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Robust Energy-Efficient Design for MISO

Non-Orthogonal Multiple Access Systems
Faezeh Alavi, Kanapathippillai Cumanan, Milad Fozooni, Zhiguo Ding, Sangarapillai Lambotharan and

Octavia A. Dobre

Abstract—Non-orthogonal multiple access (NOMA) has been
envisioned as a promising multiple access technique for 5G and
beyond wireless networks due to its significant enhancement
of spectral efficiency. In this paper, we investigate a robust
energy efficiency design for multi-user multiple-input single-
output (MISO) NOMA systems where imperfect channel state
information is available at the base station. A clustering algorithm
is applied to group the users into different clusters, and then
NOMA technique is employed to share the available resources
fairly among the users in each cluster. To remove the interference
between clusters, two different types of zero-forcing (ZF) designs,
namely, hybrid-ZF and full-ZF are employed at the BS. The
full-ZF scheme completely removes the interference leakage at
the cost of more number of antennas and the hybrid-ZF scheme
partially mitigates the interference leakage. To solve the problem,
the Dinkelbach’s algorithm is employed to convert the non-linear
fractional programming problem into a simple subtractive form.
Finally, simulation results reveal that hybrid-ZF outperforms the
full-ZF scheme with a few clusters, while full-ZF shows a better
performance with the higher number of clusters. The numerical
results confirm that our proposed robust scheme outperforms the
non-robust scheme in terms of the rate-satisfaction ratio at each
user.

Index Terms—Convex optimization, Multiple-input single-
output (MISO), Non-orthogonal multiple access (NOMA), Robust
energy efficiency (EE), Worst-case performance optimization,
Zero-forcing (ZF).

I. INTRODUCTION

In recent years, mobile communication technologies have

been facing various key challenges, such as increasing demand

for high data rate services, massive connectivity requirements

and scarcity of radio resources, which need to be addressed

in the next generation of wireless networks [1]–[6]. On the

other hand, this explosive growth of data traffic has triggered a

rapid increase in energy consumption. The statistics show that

the information and communication technology infrastructures

consume more than 3% of the world-wide energy consumption
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[7]. Hence, an appropriate performance metric is required

to strike a good balance between the achievable data rate

and power consumption. To this end, energy efficiency (EE),

defined as the number of bits that can be reliably transmitted

per Joule of energy consumption, has been recently consid-

ered as one of the key performance metrics to evaluate the

performance of communication networks [8], [9].

To accommodate a large number of connected devices with

higher data rates, non-orthogonal multiple access (NOMA) has

been recently advocated as a prospective candidate for multiple

access technique in the fifth generation (5G) and beyond wire-

less networks [10]–[16]. In NOMA, multiple users can share

the same wireless resources, i.e., time, frequency and code

domains by applying superposition coding (SC) and power do-

main multiplexing at the transmitter. More specifically, NOMA

allocates higher transmit power to the users with poor channel

conditions, while the users with better channel conditions are

served with less transmit power. Then, successive interference

cancellation (SIC) technique is employed at the receiver for

multi-user detection. In other words, NOMA mitigates the in-

terference through a non-orthogonal approach to significantly

increase the system throughput while introducing an affordable

additional complexity at the receiver [12]. As a result, more

mobile terminals can be served simultaneously with higher

spectral efficiency (SE). Hence, NOMA has recently attracted

a considerable amount of research interests from both industry

and academia, thanks to its great potential capabilities in future

wireless networks.

A. Literature

Most of the existing works on NOMA in the literature

mainly focuses on improving the overall SE of communication

systems [17]–[22]. However, there is a dearth of literature

considering the EE which has been identified as one of the

key performance metrics in future wireless networks. The

EE of NOMA systems was investigated in [23] for a given

statistical channel state information (CSI) at the transmitter. A

crucial step forward was followed in [24] to maximize the

EE of downlink NOMA systems by recalling a non-linear

fractional programming method. In addition, the authors in

[25] proposed a power allocation and subchannel assignment

to maximize the EE in NOMA networks by assigning only two

users per subchannel. The joint user scheduling and power

allocation in this context was further explored in [26], [27]

under the assumption of imperfect CSI. In [26], it was assumed

that only two users can be multiplexed on each subchannel

whereas a general case with more number of users on same



2

subchannel was developed in [27]. These results confirmed

that the NOMA system can achieve a better performance in

terms of sum rate and EE compared to the conventional orthog-

onal multiple access (OMA) systems, for example orthogonal

frequency-division multiple access (OFDMA). An energy-

efficient power and bandwidth allocations were derived in [28]

for a NOMA system which has multiple subchannels with

unequal bandwidth. Some other related works can be found in

[29], [30]. In [29], the authors proposed two user scheduling

schemes combined with a power allocation scheme to enhance

the EE in the multiple-input multiple-output (MIMO) NOMA

system. As such, another optimal power allocation strategy has

been proposed in [30] to solve the EE maximization problem

for a multi-cluster multi-user MIMO-NOMA system.

Most existing research works on NOMA scheme have

assumed that perfect CSI is available at the base stations (BSs)

[31]–[34] which is not a realistic assumption in practice due to

estimation and quantization errors, or inevitable delays in feed-

back links. Furthermore, the channel uncertainties can deteri-

orate the performance of SIC-based receivers where the users

are sorted with respect to their channel gains [35]. Hence, it is

of paramount importance to incorporate CSI uncertainties into

problem formulations of NOMA-based networks to guarantee

the required quality-of-service (QoS) at different users. To this

end, robust design is a standard approach to tackle the channel

uncertainties [36]–[38] and it can be categorized primarily

into two groups: I) worst-case design with norm-bounded

channel uncertainties, where CSI errors are bounded within

a known region [39], [40]; II) outage probability-based design

by assuming that the channel errors are random variables

with a known probability density function which is available

at the transmitter [41], [42]. In [43], [44], robust designs

for the multiple-input single-output (MISO) NOMA systems

have been developed to maximize the sum rate and minimize

the total transmit power, under the assumption of bounded

channel uncertainties. An outage probability-based design has

been proposed in [45] to minimize the total required transmit

power in MISO NOMA systems. Motivated by the above

discussion, we focus on robust resource allocation schemes

to appropriately address the impact of channel uncertainties

on EE of a MISO NOMA system. In [46], a worst-case

rate maximization problem is investigated in downlink MIMO

NOMA networks which is solved by using cutting-set method

with alternating optimization and pessimization steps.

B. Contributions

In this paper, we consider a downlink transmission of

NOMA wireless network where a BS equipped with multiple

antennas serves a set of single-antenna users that are uniformly

distributed within a cell. By employing a clustering algorithm,

the users are grouped into several clusters with two users per

cluster. We consider a bounded channel uncertainty model to

define the CSI errors, and design the beamfomers to optimize

the worst-case EE problem. To the best of the authors’

knowledge, the resource allocation problem that maximizes

the robust EE has not been studied in the literature for MISO

NOMA systems. The main contributions of this work are

summarized as follows:

1) Having defined the system EE as the ratio between total

sum rate and total power consumption, we focus on the

robust EE maximization problem for a downlink MISO

system, relying on NOMA principles in each cluster.

The QoS requirement of each user is also included and

guaranteed by an individual minimum data rate.

2) To incorporate practical scenarios, we assume that only

the imperfect CSI is available at the BS and the channel

uncertainties are bounded by predefined ellipsoids. Then,

we consider the worst-case EE to ensure providing a

required QoS at each user regardless of the channel

uncertainties.

3) To effectively mitigate mutual interferences among dif-

ferent clusters, we present two different zero-forcing

(ZF) schemes for the beamforming design, namely, I)

hybrid-ZF and II) full-ZF. Although the full-ZF scheme

can completely remove the interference between different

clusters, it requires more number of transmit antennas at

BS than that of the hybrid-ZF scheme to serve the same

number of users. By increasing the number of clusters,

the residual interference increases, and hence, the full-ZF

approach can achieve a better performance in terms of EE

as the residual interference can be completely cancelled.

4) To solve the power allocation problem, we cast the orig-

inal problem in hand by considering the lower bound of

SINR to present the constraints in a more tractable form.

Then, an iterative algorithm is developed to transform

the non-convex problem into sequential convex problems,

which can be tackled by means of the standard power

allocation techniques in each iteration. In particular, the

Dinkelbach’s algorithm is employed in each iteration to

convert the non-linear fractional programming problem

into a simple subtractive form.

C. Paper Organization

The rest of the paper is structured as follows. In Section

II, we describe the system model and the hybrid-ZF scheme

for beamforming design, while the robust EE design under

the channel uncertainties is delineated in Section III. The full-

ZF scheme is motivated and developed in Section IV. Finally,

numerical results to validate the effectiveness of the proposed

schemes are provided in Section V, before concluding the

paper in Section VI.

D. Notation

Throughout this paper, we use lowercase boldface letters

for vectors and uppercase boldface letters for matrices. The

conjugate transpose and inverse of a matrix are denoted

by (·)H and (·)−1, respectively. The symbol Cn shows the

n-dimensional complex space, and R+ represents the non-

negative real numbers. The Euclidean norm of a vector is

denoted by ∥ · ∥, and | · | represents the absolute value of

a complex number. The notation (x)+ stands for max(0, x),
while N and CN denote a real and complex Gaussian random

variable, respectively.
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Fig. 1. A MISO NOMA system with K clusters and two users per cluster.

II. SYSTEM MODEL

We consider a MISO NOMA downlink transmission where

a BS equipped with N antennas intends to communicate

with 2K single antenna users. All users are grouped into K

clusters (K ≤ N) with two users per cluster by employing the

clustering algorithm [47], [48]. Note that the number of users

in a cluster can be more than two; however, we assume only

two users in each cluster for the sake of brevity. The lth user

in the kth cluster is denoted by Ul,k, for all k ∈ {1, . . . ,K}
and l = 1, 2. Let hl,k ∈ CN×1 represent the channel vector

from the BS to Ul,k, which can be modeled as χ
√

d−α
l,k [49],

where χ denotes the Rayleigh fading channel gain, dl,k is

the distance between the BS and Ul,k, and α represents the

path loss exponent. For user pairing, we apply the clustering

algorithm in [47] which is based on the channel correlation,
|hT

i hj |
∥hi∥ ∥hj∥

, and gain difference,
∣∣ ∥hi∥ − ∥hj∥

∣∣, between two

users i and j. This algorithm selects two users that have a

high correlation and a large channel gain difference in each

cluster.

Among two users in a cluster, we consider U2,k has a higher

channel gain than U1,k, so that ∥h1,k∥ ≤ ∥h2,k∥, ∀k. The

users in each cluster are supported by a NOMA beamform-

ing vector to share the same time-frequency block but with

different power levels through power domain multiplexing.

Motivated by realistic scenarios in practice, we assume that

the perfect CSI is not available at the transmitter due to

quantization, channel estimation errors and feedback delays.

Hence, we model the actual channel by the worst-case model

[44], [50], [51], and incorporate the norm-bounded channel

uncertainties in our analysis such that

hl,k = ĥl,k +∆ĥl,k, (1)

where ĥl,k is the estimated channel, and ∆ĥl,k is the corre-

sponding channel uncertainty. In this model, it is assumed that

∆ĥl,k is confined in a certain region, i.e., ∥∆ĥl,k∥ ≤ ε.

Let wk and pl,k denote the beamforming vector steering

towards the kth cluster and the transmit power allocated to

user Ul,k, respectively. From the NOMA protocol, the BS

broadcasts the superposition coded users’ signals as

x =

K∑

k=1

wk(
√
p1,k s1,k +

√
p2,k s2,k), (2)

where s1,k and s2,k are the unit power information symbols

for the weak and strong users, respectively. Thus, the received

signals at the weak user U1,k and the strong user U2,k are

given by

y1,k =h
H
1,kx+ n1,k, (3)

y2,k =h
H
2,kx+ n2,k, (4)

where nl,k ∼ CN (0, σ2) for l = 1, 2 is zero-mean additive

white Gaussian noise with variance σ2. By utilizing the SIC

at the receivers, U2,k decodes and removes the data of U1,k

from the aggregated received signal y2,k, and then, decodes

its own data.

Next, we utilize the ZF beamformer at the BS to eliminate

the interference between clusters by deploying N ≥ K

antennas at the BS. To this end, the beamforming vector is

designed based on the user’s channel, ĥl,m, and fulfills the

following conditions:

ĥ
H
l,mwk = 0, ∀m ̸= k. (5)

Note that when there are K ≤ N < 2K − 1 antennas at

the BS, it is not possible to simultaneously satisfy (5) for both

channel vectors ĥi,m and ĥ2,m. Therefore, if it is assumed that

the channel ĥl,m is aligned with one of these users’ channels,

while the other user will suffer from the interference caused

by transmission of signals to other clusters. Consequently, this

residual interference can severely degrade the performance of

SIC at the strong user to decode the weaker user’s signal [47].

Therefore, to efficiently implement SIC, beamforming vectors
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are generated based on the channels of the stronger users ĥ2,m,

to satisfy the condition in (5) such that

ĥ
H
2,mwk = 0, ∀m ̸= k. (6)

However, note that ĥ
H
1,mwk ̸= 0, for any m ̸= k, which

is the source of residual interference. Since there is residual

interference for the the weak user, we refer this scheme as

a hybrid-ZF scheme. By defining H = [ĥ2,1 · · · ĥ2,K ], the

beamforming vector can be obtained as

W = [w1 · · · wK ] = H
† = H(HH

H)−1, (7)

where H
† denotes the pseudo-inverse of the matrix H, and

wk is the beamforming vector for the kth cluster. Therefore,

the received signal at U2,k can be written as

y2,k =h
H
2,kwk(

√
p1,k s1,k +

√
p2,k s2,k)

+ ∆ĥ
H

2,k

∑

j ̸=k

wj(
√
p1,j s1,j +

√
p2,j s2,j) + n2,k,

(8)

where the second term in (8) refers to the residual interference

which cannot be completely removed during the ZF process

due to imperfect CSI [43]. Overall, the signal-to-interference-

and-noise ratio (SINR) at the strong user to decode the weak

user’s signal is given by

SINR
(1)
2,k=

p1,k|hH
2,kwk|2

p2,k|hH
2,kwk|2︸ ︷︷ ︸

intra-cluster interference

+
∑

j ̸=k

|∆ĥ
H

2,kwj |2(p1,j+p2,j)

︸ ︷︷ ︸
residual interference due to imperfect CSI

+σ2
,

(9)

and after removing the weak user’s signal via SIC technique,

the strong user achieves the SINR in (10). The first term of

the denominator in (10) is considered due to the fact that the

stronger user cannot completely remove the detected weaker

user’s signal during the SIC process. At the other end, the

SINR of weak user to decode its own signal is given by

SINR
(1)
1,k=

p1,k|hH
1,kwk|2

p2,k|hH
1,kwk|2︸ ︷︷ ︸

intra-cluster interference

+
∑

j ̸=k

|hH
1,kwj |2(p1,j+p2,j)

︸ ︷︷ ︸
residual interference

+σ2
.

(11)

Thus, the achievable rate at U1,k and U2,k can be respec-

tively defined as follows [17]:

R1,k = log2
(
1 + min{ inf

∆ĥ1,k

SINR
(1)
1,k, inf

∆ĥ2,k

SINR
(1)
2,k}

)
,

(12)

R2,k = log2(1 + inf
∆ĥ2,k

SINR
(2)
2,k). (13)

III. ROBUST ENERGY EFFICIENCY MAXIMIZATION

In this section, we develop a robust energy-efficient power

allocation scheme for a MISO NOMA system by incorporating

the inevitable channel uncertainties. First, we define the EE

formulation and then use it to model the worst-case power

optimization problem. After applying a set of appropriate lem-

mas to transform the non-convex problem into a convex one,

we solve the obtained problem by employing the Dinkelbach’s

algorithm.

A. Problem Formulation

To design an energy-efficient system, we consider a global

EE which is defined as the ratio of the achievable sum rate

of the system (bits/s/Hz) and the total power consumption

(Watt). The overall EE of the NOMA system with the worst-

case performance design can be mathematically expressed

in (14), where Pc is the power dissipated in circuit blocks.

Accordingly, the optimization problem can be formulated

to determine the transmit power allocation that maximizes

the worst-case EE under limited power budget and the QoS

constraint for each user as follows:

max
p1,k,p2,k

EE, (15a)

s.t.

K∑

k=1

(p1,k + p2,k) ≤ Pmax, (15b)

R1,k ≥ Rmin, R2,k ≥ Rmin, ∀k, (15c)

where Pmax is the maximum transmit power available at the

BS and Rmin is the minimum required data rate for each user.

This optimization problem is a non-convex and non-linear

fractional programming problem. To solve this EE maximiza-

tion problem, we present an iterative approach, where the

Dinkelbach’s algorithm is employed to optimize an approx-

imated convex problem.

B. Power Allocation Design

In this subsection, we propose a power allocation scheme

that maximizes the robust EE through an iterative algorithm.

First, we introduce variables {γ1,k, γ2,k} ∈ R+ to further

simplify the optimization problem in (15) as follows:

max
γ1,k,γ2,k,p1,k,p2,k

∑K
k=1

(
log2(1 + γ1,k) + log2(1 + γ2,k)

)
∑K

k=1(p1,k + p2,k) + Pc

,

(16a)

s.t.

K∑

k=1

(p1,k + p2,k) ≤ Pmax, (16b)

γmin ≤ γ1,k ≤ min{ inf
∆ĥ1,k

SINR
(1)
1,k, inf

∆ĥ2,k

SINR
(1)
2,k}, ∀k,

(16c)

γmin ≤ γ2,k ≤ inf
∆ĥ2,k

SINR
(2)
2,k, ∀k, (16d)

where γmin = 2R
min − 1 is the minimum required SINR at

each user. The equivalent problem in (16) is still non-convex
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SINR
(2)
2,k =

p2,k|hH
2,kwk|2

p1,k|∆ĥ
H

2,kwk|2︸ ︷︷ ︸
intra-cluster interference due to imperfect CSI

+
∑

j ̸=k

|∆ĥ
H

2,kwj |2(p1,j + p2,j)

︸ ︷︷ ︸
residual interference due to imperfect CSI

+σ2
. (10)

EE =

∑K
k=1(R1,k +R2,k)∑K

k=1(p1,k + p2,k) + Pc

=

∑K
k=1

(
log2

(
1 + min{ inf

∆ĥ1,k

SINR
(1)
1,k, inf

∆ĥ2,k

SINR
(1)
2,k}

)
+ log2(1 + inf

∆ĥ2,k

SINR
(2)
2,k)
)

∑K
k=1(p1,k + p2,k) + Pc

.

(14)

and NP-hard. As there is a common parameter ∆ĥl,k in both

numerator and denominator of the SINR expression, the con-

straints in (16c) and (16d) are intractable. To circumvent this

issue, we consider their lower bounds through the following

lemma:

Lemma 1: Consider

SINR
(j)
i,k =

pj |(ĥi,k +∆ĥi,k)
H
wk|2∑

n pn|(ĥi,k +∆ĥi,k)Hwn|2 +
∑

m pm|∆ĥH
i,kwm|2 + σ2

which represents the SINR at the ith user in the kth clus-

ter to decode the jth user’s signal. A lower bound of

inf∆ĥi,k
(SINR

(j)
i,k) can be expressed as

φi,k =
pj fk

i,k∑
n pn gni,k +

∑
m pm gmi,k + σ2

, (17)

where

fk
i,k =

∣∣∣∣
(∣∣ĥH

i,kwk

∣∣− ε∥wk∥
)+∣∣∣∣

2

, (18)

gni,k =

∣∣∣∣
∣∣ĥH

i,kwn

∣∣+ ε∥wn∥
∣∣∣∣
2

, (19)

gmi,k =
(
ε∥wm∥

)2
. (20)

Proof: Please refer to Appendix A.

By applying the lower bound function φi,k in (17), to the

main problem (16) the following optimization problem can be

formulated:

max
γ1,k,γ2,k,p1,k,p2,k

∑K
k=1

(
log2(1 + γ1,k) + log2(1 + γ2,k)

)
∑K

k=1(p1,k + p2,k) + Pc

,

(21a)

s.t.

K∑

k=1

(p1,k + p2,k) ≤ Pmax, (21b)

γ1,k ≤
p1,k fk

1,k

p2,kg
k
1,k +

∑
m ̸=k(p1,m + p2,m)gm1,k + σ2

, ∀k,

(21c)

γ1,k ≤
p1,k fk

2,k

p2,kg
k
2,k +

∑
m ̸=k(p1,m + p2,m)gm2,k + σ2

, ∀k,

(21d)

γ2,k ≤
p2,k fk

2,k

p1,kg
k
2,k +

∑
m ̸=k(p1,m + p2,m)gm2,k + σ2

, ∀k,

(21e)

γmin ≤ γ1,k, γmin ≤ γ2,k, ∀k. (21f)

Although all the constraints in (21) can be rearranged as

standard posynomials, this problem cannot be formulated as

a geometric program (GP) as the objective function cannot

be written as a posynomial function. To solve this fractional

programming problem, we employ the Dinkelbach’s algorithm

which converts a non-linear fractional optimization problem

into an equivalent and a tractable problem. For more details,

please refer to Appendix B.

TABLE I
DINKELBACH’S ALGORITHM

Algorithm 1 Dinkelbach’s Algorithm

1. Initialization: Set ϵ > 0, n = 0, λn = 0,
2. repeat
3. x

∗

n
= argmax

x

{f(xn)− λng(xn)},
4. F (λn) = f(x∗

n
)− λng(x∗

n
),

5. λn+1 =
f(x∗

n
)

g(x∗

n
)

,

6. n = n+ 1,
7. until F (λn) < ϵ.

According to the requirement of Dinkelbach’s algorithm, we

have to reformulate the problem in (21) in a concave-convex

fractional problem (CCFP) form to apply this algorithm. To

deal with the non-convex nature of constraints in (21c)-(21e),
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we introduce new variables ϑ1,k, ϑ2,k and ϑk and redefine the

corresponding constraints in the following inequalities:

(21c)⇒
{
γ1,kϑ1,k≤p1,kf

k
1,k,

p2,kg
k
1,k +

∑
m ̸=k(p1,m+p2,m)gm1,k+σ2≤ϑ1,k,

∀k,
(22)

(21d)⇒
{
γ1,kϑ2,k≤p1,kf

k
2,k,

p2,kg
k
2,k+

∑
m ̸=k(p1,m+p2,m)gm2,k+σ2≤ϑ2,k,

∀k,
(23)

(21e)⇒
{
γ2,k ϑk≤p2,kf

k
2,k,

p1,kg
k
2,k+

∑
m ̸=k(p1,m+p2,m)gm2,k+σ2≤ϑk,

∀k.
(24)

Next, to deal with the product of optimization variables in

(22)-(24), we utilize the following expression:

γi,k ϑj,k =
1

4

[
(γi,k + ϑj,k)

2 − (γi,k − ϑj,k)
2
]
. (25)

Then, the second quadratic term can be approximated by

the first order Taylor series around γ
(t)
i,k and ϑ

(t)
j,k. As such,

the product of two variables can be transformed into a convex

term as

γi,k ϑj,k ≈ 1

4
(γi,k + ϑj,k)

2 − 1

4
[(γ

(t)
i,k − ϑ

(t)
j,k)

2

+ 2(γ
(t)
i,k − ϑ

(t)
j,k)(γi,k − γ

(t)
i,k − ϑj,k + ϑ

(t)
j,k)]

, G(γi,k ϑj,k, γ
(t)
i,k ϑ

(t)
j,k). (26)

By recalling the above approximation and applying the Dinkel-

bach’s algorithm, we should treat the following optimization

problem in the tth iteration:

max
p1,k,p2,k,A

K∑

k=1

(
log2(1 + γ1,k) + log2(1 + γ2,k)

)

− λn

(
K∑

k=1

(p1,k + p2,k) + Pc

)
, (27a)

s.t.

K∑

k=1

(p1,k + p2,k) ≤ Pmax, (27b)

G(γ1,k ϑ1,k, γ
(t)
1,k ϑ

(t)
1,k)≤p1,kf

k
1,k, ∀k, (27c)

p2,kg
k
1,k+

∑

m ̸=k

(p1,m + p2,m)gm1,k+σ2≤ϑ1,k, ∀k, (27d)

G(γ1,k ϑ2,k, γ
(t)
1,k ϑ

(t)
2,k)≤p1,kf

k
2,k, ∀k, (27e)

p2,kg
k
2,k+

∑

m ̸=k

(p1,m + p2,m)gm2,k + σ2≤ϑ2,k, ∀k, (27f)

G(γ2,k ϑk, γ
(t)
2,k ϑ

(t)
k )≤p2,kf

k
2,k, ∀k, (27g)

p1,kg
k
2,k+

∑

m ̸=k

(p1,m + p2,m)gm2,k+σ2≤ϑk, ∀k, (27h)

γmin ≤ γ1,k, γmin ≤ γ2,k, ∀k, (27i)

TABLE II
ENERGY EFFICIENCY MAXIMIZATION

ALGORITHM

Algorithm 2 Energy Efficiency Maximization Algorithm

1. Initialize Λ
(0) to a feasible value of (21), and set t = 0,

2. repeat
Solve (27a) by using Dinkelbach’s algorithm,

Set Λ(t+1) = A
∗,

Update t = t+ 1,
3. until required accuracy or maximum number of iterations.

where A , {γ1,k, γ2,k, ϑ1,k, ϑ2,k, ϑk}. For notational simplic-

ity, all the variables that are used in the approximations of the

product of two variables in tth iteration are defined as

Λ
(t) , {γ(t)

1,k, γ
(t)
2,k, ϑ

(t)
1,k, ϑ

(t)
2,k, ϑ

(t)
k }. (28)

Since the problem in (27a) approximates the problem in

(21) around Λ
(t), we should iteratively solve the problem

in (27a) for different values of Λ
(t) and update the ap-

proximations to obtain the best local solution. Towards this

end, if the solution of problem (27a) in the tth iteration is

A
∗ , {γ∗

1,k, γ
∗
2,k, ϑ

∗
1,k, ϑ

∗
2,k, ϑ

∗
k}, it is considered as the initial

point of the next iteration, i.e., Λ
(t+1), until the algorithm

converges. The pseudo-code of the proposed iterative algo-

rithm is summarized in Table II. Furthermore, the minimum

threshold to terminate the algorithm is chosen as the difference

between two successive values of achieved EE or the number

of iterations is reached to a predefined maximum value.

C. Feasibility of Problem (15)

It is worth mentioning that before solving the problem in

(15), it is important to check the feasibility of the problem.

Note that the minimum data rate constraints in (15c) might

be unattainable at all users if the available total power is

not sufficient at the BS. Hence, there exists a minimum

required transmit power Pmin which satisfies minimum data

rate requirement for each user and makes the problem in

(15) feasible only under the condition Pmax ≥ Pmin. Thus,

it is important to determine a feasible range of Pmax that

should be able to provide the data rate requirements at each

user. To obtain Pmin, we formulate an auxiliary optimization

problem that determines the minimum required transmit power

to satisfy the minimum data rate requirement for all users as

Pmin = min
p1,k,p2,k

K∑

k=1

(p1,k + p2,k), (29a)

s.t. R1,k ≥ Rmin, R2,k ≥ Rmin, ∀k. (29b)

This optimization problem can be converted into a linear pro-

gramming problem by invoking the same technique discussed

for solving the main problem in (15). By obtaining the Pmin

from the problem (29), the feasibility of problem in (15) can be

determined. With Pmax ≥ Pmin, the problem in (15) is feasible

and the power allocation can be determined to maximize the

EE of the system while satisfying all the constraints.
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IV. FULL-ZF BEAMFORMING SCHEME

In this section, we present the full-ZF beamforming scheme

to completely mitigate the interference between clusters. In

particular, it is assumed that the number of antennas employed

at the BS is N ≥ 2K − 1, which provides sufficient degrees

of freedom for the ZF beamformer to completely remove the

residual interference [52]:

ĥ
H
l,jwk = 0, ∀j ̸= k, l = 1, 2. (30)

To design the beamforming vector by satisfying the conditions

in (30), we define

Hk = [Ĥ1 · · · Ĥk−1 Ĥk+1 · · · ĤK ], (31)

where Ĥk = [ĥ1,k ĥ2,k]. Then, the null space of the matrix

Hk can be utilized for the beamforming vector wk which

results in H
H
k wk = 0. By exploiting this condition, referred

to as full-ZF beamformer, the aggregated received signal at

Ul,k is given by

yl,k = h
H
l,kwk(

√
p1,k s1,k +

√
p2,k s2,k)

+∆ĥ
H

l,k

∑

j ̸=k

wj(
√
p1,js1,j+

√
p2,js2,j) + nl,k, l = 1, 2,

(32)

where the second term in (32) shows the impact of imperfect

CSI on ZF design. Hence, the SINR at the weak user to decode

its own signal can be defined as

S̃INR
(1)

1,k=
p1,k|hH

1,kwk|2

p2,k|hH
1,kwk|2︸ ︷︷ ︸

intra-cluster interference

+
∑

j ̸=k

|∆ĥ
H

l,kwj |2(p1,j+p2,j)

︸ ︷︷ ︸
residual interference due to imperfect CSI

+σ2
.

(33)

Similarly, the SINR at the strong user to decode the weak

user’s signal is given by

S̃INR
(1)

2,k=
p1,k|hH

2,kwk|2

p2,k|hH
2,kwk|2︸ ︷︷ ︸

intra-cluster interference

+
∑

j ̸=k

|∆ĥ
H

2,kwj |2(p1,j+p2,j)

︸ ︷︷ ︸
residual interference due to imperfect CSI

+σ2
,

(34)

and the strong user achieves the following SINR to decode

its own message after performing SIC in (35). Based on these

definitions of SINRs at both users, the worst-case EE of the

full ZF scheme can be expressed in (36).

Accordingly, we solve the following optimization problem

to determine the best power allocation that maximizes the

worst-case EE:

max
p1,k,p2,k

EE full-ZF, (37a)

s.t.

K∑

k=1

(p1,k + p2,k) ≤ Pmax, (37b)





log2

(
1+min

{
inf

∆ĥ1,k

S̃INR
(1)

1,k, inf
∆ĥ2,k

S̃INR
(1)

2,k

})
≥Rmin, ∀k,

log2(1 + inf
∆ĥ2,k

S̃INR
(2)

2,k) ≥ Rmin, ∀k.

(37c)

To solve the fractional programming problem in (37), we

apply the same procedure as in Section III.B. Towards this end,

we equivalently reformulate the problem in (37) by introducing

variables γ̃1,k and γ̃2,k as follows:

max
γ̃1,k,γ̃2,k,p1,k,p2,k

∑K
k=1

(
log2(1 + γ̃1,k) + log2(1 + γ̃2,k)

)
∑K

k=1(p1,k + p2,k) + Pc

,

(38a)

s.t.

K∑

k=1

(p1,k + p2,k) ≤ Pmax, (38b)

γmin ≤ γ̃1,k ≤ min{ inf
∆ĥ1,k

S̃INR
(1)

1,k, inf
∆ĥ2,k

S̃INR
(1)

2,k}, ∀k,

(38c)

γmin ≤ γ̃2,k ≤ inf
∆ĥ2,k

S̃INR
(2)

2,k, ∀k. (38d)

By invoking Lemma 1, we have

max
γ̃1,k,γ̃2,k,p1,k,p2,k

∑K
k=1

(
log2(1 + γ̃1,k) + log2(1 + γ̃2,k)

)
∑K

k=1(p1,k + p2,k) + Pc

,

(39a)

s.t.

K∑

k=1

(p1,k + p2,k) ≤ Pmax, (39b)

γ̃1,k ≤
p1,k f̃ k

i,k

p2,kg̃
k
i,k +

∑
m ̸=k(p1,m + p2,m)g̃

m

i,k + σ2
,

∀k, i = 1, 2, (39c)

γ̃2,k ≤
p2,k f̃ k

2,k

p1,kg̃
k

2,k +
∑

m ̸=k(p1,m + p2,m)g̃
m

2,k + σ2
, ∀k,

(39d)

γmin ≤ γ̃1,k, γmin ≤ γ̃2,k, ∀k, (39e)

where

f̃ k
i,k =

∣∣∣∣
(∣∣ĥH

i,kwk

∣∣− ε∥wk∥
)+∣∣∣∣

2

, (40)

g̃ k
i,k =

∣∣∣∣
∣∣ĥH

i,kwk

∣∣+ ε∥wk∥
∣∣∣∣
2

, (41)

g̃
m

i,k =
(
ε∥wm∥

)2
. (42)

Finally, the fractional programming problem in (39) can be

solved by leveraging Dinkelbach’s algorithm which converts
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S̃INR
(2)

2,k =
p2,k|hH

2,kwk|2

p1,k|∆ĥ
H

2,kwk|2︸ ︷︷ ︸
intra-cluster interference due to imperfect CSI

+
∑

j ̸=k

|∆ĥ
H

2,kwj |2(p1,j + p2,j)

︸ ︷︷ ︸
residual interference due to imperfect CSI

+σ2
. (35)

EE full-ZF =

∑K
k=1

(
log2

(
1+min{ inf

∆ĥ1,k

S̃INR
(1)

1,k, inf
∆ĥ2,k

S̃INR
(1)

2,k}
)
+log2(1 + inf

∆ĥ2,k

S̃INR
(2)

2,k)
)

∑K
k=1(p1,k + p2,k) + Pc

. (36)

a non-linear fractional optimization problem to an equivalent

but more tractable problem. For more details, please refer

to Appendix B. According to the condition in Dinkelbach’s

algorithm, we have to reformulate the problem in a CCFP form

to apply this algorithm. To deal with the non-convex nature

of constraints in (39c) and (39d), we introduce new variables

ϑ̃1,k, ϑ̃2,k and ϑ̃k and redefine the corresponding constraints

in the following inequalities:

(39c)⇒
{

γ̃1,k ϑ̃i,k ≤ p1,k f̃k
i,k,

p2,kg̃
k
i,k +

∑
m ̸=k(p1,m + p2,m)g̃

m

i,k + σ2 ≤ ϑ̃i,k,

∀k, i = 1, 2, (43)

and

(39d) ⇒
{

γ̃2,k ϑ̃k ≤ p2,k f̃ k
2,k,

p1,kg̃
k

2,k +
∑

m ̸=k(p1,m + p2,m)g̃
m

2,k + σ2 ≤ ϑ̃k,

∀k. (44)

In order to deal with the product of optimization variables in

(43) and (44), we utilize the expression in (25). Similar to the

previous section, the quadratic term can be approximated by

the first order Taylor series in (45) around γ̃
(t)
i,k and ϑ̃

(t)
j,k, to

transform it into a convex term. As such, the product of two

variables can be transformed into a convex term as

γ̃i,k ϑ̃j,k ≈ 1

4
(γ̃i,k + ϑ̃j,k)

2 − 1

4
[(γ̃

(t)
i,k − ϑ̃

(t)
j,k)

2

+ 2(γ̃
(t)
i,k − ϑ̃

(t)
j,k)(γ̃i,k − γ̃

(t)
i,k − ϑ̃j,k + ϑ̃

(t)
j,k)]

, G̃(γ̃i,k ϑ̃j,k, γ̃
(t)
i,k ϑ̃

(t)
j,k). (45)

By recalling the above approximation and applying the Dinkel-

bach’s algorithm, we should treat the following optimization

problem in the tth iteration

max
p1,k,p2,k,Ã

K∑

k=1

(
log2(1 + γ̃1,k) + log2(1 + γ̃2,k)

)

− λn

(
K∑

k=1

(p1,k + p2,k) + Pc

)
, (46a)

s.t.

K∑

k=1

(p1,k + p2,k) ≤ Pmax, (46b)

G̃(γ̃1,k ϑ̃i,k, γ̃
(t)
1,k ϑ̃

(t)
i,k)≤p1,kf̃

k
i,k, ∀k, i = 1, 2, (46c)

p2,kg̃
k
i,k+
∑

m ̸=k

(p1,m+p2,m)g̃
m

i,k + σ2≤ϑi,k, ∀k, i = 1, 2,

(46d)

G̃(γ̃2,k ϑ̃k, γ̃
(t)
2,k ϑ̃

(t)
k )≤p2,kf̃

k
2,k, ∀k, (46e)

p1,kg̃
k

2,k+
∑

m ̸=k

(p1,m + p2,m)g̃
m

2,k+σ2≤ ϑ̃k, ∀k, (46f)

γmin ≤ γ̃1,k, γ̃min ≤ γ̃2,k, ∀k, (46g)

where Ã , {γ̃1,k, γ̃2,k, ϑ̃1,k, ϑ̃2,k, ϑ̃k}. For notational simplic-

ity, all variables that are used in the approximations of the

product of two variables in the tth iteration are defined as

Λ̃
(t) , {γ̃(t)

1,k, γ̃
(t)
2,k, ϑ̃

(t)
1,k, ϑ̃

(t)
2,k, ϑ̃

(t)
k }. (47)

Finally, we iteratively solve the approximated problem in

(46a) for different values of Λ̃
(t) and update the approxima-

tions to obtain the best local solution similar to the proposed

iterative algorithm in Table II.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

We analyze the computational complexity of the proposed

algorithm by quantifying the required number of arithmetic

operations in the worst-case at each iteration, along with the

required number of iterations to achieve the solutions with

a certain accuracy [53], [54]. We define the computational

complexity for the algorithm as presented in the floowing:

In each iteration of Algorithm 2, a fractional program

defined in (27a) and (46a) is solved via the Dinkelbach’s algo-

rithm in Algorithm 1. In particular, the Dinkelbach’s algorithm

solves a fractional program by solving a series of auxiliary

problems. Hence, the main contributions to the computational

complexity of the proposed algorithm come from the com-

plexities introduced by solving problems defined in (27a)
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Fig. 2. Robust EE performance versus the maximum available power at the
BS in hybrid-ZF, full-ZF and OMA schemes. System parameters are K = 2
clusters, Rmin = 1 and error bound ε = 0.001.

and (46a). These problems are in fact linear programming

(LP) after applying the Dinkelbach’s algorithm which turns

the fractional program into a simple subtractive form. The

complexity of solving an LP is O
(
n2
LPmLP

)
, where mLP is

the number of linear constraints and nLP is the dimension

of optimization variables. For both problems in (27a) and

(46a), we have mLP = 6K + 1 and nLP = 7K. Thus, the

complexity of solving these problems is O
(
49K2(6K + 1)

)
.

Furthermore, the complexity of alternating optimization-based

solution is O
[
LI

(
LD

(
49K2(6K + 1)

))]
, where LD and LI

denote the numbers of iterations required for the Dinkelbach’s

algorithm in Algorithm 1 and alternating optimization itera-

tions in Algorithm 2, respectively. The parameters LD and LI

depend on the predefined tolerance set for the algorithms. LI

can be determined by a numerical analysis since no formula

is available for the sequential method in Algorithm 2 to

calculate the number of required iterations. From [55], the

number of required iterations in the Dinkelbach’s algorithm

(i.e., LD in Algorithm 1) to solve max f(x)
g(x) with tolerance ϵ

can be expressed as log2
(
U−L

ϵ

)
, where L and U are a lower-

bound and an upper-bound for the objective function
f(x)
g(x) ,

respectively.

VI. SIMULATION RESULTS

We evaluate the performance of the proposed robust EE

design for the MISO NOMA system by generating 1000
Monte-Carlo realizations of the flat fading channels. A down-

link transmission is considered in a single cell with one

BS equipped with N antennas and K clusters with two

single-antenna users per cluster. The small-scale fading of the

channels is assumed to be Rayleigh fading which represents

an isotropic scattering environment. The large-scale fading

effect is modelled by dlk
−β to incorporate the path-loss effects,

where dlk is the distance between Ul,k and BS, measured in

meters and β is the path-loss exponent . Hence, the channel

coefficients between BS and user Ul,k are generated using

hl,k = χ
√
dlk

−β , where χ ∼ CN (0, I) and β = 3.8
[56]. Throughout the simulations, it is assumed that users are

uniformly distributed within a circle with a radius of 50 meters
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Fig. 3. Robust EE performance versus the maximum available power at the
BS in hybrid-ZF and full-ZF schemes by using Dinkelbach’s algorithm and
exhaustive-search. System parameters are K = 2 clusters, Rmin = 1 and
error bound ε = 0.001.

around the BS, but no closer than 1 meter. In addition, we

assume that the users’ locations are fixed and the average is

taken over the small-scale fading of the propagation channels.

In addition, we assume that the noise power is σ2 = 0.01 at

each receiver, and the minimum QoS requirement for all users

is the same. Herein, the term non-robust scheme refers to the

scheme where the beamforming vectors are designed based

on imperfect CSI without incorporating channel uncertainty

information.

The achievable robust EE against maximum available trans-

mit power at the BS is presented in Fig. 2 for both full-ZF

and hybrid-ZF schemes and conventional OMA scheme. In

this figure, the EE maximization represents the solution to

the original optimization problems in (27a) and (46a), while

SE maximization represents the EE obtained by maximizing

the sum rate of the system. In other words, the sum rate

maximization problem is solved and then the allocated power

are used to calculate the EE of the defined SE problem. As

shown in Fig. 2, the achievable EE reaches a maximum with

a certain available power (referred to as green power in the

literature) and then it remains constant for any available power

which is more than the green power. Hence, one can conclude

that just a portion of the power budget contributes achieving

the maximum EE, and using more power will deteriorate the

performance of the system in terms of EE, which is the case

in the SE maximization-based design. In addition, it illustrates

that NOMA outperforms the conventional OMA scheme in

terms of EE by sharing resources in an efficient way.

For a given transmit power and with minimum required

transmit antennas in each scheme (i.e. 2 antennas in hybrid-

ZF scheme and 3 antennas in full-ZF scheme), the full-ZF

can achieve more EE than that of the hybrid-ZF scheme.

In fact, the full-ZF scheme can provide higher data rate by

completely removing other clusters interference at the cost of

more required transmit antennas at the BS.

In Fig. 3, we compare the performance of the Dinkelbach’s

algorithm with the exhaustive-search algorithm. As seen in this

figure, the proposed algorithm can offer a similar performance
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Fig. 4. Robust EE performance versus the maximum available power in
hybrid-ZF and full-ZF schemes with equal number of transmit antennas at
the BS. System parameters are Rmin = 1 and error bound ε = 0.001.
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Fig. 5. The EE-SE trade-off for full-ZF and hybrid-ZF schemes. System
parameters are K = 2 clusters, N = 3 antennas.

to that of the exhaustive-search. Note that the complexity and

computation time of exhaustive-search is significantly higher

than that of the Dinkelbach’s algorithm, particularly with a

large number of variables.

To draw a fair comparison, it is assumed that an equal

number of transmit antennas is employed for both hybrid-

ZF and full-ZF schemes. As seen in Fig. 4, the hybrid-ZF

scheme outperforms the full-ZF in terms of EE when there

are a few clusters. This is due to the fact that the full-

ZF requires more transmit power to completely remove the

residual interference, while this type of interference has less

impact in the systems with a few clusters. In other words, the

rate improvement in full-ZF is not as much as the required

power, which degrades the system performance in terms of

EE. However, by increasing the number of clusters, the full-

ZF scheme outperforms the hybrid-ZF scheme because the

residual interference increases, which has a significant impact

on the overall performance of the system.

Next we evaluate the trade-off between the SE and EE of

the proposed schemes. Fig. 5 depicts the EE-SE trade-off of

both full-ZF and hybrid-ZF schemes. As shown in Fig. 5, both

SE and EE increase up to a maximum level which is known

as the best trade-off point, and then EE decreases while SE

increases. Beyond this best trade-off point, the EE should be

sacrificed to achieve higher SE for which the BS requires more
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Fig. 6. Robust EE performance with different variance of channel uncertainty
in full-ZF, hybrid-ZF and OMA schemes. System parameters are K = 2
clusters, N = 3 antennas and Rmin = 1.
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in hybrid-ZF and full-ZF schemes. System parameters are K = 2 clusters,
N = 3 antennas and Rmin = 1.

transmit power. On the other hand, the impact of different

channel uncertainty on the achieved EE is represented in Fig.

6. It can be observed from Fig. 6 that the EE decreases for

both schemes as the variance of the channel uncertainty in the

CSI increases.

Next, we demonstrate the impact of the proposed robust

design on the achievable EE and rate by comparing with

the performance of the non-robust scheme. The achieved EE

for robust and non-robust designs are depicted in Fig. 7

for different available transmit power at the BS. As shown,

the results of the robust and non-robust schemes are almost

identical for ε = 0.001. To have a fair comparison, we

compare the performance of the robust and the non-robust

schemes in term of rate-satisfaction ratio, which is defined

as the ratio between the achieved rate and the target rate

at each user. Hence, a rate-satisfaction ratio greater than 1
indicates that the rate requirement is satisfied at each user.

Fig. 8 depicts the histogram of the rate-satisfaction ratio for the

robust and non-robust schemes. The simulation result implies

that the rate constraint in the robust design is satisfied all

the time regardless of the channel uncertainties. However, the
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NOMA scheme with channel estimation error bound ε = 0.001 and Rmin =
1.

non-robust design cannot satisfy the target rate requirement

for many cases since it does not take channel uncertainties

into account.

VII. CONCLUSIONS

In this paper, we have studied the robust EE maximization

problem for a MISO NOMA systems with clustering, under

total transmit power constraint and minimum rate requirement

at each user. In these robust schemes, the inevitable channel

uncertainties are taken into account to reduce their impact

on the overall system performance. For beamforming design,

the ZF approach is employed to mitigate the inter-cluster

interference. In particular, we proposed two different ZF

schemes, namely: I) hybrid-ZF and II) full-ZF. The objective

function that defines the EE of the system is a non-convex and

a non-linear function which formulates the original problem

into a fractional programming. To deal with the non-convexity

issues introduced by both objective function and constraints,

an iterative algorithm which exploits the first order Taylor

series approximations was applied to transform the original

intractable problem into a more tractable and equivalent one.

In each iteration, the Dinkelbach’s algorithm was employed to

convert the non-linear fractional programming problem into

a simple subtractive form. Simulation results validated the

performance of the proposed schemes in terms of the achieved

EE and SE. Despite the fact that the full-ZF scheme can

completely remove the interference between different clusters,

it requires more transmit antennas than the hybrid-ZF scheme

to serve the same number of users. However, by increasing the

number of clusters, the inter-cluster interference increases, and

consequently, the full-ZF approach shows a better performance

in terms of EE. In addition, results confirmed that the proposed

robust approach outperforms the non-robust scheme in terms

of the rate-satisfaction ratio at each user.

APPENDIX A

PROOF OF LEMMA 1

Let us assume that the numerator and denominator of

SINR
j
i,k are independent and derive their worst-case terms

separately. Based on this assumption, we introduce a function

φi,k as a lower bound for inf∆ĥi,k
(SINR

j
i,k) in (A.1).

Invoking the triangle inequality followed by the Cauchy-

Schwartz inequality, one can conclude that

∣∣∣(ĥi,k +∆ĥi,k)
H
wk

∣∣∣ ≥
∣∣∣ĥH

i,kwk

∣∣∣−
∣∣∣∆ĥ

H
i,kwk

∣∣∣

≥
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∣∣∣− ε∥wk∥, (A.2)
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∣∣∣+ ε∥wn∥, (A.3)

where it is assumed that the channel uncertainty is upper

limited by ∥∆ĥi,k∥ ≤ ε. Then, after plugging (A.2) and (A.3)

into the numerator and the denominator of (A.1), we obtain

inf
∥∆ĥi,k∥≤ε

(∣∣(ĥi,k+∆ĥi,k)
H
wk

∣∣2
)
=
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,

(A.4)
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H
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)
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sup
∥∆ĥi,k∥≤ε

(∣∣∆ĥ
H
i,kwm

∣∣2
)
=
(
ε∥wn∥

)2
, (A.6)

which completes the proof. �

APPENDIX B

DINKELBACH’S ALGORITHM

Dinkelbach’s algorithm is a well-known technique to tackle

the following concave-convex fractional problem (CCFP):

max
x

f(x)

g(x)
, (B.1)

s.t. ci(x) ≤ 0, ∀ i = 1, . . . , I, (B.2)

hj(x) = 0, ∀ j = 1, . . . , J, (B.3)

where f(x) is a non-negative differentiable concave function,

g(x) is a positive differentiable convex function, ci is convex

for all i = 1, . . . , I , and hj is an affine function for all j =
1, . . . , J .

Dinkelbach’s algorithm has been originally introduced in

[57], [58]. Furthermore, it belongs to the class of parametric

algorithms. The fundamental concept of this algorithm is to

obtain the solution of a CCFP by solving a sequence of simple

subproblems which converge to the global optimal solution

of the CCFP. The pseudo-code of Dinkelbach’s algorithm is

provided in Table I.
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(
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