving mesh technique are solved using the finite element method. The results are 

investigated for the melting behavior of PCM by the study of Hartmann number (0 ≤ Ha ≤ 50) and 

the location of the magnetic source (0 ≤ Y0 ≤ 1). Outcomes show that the effect of the magnetic 

field on the melting behavior of PCM is negligible at the initial stages of the melting (Fo < 1.15). 

However, after the initial stages of the melting, the effect of the presence of a magnetic field 

becomes significant. Moreover, the location of the magnetic source induces a feeble effect on the 

melting front at the initial melting stages, but its effect on the shape of the melting front increases 

by the increase of the non-dimensional time. The location of the magnetic source also significantly 

affects the streamlines patterns. Changing the position of the magnetic source from the bottom of 

the cavity (Y0 = 0.2) to the almost middle of the cavity (Y0 = 0.6) would decrease the required non-

dimensional time of full melting from Fo = 10.4 to Fo = 9.0. 

 

Keywords: Variable magnetic field; line-source magnet; melting heat transfer; phase change heat 

transfer; moving mesh method. 

Paper type:  Research paper 
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B magnetic induction vector 

cp specific heat in constant pressure (J/kgºC) 

Ec Eckert number 

F volumetric force (N/m3) 

Fo non-dimensional time (Fourier number) 

g gravitational acceleration (m/s2) 

H the strength of the magnetic field 

Ha Hartmann number 

J voltage field (V) 

k thermal conductivity coefficient (W/mK) 

L cavity size 

P pressure (Pa) 

Pr Prandtl number 

Q Joule heating source term 

Ra Rayleigh number 

S dimensionless stream function 

Ste Stefan number 

t time (s) 

T temperature (ºC) 

u velocity (m/s) 

u velocity component in the x-direction (m/s) 

U 
non-dimensional velocity component in the x-

direction 

v velocity component in the y-direction (m/s) 

V 
non-dimensional velocity component in the y-

direction 

x Cartesian coordinate in the horizontal direction (m) 

X 
non-dimensional Cartesian coordinate in the 

horizontal direction 

y Cartesian coordinate in the vertical direction (m) 
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Y the non-dimensional Cartesian coordinate in the 

vertical direction 

Greek symbols 

µ dynamic viscosity (kg s/m) 

µ0 magnetic constant 

Į thermal diffusivity (m2/s) 

ȕ thermal expansion coefficient (1/K) 

Ȗ the strength of the magnetic source 

ș non-dimensional temperature 

ȡ density (kg/m3) 

ı the electrical conductivity of the liquid (ȍڄm) 

Subscript 

0 location of the magnetic source 

B buoyancy force 

c cold 

f fusion 

h hot 

L Lorentz force 

l liquid 

s solid 

Superscript 

* dimensional values 

 

 

1. Introduction 

The Phase Change Materials (PCMs) are capable of storing or releasing a large amount of 

latent energy during solidification or melting. Therefore, PCMs have been subject of various 

practical applications in the body of domestic buildings and building envelopes such as walls, 
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roofs, ceilings, and floors [1, 2]. Moreover, PCMs have found applications for thermal energy 

storage in concentrated solar thermal power plants [3]. In thermal storage applications, PCMs are 

packed in solid flat plates, solid cylinders, spheres, rods and various forms of enclosures [4-7]. 

Farah et al. [8] studied some practical applications of using PCMs in energy storage systems.  

By using PCMs, the renewable sources of energy can be stored in the form of the latent heat 

of phase change if the time of demand does not coincide with the time of production. In fact, the 

amount of latent heat that can be stored in a unit volume of a PCM is much larger than that of the 

sensible heat. Hence, a large amount of energy can be stored in the form of phase change latent 

heat. Fokaides et al. [9] and Silva et al. [10] reviewed the application of phase change materials in 

transparent elements for buildings usage. The transparent PCMs have found essential applications 

in windows cavities, decorated walls, and light walls.  

Tay et al. [11] point out one of the very important advantages of PCMs thermal storage for 

time shift of energy usage. PCMs can be charged in off-peak electricity tariffs with low-cost 

electricity and later be used as a heating or cooling source in regular times. Malik et al. [12] studied 

the application of PCMs in battery thermal management for electric and hybrid electric vehicles. 

Chandel and Agarwal [13] reviewed the application of PCMs as energy storage coolants for 

enhancing the efficiency of photovoltaic power systems. The literature review shows that PCMs 

are packed and contained in closed enclosure units. In this regard, Kylili and Fokaides [14] 

performed a review study on numerical analysis of PCMs in cavity enclosures. Due to the 

importance of natural convection heat transfer in enclosures, this phenomenon has been addressed 

in many of the recent studies such as Alsabery et al. [15, 16], Janagi et al. [17], Pop et al. [18], 

Zargartalebi et al. [19], and Sheikholeslami [20, 21]. 

The magnetic field can be the result of high-power transformers, current in batteries or 

microwave systems with a transient electrical load. In such systems, a phase change heatsink can 

be utilized for thermal management of the device in environments with low ventilation. The 

heatsink is the cavity enclosure with a potential of energy storage/release and the magnetic field is 

the device. A magnetic field can affect the convective heat transfer in an enclosure as a controlling 

mean for control of heat transfer rate. Considering the presence of a magnetic field, most of the 

available works have addressed the effect of the presence of a uniform or an inclined uniform 

magnetic field on the single-phase convection applications with no phase change. The presence of 

a uniform magnetic field induces volumetric forces on the moving electrical conducting fluid 
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proportional to the fluid velocity. For example, in the case of natural convection of a liquid fluid 

(with no phase change), Rashad et al. [22] investigated the entropy generation and heat transfer in 

an inclined cavity subject to a uniform magnetic field. Dogonchi et al. [23] conducted the 

numerical analysis of natural convection inside in the cavity containing inclined elliptical heater 

under shape factor of nanoparticles and magnetic field. Also, the natural convection heat transfer 

in a square enclosure with a wavy circular heater under magnetic field is studied by Dogonchi et 

al. [24]. Chamkha and Selimefendigil [25] investigated the Magnetohydrodynamic natural 

convection and entropy generation in a corrugated porous cavity using finite element method. 

Sheremet et al. [26] addressed the effect of magnetic field on the flow and heat transfer of 

nanofluids in a cavity filled with a porous media. Reddy and Murugesan [27] analyzed the 

influence of an inclined uniform magnetic field on the double-diffusive natural convection in a 

square cavity with the temperature difference at the vertical walls. The outcomes reveal that the 

increase of the magnetic-field-intensity decreases the heat and mass transfer in the cavity.  

Considering the melting and an inclined uniform magnetic field effect, Bondareva and 

Sheremet [28] addressed the melting heat transfer in a 2D square cavity subject to a uniform 

magnetic field. The vertical walls were at a constant cold temperature, and there was a constant 

temperature heat source at the bottom of the cavity. The other parts of the cavity walls were well 

insulated. At the initial time, the cavity was filled with a solid phase change material. Later, PCM 

started to phase change from the solid to liquid due to the energy of the heat source. The results 

showed that a symmetrical thermo-hydrodynamic structure was observed in the liquid at the 

beginning of the melting. The structure of this initial region is not under the influence of the 

magnetic field. However, as the molten region around the heat source starts to extend, the effect 

of the magnetic field becomes significant. The inclination angle of the magnetic field tends to 

reduce the symmetry of the molten zone.  

Later, Bondareva and Sheremet [29] extended their previous work presented in [28] to the 

case of a 3D cavity. They investigated the effect of an inclined uniform magnetic field on the 

melting heat transfer of gallium in a 3D cubic cavity. They studied a cavity bounded by two 

opposite isothermal cold vertical-walls while the other cavity walls were well insulated. There was 

a heat source with constant hot temperature, mounted at the bottom of the cavity. At the initial 

state, the gallium in the cavity was in a solid phase. So that, the melting commenced from the 

below of the cavity due to the energy of the heat source. The results show that the increase in the 
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intensity of the magnetic field reduces the convective heat transfer. For large values of the 

magnetic field, the natural convection can be suppressed, which leads to a stratified liquid around 

the heat source. Sheikholeslami and Rokni [30] investigated the melting behavior of CuO-water 

nanofluid in a cavity in the presence of an inclined uniform magnetic field.  

The uniform magnetic field can be produced as the result of a solenoid magnetic field. 

However, there are many cases, in which the magnetic field is variable in space. For example, the 

magnetic field around a wire is variable with the distance from the wire. The variable magnetic 

field, induced by a line magnetic source, has been addressed in some of the recent studies regarding 

the natural convective heat transfer in cavities with no phase-change heat transfer. Sheikholeslami 

et al. have addressed the effect of a point source magnetic field on the flow and heat transfer of 

Fe3O4-water nanofluid in a semi-annulus enclosure [31], a lid-driven semi annulus enclosure [32], 

a semi-rectangle enclosure [33] and circular cavity [34]. The outcomes show that the presence of 

the magnetic field decreases the heat transfer rate. Later, some researchers studied the natural 

convection heat transfer of nanofluids in a square cavity [35], a cavity with a hot pipe [36] and a 

wavy wall cavity [37] in the presence of a variable magnetic field. These authors [35-37] studied 

the effect of Rayleigh and Hartmann numbers on flow and heat transfer of Fe3O4-water nanofluid. 

The results show that the heat transfer is a decreasing function of the Lorentz force.  

From the theoretical point of view, the modeling of phase-change heat transfer in enclosures 

has been subject of two major approaches, the enthalpy-porosity methods and the phase change 

interface tracking methods. In the enthalpy-porosity method, it is assumed that the phase change 

occurs in a temperature range instead of an exact fusion temperature. So, the latent heat of phase 

change is included in the heat capacity of the phase-change medium. The momentum equation in 

liquid and solid regions is controlled by using source terms. The source terms affect the momentum 

in a way to allow free fluid motion in liquid regions, but they force the velocity to zero in solid 

regions. It should be noted that dealing with a temperature range instead of an exact fusion 

temperature is a modeling approximation which adds some modeling errors. This approximation 

error can be overcome by reducing the fusion temperature range; however, a narrow fusion 

temperature range results in some instability and convergence problems. Besides, a very high grid 

resolution is also required to capture the temperature gradients at the phase change interface.  

Another approach to model the phase-change is dividing the domain of the solution into pure 

solid and pure liquid phases, and hence, the phase change can occur at the interface of the two 
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regions at an exact fusion temperature. In this approach, the solid region shrinks and the liquid 

region expands as the melting process continues in time. Thus, an interface tracking system is 

required to follow the melting interface. Viswanath and Jaluria [38], Wintruff et al. [39] and Li et 

al. [40] discussed the advantage and drawbacks of these solution methods in details.  

Considering the enthalpy-porosity method, Sushobhan and Kar [41] studied the melting of 

nano-based phase change materials in a cavity for the applications of thermal energy storage. Yang 

et al. [42] analyzed the melting of gallium in a cavity with a temperature difference between the 

vertical walls. Ye [43] investigated the effect of the cavity aspect ratio on the melting behavior of 

phase change materials. The vertical walls of the cavity were subject to in isothermal hot 

temperature, and the top and bottom walls were adiabatic. The outcomes reveal that the aspect 

ratios significantly affect the time scale of melting phenomenon and the structure of the convection 

currents inside the cavity. Bondareva and Sheremet [28, 29] utilized the enthalpy-porosity method 

differently. They solved the momentum equations solely in grid cells with liquid, and they 

considered the cells with the solid as the boundaries for momentum equations. This way, they do 

not need to deal with source teams and convergence problems. However, this method has some 

drawbacks. For example, criteria for deciding the cell is solid or liquid are required. In every time 

step, the grid domain for momentum equations should be updated. In contrast, Hossain et al. [44] 

and Al-Jethelah et al. [45] utilized an interface tracking approach to model the melting flow and 

heat transfer in a porous space. 

The literature review shows that the line-source variable magnetic field has been studied in 

enclosures with single phase natural convective heat transfer in recent years. The uniform melting 

heat transfer (two-phase) has also been investigated in the literature. However, the effect of the 

line-source magnetic field on the melting heat transfer has not been addressed yet. To the best of 

the author’s knowledge, the present study is the first work to analyze the effects of the presence 

and location of a non-uniform magnetic source on the melting rate of an MHD phase change 

material utilizing advanced tracking method (moving grid method). 

 

 

2. Mathematical model  
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Fig. 1 illustrates the schematic view of the domain of interest selected for this study. A phase-

change solid substance with initial temperature Tf has filled the enclosure. As can be seen in Fig. 

1, the right wall and the left wall are in the hot and the cold isothermal temperatures of Th and Tc, 

respectively. The top and bottom bounds are well insulated. There is a magnetic source at the 

location of (x0, y0) outside the cavity. The intensity of the magnetic source is variable and decreases 

as the square of the distance with the source. The gravity and non-uniform magnetic body forces 

influence the entire of the enclosure domain. Due to the thermal buoyancy effects, there is a natural 

convection flow in the molten region. It is assumed that the thermo-physical properties in the 

molten and solid regions are independent of temperature except for the density which is modeled 

by the Boussinesq approximation. It is also assumed that the flow of the melted substance is 

laminar and Newtonian.  

  

 

Fig. 1.  Schematic view of the physical model and computational domain 

 

 Following the studies of Sheikholeslami et al. [31] and Sheikholeslami and Vajravelu [35], 

and the components of the intensity of the magnetic field along x and y axes introduced by 
*
xH  

and 
*
yH , respectively. The strength of the magnetic field, *H , can be written as follow: 
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( )

( ) ( )
0*

2 2

0 0
2x

y y
H

x x y y

−
=

 − + −


 (1-a) 

 
( )

( ) ( )
0*

2 2

0 0
2y

x x
H

x x y y

−
= −

 − + −


 (1-b) 

 ( )2 2 0.5
* * *

x yH H H= +  (1-c) 

 
In the relations introducing the magnetic field, Ȗ is the strength of the magnetic source in (x0, 

y0). Applying the above assumptions to derive the governing equations leads to the equations given 

below: 

 

Continuity equation: 

 0 =u  (2) 

where u is the velocity vector including u and v components along x and y directions. 

Momentum equation: 

 
2p

t
  +  = − +  +  

u
u u u F  (3) 

In this equation, F, the volume force, can be explained as follow 

 = +L BF F F  (4) 

where LF is Lorentz force that is related to the velocity field so that = LF J B . Here B is the 

magnetic induction vector with components of *
0x xB = ȝ H  and *

0y yB = ȝ H . J is also the voltage 

field. Three vectors of the magnetic induction, velocity and voltage are correlated by the equation 

given below: 

 ( ) = − + J u B  (5) 

The buoyancy force applied to the flow field is FB and is written as: 
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 ( )fȡgȕ T T= −BF  (6) 

Energy equation of liquid PCM: 

 ( ) 2 +.p ll

T
c T k T

t
Q  +  =   

u  (7) 

The magnetic field can lead to heat generation Q as known joule heating: 

 ( )2

y xQ uB Bv= −  (8) 

Energy equation of solid PCM: 

 ( ) 2
p ss

T
c k T

t
 

= 


 (9) 

The boundary conditions of the domain are presented as: 

 0,  0 ,  > 0 = 0, =  hx y L u v Tt T= → =  (10-a) 

 ,  0 ,  > 0 = 0, =  cx y L uL v T Tt=  → =  (10-b) 

 0,  0 ,  > 0 = 0, = 0 y x L u v T yt=  → =    (10-c) 

 ,  0 ,  > 0  = 0, = 0y x L u v T yL t=  → =    (10-d) 

 0,  0 ,  0 ,  > 0  = 0, = ft x L y L u v T Tt=   → =   (10-e) 

 

In order to evaluate the displacement velocity, and hence, the grid movement of the interface, 

the interfacial energy balance or Stefan condition is utilized: 

 l s sf
l s

T T
k k uh

x x
 

− =
 

 (11-a) 

 l s sf

l s

T T
k k vh

y y
 

− =
 

 (11-b) 

The dimensionless parameters, introduced as below, are employed to transfer the dimensional 

equations to dimensionless X-Y coordinates: 
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2

***

* * *
0 0

2

0
2

, , ,  ,

, ,

,

,  

,

=

c

l l c

x
X Y

l

l

h

y

T Tx y uL vL
X ⡻Y ⡻U V ⡻?ș

L L T T

HH tH
H ?

L p

⠎ ⡻H F

P
ȡ

H

 

o
LH H

  



−
= = = = =

−

= = =

=

 (12) 

where *
0 2H L=  . Substituting these parameters for the governing equations result in the 

appearance of the following dimensionless equations: 

 0
U V

X Y

 
+ =

 
 (13) 

 ( )
2

2
2

2 2
+ Y Y X

U U U P U U
U V Pr PrH U

Fo X Y X X
Ha H H

Y
V

      
+ = − + + −       

−  (14) 

 ( )
2 2

2
2

2
+ X X Y

V V V P V V
U V Pr H U RaPr

Fo X Y Y X Y
Ha Pr VH H 

      
+ = − + + − +       

− (15) 

 ( )
2 2

2
2

2

2
-+ Y XU V U

Fo X Y
EcHa  H V

Y
H

X

         
+ = + +      

 (16) 

 
2 2

2 2Fo X Y

     
= +    

 (17) 

where 

 

( )

( )
( )

0 0

2
,

= , = , =

, ,  

3
h f l

l l l l

sf h fl l

l p l h f l

gȕ T T L ıȣ
Ra   Pr  Ha H L

h T T
Ec Ste

c T T L k


   

 
  

−

−
= =

−

 (18) 

The boundary conditions in dimensionless coordinates X-Y are: 

 0,  0 ,  > 0  1 = 0, =1X Y Uo VF =  → =  (19-a) 

 ( ) ( )1,  0 ,  >1 = 0,  =0  c hf fX Y UFo T T T TV =  → = − −  (19-b) 

 0,  0 ,  > 0  1 = 0, = 0Y X U V YFo ș=  → =    (19-c) 

 1,  0 ,  > 0  1 = 0, = 0Y X U V YFo ș=  → =    (19-d) 

 1 1 = 0,0,  0 ,  0 0  = X Yo șUF V=   → =  (19-e) 
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Here, it is assumed that Tc=Tf, and hence, ș=0 at X=1. Besides, the dimensionless equations of 

movement of the solid-liquid interface can be written as  

 
l s

ș
U Ste

X

ș
X

  
−  

= 


 (20-a) 

 
l s

ș
V Ste

Y

ș
Y

  
−  

= 

 (20-b) 

The moving grid method requires an initial small region of liquid to be defined as the liquid 

region. Hence, at the initial state, one present of the length of the cavity is assumed in the melting 

phase with an initial non-dimensional temperature of zero. This assumption is required for dividing 

of the cavity into two domains of liquid and solid and commencing of the melting process. 

3. Numerical approach 

To solve the coupled and non-linear Eqs. (13)-(17) and the boundary conditions of Eqs. (19) 

and (20), the Galerkin finite element method is employed. The details of this method are well 

discussed in [46, 47]. The pressure term in momentum equations can be eliminated by a penalty 

function defined as follows: 

 
U V

P
X Y

  = +   
  (21) 

It is known that the continuity equation is satisfied, if Ȥ, namely penalty number, is a large 

value. Substituting this penalty function for pressure term gives the following equations: 

 

( )

2 2

2 2

2

+
X

Y Y X

U U U U V U U
U V Pr

Fo X Y X Y

Ha H VH

X Y

PrH U

           + = −  + + +             
−−

  (22) 

 

( )

2

2

2

2

2
+

X X YHa VH H

V V V U V V V
U V Pr

Fo X Y Y X Y X Y

PrH U RaPr

           + = −  + + +           

−
   

− +

 (23) 
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Employing a basis set   1

N

k k
ȟ

=
, the velocity components, and the temperature can be expanded 

such as: 

 ( ) ( ) ( )
1 1 1

, , , , ,
N N N

k k k k k k
k k k

U U ȟ X  Y V V ȟ X  Y   ȟ X  Y 
= = =

      (24) 

Since the basic functions of the variables ȟ are the same, the total grids number for all of the 

variables is N=3. The heat and fluid equations were coupled using the Newton method, and they 

were solved simultaneously using a MUltifrontal Massively Parallel Sparse (MUMPS) direct 

solver [48, 49]. The use of Galerkin finite element approach results in the non-linear residuals as 

below: 
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The Laplace equation was utilized to compute the grid motion. The motion of the phase change 

interface was controlled using the Stefan boundary condition. The motion of the vertical walls was 

fixed in a horizontal direction, but they were allowed to move in the vertical direction. In the same 

way, the motion of the horizontal walls was fixed in the vertical direction, but they were allowed 

to move in the horizontal direction. The fixed boundary conditions for horizontal and vertical walls 

forces the cavity to remain in its original form, but it also provides enough flexibility for the grid 

to move smoothly. A systematic re-meshing based on the general mesh quality is also employed 

to ensure the quality of the grid. The solution from the previous mesh was interpolated into the 

new mesh. The time step is automatically controlled using the Backward Differentiation Formula 

(BDF). The time step selected based on a free time steps scheme within BFD order in the range of 

one and two [50]. The following chart representing the algorithm of the numerical approach is 

depicted in Fig. 2.  
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Start

Initialize solution field U,V, ș and Mesh coordinates

Select an automatic time step using BDF scheme

Perform a re-meshing

Yes

NO

Solve Heat and Momentum Equations as fully coupled

Compute Stefan boundary condition and melting interface motion 

Solve the Laplace equation for grid motion

Stop

Is general 
mesh quality 

adequate?

Inner Loop 
Convergence? NO

Yes

Iteration within 
timestep

Liquid Volume 
Fraction Reached 

0.98?

Advance in Time

NO

Yes

 

Fig. 2.  Flow chart of the utilized numerical approach 

 

3.1 Grid test and verification 

In the numerical calculations, the study of grid independence is momentous so that the study 

is incomplete without doing this operation. For this purpose, the computational domain is divided 

into two regions: the melted liquid and the solid substances. A structured mesh with quadratic 

elements is used to discretize the melted liquid region while another region is discretized by 

employing unstructured mesh and triangular elements. The number of elements for both the liquid 

and solid regions is presented Table 1 for Ra = 2.1×105, Pr = 0.021, Ste = 0.039, Ha = 10, Y0 = 0.5,  
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Ec = 10-6. The liquid fraction, corresponding to various grid sizes of Table 1, is plotted in Fig. 3. 

It is observed that case III provides accurate results for the solution.  

Table 1. The grid sizes in the liquid and the solid regions 

Cases Case I Case II Case III Case IV Case V Case VI 

Grid size in solid 183 686 974 1597 1941 2275 

Grid size in liquid 20×20 40×40 60×60 80×80 100×100 120×120 

 

 

Fig. 3.  The dependency of the liquid fraction on the grid size  

 
The accuracy and correctness of the utilized code are evaluated by comparing the outcomes of 

the present work and those mentioned in [35, 47, 51–53]. Figs. 4–7 show these verifications and 

validations. The results show excellent accommodations between the outcomes of the present 

study and previous works.  

Figs. 4 and 5 depict admissible agreement with the results of the current work and those 

reported in the literature. The main reason for the discrepancies between the results is the fact that 

the phase change occurs at a fixed fusion temperature; however, using a fixed fusion temperature 

results in a discontinuity in the heat equation. Therefore, in the enthalpy-porosity method, the 

fusion occurs in a narrow temperature range. Capturing accurate fusion interface requires a narrow 

band of įș and a large value of Amush parameter. However, employing a narrow band of įș and a 
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large value of Amush significantly reduced the stability of the governing equation. Using a narrow 

band for fusion temperature demands a very fine grid. To reduce the computational cost, some 

researchers have used a larger fusion temperature and a small value of Amush. Therefore, the phase 

change interface reported by various researchers is not unique. In the present study, we utilized a 

new approach based on the deformed grid method, in which the phase change occurs at the exact 

fusion temperature with no need of using a phase change temperature band. Moreover, most of the 

experimental works have used mechanical methods to capture the phase change interface. For 

instance, Gau and Viskanta [53]utilized a mechanical probe to capture the melting interface. At 

the onset of phase change, the melting interface is unstable, and the measurement of the phase 

change interface using mechanical probes involves some degrees of deviation. 

 

 

Fig. 4.  Comparison between the results of current work and those  
reported in Bertrand et al. [52] 
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Fig. 5.  Comparison between the results of current work and those reported in literature [53] 
 
 

   

                                                    (a)                                              (b) 

Fig. 6.  Comparison between (a): streamlines and (b): isotherms of the current work (solid lines) 
and those reported (points) in Sathiyamoorthy and Chamkha [47] 
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                                          (a)                                                               (b) 
 
Fig. 7.  temperature and streamlines of the work done by (a): Sheikholeslami and Vajravelu [35] and 

(b): the current work 
 

4. Results and discussion  

This work aims to study the existence effects of the non-uniform magnetic field on the melting 

process driven by the natural convection. The impacts of strength (0 ≤ Ha ≤ 50) and location (0 ≤ 

Y0 ≤ 1) of the magnetic field on the mass fraction of the melted liquid are perused while the other 

parameters are kept constant so that Ra = 2.1×105, Pr = 0.021, Ste = 0.039 and Ec = 10-6.  

Fig. 7 depicts the deformable grid patterns during the melting process for various Fourier 

number when Ha = 30 and Y0 = 0.5. As depicted, the structured and unstructured grids are used to 

discretizing melted fluid and solid substances, respectively. It is worth mentioning that the 

employed code utilizes the re-meshing technique during melting progress to satisfy the accuracy 

of the results. As seen in this figure, a large grid-size is utilized in the solid region because there 

is no significant temperature gradient in the solid region. Moreover, the temperature of the 

interface and the cold wall are equal in solid region, and hence, the non-dimensional temperature 

in the solid domain is zero. 
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Fo=1 Fo=2 Fo=3 

   

Fo=4 Fo=5 Fo=6 

Fig. 7.  Display of the deformable mesh during the melting process 
 

Figs. 8-10 depict the melting front surface, streamlines and isotherms patterns of the melted 

liquid for the different Fourier and Hartman numbers when Y0 = 0.5. Increasing Fourier number 

develops the melted liquid region and the depth of the melting-front surface. It is obvious that an 

increase in Hartman number Ha descends the melted liquid space. The Lorenz force is acting as a 

resistance force and decreases the strength of the convection mechanism in the melting region, and 

hence, the increment of Hartman number descends the rate of melting. Additionally, the force of 

the magnetic source acts as a strong barrier for fluid motion next to the hot wall. However, the 

strength of the magnetic force drastically decreases as the distance between the magnetic source 

and the fluid increases. This phenomenon can decline the convection heat transfer from the hot 

wall.  
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(a) (b) (c) 

   

Fig. 8.  Display of streamlines and isotherms for Ha=0 and Y0 = 0.5 when Fourier number (Fo) 
is: (a): 0.5, (b): 2.5 and (c): 5 

 
(a) (b) (c) 

   

  

Fig. 9. Display of streamlines and isotherms for Ha=25 and Y0=0.5 when Fourier number (Fo) 
is: (a): 0.5, (b): 2.5 and (c): 5 
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(a) (b) (c) 

   

Fig. 10.  Display of streamlines and isotherms for Ha = 50 and Y0 = 0.5 when Fourier number 
(Fo) is: (a): 0.5, (b): 2.5 and (c): 5 

The impact of the Hartman number (Ha) on the melting process is studied using the melting-

front surfaces. Here, the melting-front surfaces are depicted as curves in 2D. Fig. 11 shows the 

melting-front surfaces. When Fo = 0.5, the variation of Hartman number does not show a 

significant effect on the melted liquid space. However, the effect of Hartman number on the 

melting front progress is notable when the Fourier number is high. The reason is that a direct 

relationship exists between the Lorentz force and the melted liquid velocity. Indeed, when the 

molten fraction is low, the motion of the fluid is bounded by the zero velocity at nearby walls. By 

the increase of Fourier number, the melted region expands, and the fluid has more freedom to 

move.  
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                                        (a)                                                                       (b) 

 

                                                                               (c) 

Fig. 11.  Melting front surface for various Hartman and Fourier numbers at different  

locations of the magnetic source: (a): Y0 = 0.0, (b): Y0 = 0.5 and (c): Y0 = 1.0. 

 

Fig. 12 depicts the effects of Hartman number on the liquid fraction as a function of the Fourier 

number when Y0 = 0.5. As depicted, when Fo is less than 1.15, it can be said that Hartman number 

does not induce a notable effect on the melted liquid fraction. This is because the Lorentz force is 

entirely dependent on the velocity. At this stage, the velocities are very low (near to zero), and 
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hence, the conduction heat transfer is dominant, this is the first stage which known as the 

conduction melting zone. The second stage in the process is dominated by heat convection melting 

and is utterly dependent on the Hartman number. The convection stage of melting lasts longer at 

higher Ha. This means that the increment of Ha decreases melted liquid fraction.  

 

 

 

Fig. 12. Liquid fraction as a function of Fourier number Fo  
for different Hartman numbers Ha 

  

Figs. 13-15 depicts the impacts of the magnetic source locations on the melting process at 

various Fourier numbers. As can be seen in Figs. 13-15, the magnetic source location does not 

show a notable effect on the melted liquid space and the depth of melting front for Fo = 0.5; 

however, the streamlines patterns are entirely affected by the source location. Additionally, it can 

be seen that the source location significantly impresses the depth of the melting front for further 

Fourier numbers. As previously mentioned, the force arising from the magnetic field depends on 

the velocity magnitude, and hence, the effectiveness of the source location is more evident at the 

higher Fourier numbers.   
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(a) (b) (c) 

   

Fig. 13. Display of streamlines and isotherms for Y0 = 0.0, Ha = 25 when Fourier number (Fo) is: 
(a): 0.5, (b): 2.5 and (c): 5 

 

 

  

 
(a) (b) (c) 

   

Fig. 14.  Display of streamlines and isotherms for Y0 = 0.5, Ha = 25 when Fourier number (Fo) 
is: (a): 0.5, (b): 2.5 and (c): 5 
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(a) (b) (c) 

   

Fig. 15. Display of streamlines and isotherms for Y0 = 1.0, Ha = 25 when Fourier number (Fo) is: 
(a): 0.5, (b): 2.5 and (c): 5 

 

The melting-front surfaces for the different values of Fourier number and the magnetic source 

locations are shown in Fig. 16 to demonstrate the effects of the source location on the melting front 

progress. Once again, when Fo = 0.5, the effect of the increase of Hartman number on the melted 

liquid space is not notable. However, the effect of Hartman number on the melting front progress 

is significant when Fourier number is high. The reason is that there exists a direct relationship 

between the Lorentz force and the melted liquid velocity increasing with Fourier number. 

Considering Fo = 2.5, when the magnetic source is located next to the bottom of the cavity, the 

below parts of the melting interface are under the significant influence of the magnetic force, and 

hence, the melting interface from Y0 = 0 to Y0 = 0.5 is almost a straight line which shows a 

conduction-dominant mechanism. Relocating the magnetic source to the middle and top of the 

cavity reduces the effect of the magnetic on the downside parts of the melting interface. When the 

magnetic source is at the bottom of the cavity, the top parts of the interface are in a large distance 

from the magnetic source, and hence, the fluid would experience a lower magnetic resistant force 

at the top parts of the cavity. Hence, the fluid velocity increases and the convection mechanism 
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enhances in this zone. As a result, the top part of the melting interface is further advanced in the 

solid zone, X ၉ 0.6. In contrast, when the magnetic source is in the middle or top of the cavity, the 

fluid would experience a large magnetic force, and as a result, the convection heat transfer reduces. 

As seen, in this case, the top section of the melting interface is located at X ၉ 0.5.  

 

 

Fig. 16.  Melting front surface for different locations of the  

magnetic source when Ha = 25 

 

Fig. 17 (a) depicts the effects of source magnetic location on the liquid fraction as a function 

of Fourier number for Ha = 25. As shown, when Fo is less than 2.8, the source location does not 

alter the melted liquid fraction. As previously mentioned, the first stage is dominated by heat 

conduction melting. In the convection stage of melting and for Y0 < 0.4, there is not a specific trend 

as Y0 approaches 0.4. Whereas, when Y0 > 0.4, an increment of Y0  increases the liquid fraction. 

Moreover, Fig. 17 (b) illustrates that the required time for full melting is the highest when Y0 = 0.2. 

However, the required full melting time is the lowest when the source is located at Y0 = 1.0. It 
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worth noting that the liquid fraction of 0.98 is considered as the criterion in which the PCM is fully 

melted. 

 

   

                                      (a)                                                                       (b) 

Fig. 17.  Melting fraction and required time; (a): Liquid fraction as a function of Fo and (b):  

The time required to complete melting for different values of Y0 

 

5. Conclusion 

The melting flow and heat transfer in a cavity under the influence of a line-source magnetic 

field was addressed in this work. The cavity was divided into two domains of liquid and solid 

PCMs. The governing equations in the melting (liquid) part of the cavity were fluid continuity, the 

laminar momentum equations, and the heat equation. The governing equation in the solid domain 

was solely the heat transfer in solids. The phase change effect was introduced at the interface of 

the liquid and solid domains by considering a constant fusion temperature at the interface. Then, 

the displacement of the interface was linked to the heat transfer at the domain interface based on 

interfacial energy balance. The difference of energies reaching the interface from the liquid and 

solid domains resulted in the phase change and displacement of the interface (Stefan condition). 
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The governing equations were transformed in a non-dimensional form to generalize the solutions. 

The finite element method associated with ALE moving grid technique was utilized to solve the 

governing equations. The grid check was performed, and the results in some limited cases were 

compared with the available literature and found in good agreement. The effect of the magnitude 

of the magnetic field and the magnetic source location on the melting behavior of PCMs were 

investigated. The outcomes can be summarized as follows: 

1- The moving grid technique is capable of handling phase change heat transfer in a cavity 

enclosure. 

2- The magnitude and location of the magnetic field source do not show a significant effect 

on the natural convection heat transfer at the initial melting times, but with the 

advancement of the melting-front and the increase of the melt volume fraction, the velocity 

of the fluid increases and the effect of magnetic field boosts.  

3- The magnetic field tends to suppress the natural convective flows and make the melting 

interface uniform. The location of the magnetic source can affect the shape of the melting 

front. 

By utilizing a uniform magnetic field, the control of the melting interface is only possible by 

suppressing the natural convection in the entire liquid domain. In contrast, the line source variable 

magnetic field provides a good way of adjusting the location of the magnetic source for controlling 

the melting process. The focus of the present study was the analysis of the melting process subject 

to a variable magnetic field; however, the solidification process is also essential in the design of 

PCM containers and metal casting. Hence, analysis of solidification of PCMs subject to the 

variable point-source magnetic field can be subject of future studies.  
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