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ABSTRACT

We review several commonly used methods for estimating the tail dependence in a given data sam-
ple. In simulations, we show that especially static estimators produce severely biased estimates
of tail dependence when applied to samples with time-varying extreme dependence. In some in-
stances, using static estimators for time-varying data leads to estimates more than twice as high
as the true tail dependence. Our findings attenuate the need to account for the time-variation in
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1 Introduction

Tail dependence modeling using copulas has gained significant interest from researchers and

practitioners across various fields, including finance, insurance, hydrology, engineering, and energy.

Of particular interest are (upper and lower) tail dependence coefficients, which are defined as the

asymptotic probability that two extreme events occur simultaneously. Estimates of such proba-

bilities are useful for decision makers that need to efficiently allocate resources, e.g., for portfolio

tail diversification, catastrophe management, or large investment project appraisals. All of these

applications require an accurate estimate of tail dependence coefficients and therefore confidence in

the performance of the employed copula models. Many of those models estimate tail dependence

statically, which can be misleading when the dependence structure of underlying data changes dy-

namically over time. In this paper, we determine how fatal such model risk can be with respect to

the estimation of lower tail dependence coefficients.1

We review various commonly used techniques for estimating the tail dependence of a joint

distribution and show that several of these techniques produce severely biased estimates of tail

dependence in simulations. We then apply these estimators in an empirical setting in which tail

dependence coefficients have been previously used to model extreme dependence. As our key

finding, we show that the systematic overestimation of tail dependence found in the simulation

study translates to financial data, i.e., joint crash probabilities of equities are likely to be severely

overestimated by static estimators employed in previous studies. Consequently, our results imply

that findings from the related (finance) literature need to be interpreted with care and critically

depend on the choice of estimator.

Tail dependence can be used to estimate the likelihood of extreme events occurring at the

same time, which in turn may be employed for practical purposes. For example, in insurance,

extreme losses are modeled using copulas to account for tail dependence (“ruin probability”),

which ultimately influences insurer solvency requirements (see Eckert and Gatzert, 2018). Portfolio

managers may be most interested in whether prices of two (or more) assets crash at the same time.

As pointed out by Poon et al. (2004), investors can achieve better portfolio tail diversification by

choosing asymptotically independent assets and therefore reduce the need to hedge positions with

the use of options. When considering credit risk and contagion effects (see, e.g., Ye et al., 2012;

Weiß et al., 2014), one would like to accurately estimate the joint probability of default.2 Outside of

finance, there are various fields that may want to employ non-linear measures of dependence instead

of simple correlations to capture the uncertainty around extreme outcomes (see, e.g., Wang and

Dyer, 2012; Werner et al., 2017, for brief overviews). For example, Wu (2014) models dependence

in warranties of car manufacturers, while Bassetti et al. (2018) consider energy markets. Investors

in or managers of oil and gas exploration projects, which are huge in size and long in duration,

1We concentrate on lower tail dependence in our paper as the tail risk of two assets jointly experiencing extreme
losses is arguably the greatest concern to portfolio and risk managers. Moreover, the models we employ in our study
can be easily adapted to measure upper tail dependence (which could be used to detect price bubbles) as well.

2Similarly, De Jonghe (2010) or Oh and Patton (2017, 2018) employ measures of tail dependence to proxy for
systemic fragility in the financial sector.
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benefit from modeling the dependence structure and account for respective tail risk (see Accioly

and Chiyoshi, 2004; Al-Harthy et al., 2007). Silbermayr et al. (2017) argue that tail dependence

measurement is a useful tool for inventory planning, e.g., to capture simultaneous extreme demands

for production in two locations. In hydrology, the probability of the simultaneous occurence of

extreme river flow volumes, rainfalls, or drought periods, in several locations, is modeled using tail

dependence estimators (see, e.g., Poulin et al., 2007; Serinaldi et al., 2015) and helps risk managers

in natural disaster management. Similarly, Elberg and Hagspiel (2015) compare the performance

of several copulas when trying to capture (spatial) tail correlation between wind power stations

and its impact on electricity spot prices and grid planning. Choosing the wrong model to estimate

(time-varying) tail dependence, such as the Gaussian copula with asymptotic tail independence,

will over- or understate respective probabilities and therefore have consequences for pricing and

planning in all of the applications mentioned above.

Despite the consensus in the literature on the importance of accounting for extreme dependence

for numerous applications, authors have employed many different models to estimate tail depen-

dence without considering the model risk in choosing one approach over another. This is especially

true in the finance literature, which we focus on in our study, but extends to other areas as well.

The set of models in our comparative study is motivated by the literature on classical problems in

asset pricing (see, e.g., Meine et al., 2016; Chabi-Yo et al., 2018; Irresberger et al., 2018), credit risk

(see Oh and Patton, 2017; Christoffersen et al., 2018), financial intermediation (Oh and Patton,

2018), and portfolio management (see Christoffersen et al., 2012), where linear correlations are

substituted by measures of extreme dependence. The consensus underlying these studies is that

joint extreme co-movements in equity prices, default intensities, and liquidity are not adequately

captured by correlation, but should rather be modeled using estimates of tail dependence. Most

of these studies comprise a parametric copula model from which the estimates of tail dependence

are derived. For example, in the early studies of Rodriguez (2007), Okimoto (2008), and Garcia

and Tsafack (2011), estimates of the lower tail dependence in equity returns are extracted from

simple static and regime-switching copula models. More recent work, such as in Patton (2006),

Christoffersen et al. (2012), and Oh and Patton (2017, 2018), proposes to use dynamic copula mod-

els to account for possibly time-varying extreme dependence in financial data, the need of which is

empirically confirmed by, e.g., Grundke and Polle (2012).3 Furthermore, the statistical literature

includes additional nonparametric estimators like the one proposed by Schmidt and Stadtmueller

(2006), which eliminates the model risk of selecting a non-optimal parametric model at the expense

of being purely data-driven and static. Finally, some asset pricing studies such as Chabi-Yo et al.

(2018) and Ruenzi et al. (2018) use convex combinations of different static parametric copulas to

estimate the tail dependence between equity returns and liquidity, respectively. Interestingly, the

literature still lacks a comparison of these different estimators of a distribution’s tail dependence.

But even more importantly, the empirical relevance of selecting the right estimator for a data sam-

3Such dynamic models are found to be useful for applications in, e.g., portfolio optimization (see Al Janabi et al.,
2017).
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ple’s tail dependence for applications in financial economics remains completely unacknowledged.
4

The findings from both our simulations as well as our application to equities have highly relevant

consequences for our understanding of extreme dependence. As our main contribution, we show in

this paper that several tail dependence estimators which have been proposed in the literature are

severely biased. Especially when applied to data samples with time-varying extreme dependence,

static estimators tend to significantly overestimate the actual level of tail dependence in the data.

This finding casts reasonable doubt on the frequent finding that extreme dependence in financial

markets has increased and is high (especially during a time of crisis). What we find most striking is

that this tendency to overestimate extreme dependence is common to almost all estimators that we

identified from previous empirical studies in financial economics and econometrics. As this paper’s

second main contribution, we show in our empirical application that the choice of the correct tail

dependence estimator has significant effects on the outcomes of asset pricing studies which rely

on tail dependence estimates. The implications of these findings are straightforward: The role

of extreme dependence in financial assets, which often exhibit dynamic dependence structures,

requires to be reassessed in several areas of interest (stock returns, liquidity, systemic risk of banks,

etc.) whenever empirical findings have been based on tail dependence estimates stemming from

inaccurate static estimators.

The rest of this paper is organized as follows. Section 2 quickly reviews the most popular

estimators of the coefficient of lower tail dependence that have been proposed in the literature.

In Section 3, we present the results of our comprehensive simulation study on the finite sample

properties of the various estimators of tail dependence. In Section 4, we discuss the economic

importance of our findings by applying several tail dependence estimators to equity data. Section

5 concludes.

2 Copulas and Tail Dependence

The lower tail dependence (LTD) estimators included in our simulation study are based on

copulas.5 Thus, in this section we provide a brief overview of copulas and show how they can be

used to measure tail dependence. Further details and a complete introduction to copulas can be

found in Nelsen (2006) and Joe (1997).

Loosely speaking, a copula is a function that specifies the link between a multivariate distribu-

tion function and its one-dimensional marginal distribution functions. Formally, a copula can be

defined as a multivariate distribution function with standard uniform margins. With X = (X1, X2)

4The empirical finance literature is far from agreeing on the question how extreme dependence should be measured.
To better understand how researchers deal with the estimation of extreme dependence we provide a survey table of
recent studies on extreme dependence published in the Review of Financial Studies, the Journal of Financial and

Quantitative Analysis, the Journal of Banking and Finance, and others in the period starting from 2006. As one
can easily see from the table in the Internet Appendix, existing studies employ a great variety of different extreme
dependence estimators, reaching from nonparametric to fully parametric and from static to dynamic estimators.

5Another popular way of measuring tail risk in finance and portfolio management that is based on univariate

distributions is given by the estimation of a sample’s tail risk index.
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denoting a two-dimensional random vector with joint density f = (f1, f2) and distribution function

F = (F1, F2), the copula C of the distribution F is given by

C(u1, u2) = F (F−1
1 (u1), F

−1
2 (u2)) (1)

where F−1
i is the generalized inverse of Fi and ui ∈ [0, 1], i = 1, 2.

The theoretical framework of copulas goes back to the work of Sklar (1959) who shows that,

under certain conditions, every copula is a joint distribution function and vice versa. More precisely,

Sklar’s (1959) Theorem states that, if F1 and F2 are continuous, C exists and is unique. Conversely,

if C is a copula, the theorem states that F is a joint distribution function with margins Fi, i = 1, 2.6

Using (1), the joint density, f , can be expressed as

f(x1, x2) = c(F1(x1), F2(x2)) · f1(x1)f2(x2) (2)

where c denotes the density of C. Hence, the dependence structure can be separated from the

marginal structure implying the following important applications of Sklar’s (1959) Theorem. On

the one hand, we can characterize the complete dependence structure in a multivariate data set

and, on the other hand, are able to generate highly flexible multivariate models.

In our simulation study, however, we shall use copulas to simulate and estimate coefficients of

(lower) tail dependence. Thus, in the following, we discuss the concept of tail dependence and the

computation of tail dependence coefficients.

Intuitively, the concept of tail dependence refers to the amount of dependence in the lower-left

or upper-right quadrant of the joint distribution, F , and thus provides measures for the dependence

between extreme realizations of X1 and X2. More precisely, the coefficient of lower (upper) tail

dependence is defined as the conditional probability that X1 takes on a realization in the left (right)

tail of F1 given that X2 has already realized a value in the left (right) tail of F2. In our simulation

study, we are merely interested in the coefficient of lower tail dependence so that we will exclude

the coefficient of upper tail dependence from the further discussion.7

Formally, the LTD coefficient, τL, is given by

τL = lim
u↓0

Pr
[

X1 ≤ F−1
1 (u)

∣

∣X2 ≤ F−1
2 (u)

]

. (3)

According to McNeil et al. (2005), we can express τL in terms of the copula C of the joint distri-

bution F if the marginal distributions F1 and F2 are continuous, and obtain the following simple

formula

τL = lim
u↓0

C(u, u)

u
. (4)

6Note that Sklar’s (1959) Theorem is not restricted to dimension two but holds for arbitrarily high dimensions.
A general presentation and a formal proof can be found in Schweizer and Sklar (1983).

7Note that the properties and formulas for the LTD coefficient given in this section can be easily transferred to
the coefficient of upper tail dependence. See, e.g., McNeil et al. (2005).
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Hence, tail dependence can be viewed as a copula property where the copula C is said to have lower

tail dependence if τL ∈ (0, 1]. In case of τL being equal to zero, C has no lower tail dependence

implying that X1 and X2 are asymptotically independent in the lower tail.8

3 Simulation Study

We now turn to a comparison of various copula-based LTD estimators that are frequently used

in the financial economics literature. We conduct a comprehensive Monte-Carlo simulation study to

investigate the performance of the estimators with respect to different performance metrics as well

as varying simulation environments. We start with a brief overview of the models under study. A

formal description of the models and details on estimation procedures can be found in the Internet

Appendix.

3.1 Models under study

The LTD estimators included in our simulation study comprise three dynamic models allowing

for time-varying LTD coefficients and eight static models which assume that LTD coefficients are

constant over time.9

The dynamic models are based on the t copula which has received much recent attention in

financial modeling and has been shown to be superior to other copulas such as, e.g., the Gaussian

copula (see Demarta and McNeil, 2004). The method of dynamizing the t copula, however, differs

across the three models. The t copula is parameterized by the degree of freedom parameter, ν, and

the correlation parameter, ρ, with the implied LTD coefficient being given in closed form. The first

dynamic model we consider is Patton’s (2006) model that parameterizes time variation in the t

copula by assuming an ARMA(1,10)-type process for the correlation parameter, ρ, to capture both

persistence in correlation and any variation in dependence. We refer to this model as the Patton

model hereafter. The second model dynamizes the t copula by applying Engle’s (2002) Dynamic

Conditional Correlation (DCC) model to copula correlations, which are correlations between the

copula shocks implied by the t copula. This model is denoted as the DCC model in our study.

In the same manner, we also apply the Dynamic Symmetric Copula (DSC) model as proposed by

Christoffersen et al. (2012) to the copula correlations of the t copula and call this model the DSC

8It is worth noting that tail dependence as a concept, i.e., an inherent feature of the copula model that does not
depend on the marginal distributions, is different from tail risk measures such as the Value-at-Risk (VaR) or Expected
Shortfall (ES), which try to capture actual losses and not probabilities in the tail. In particular, tail dependence,
an asymptotic probability, is not the same as moving the quantile τ ց 0 when calculating VaR/ES measures, i.e.,
calculating joint losses when going deeper into the left tail. The introduction in Section 1 references a number of
applications in finance and other fields such as hydrology, manufacturing, or energy markets, in which decision makers
are interested in the likelihood of extreme events occurring simultaneously, not necessarily pure joint losses. There
are some approaches in the finance literature that employ both VaR/ES estimates and tail dependence to construct
a more complete measure of financial tail risk (see Agarwal et al., 2017; Chabi-Yo et al., 2019).

9The Internet Appendix provides an overview of the basic copulas underlying the dynamic and static LTD models.
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model in the following. Hence, the dynamic LTD estimators can be expressed as

τLt = 2tν+1

(

−
√
ν + 1

√
1− ρt√

1 + ρt

)

(5)

with the correlation dynamics being given by

ρt = Λ

(

ω + βρt−1 + α
1

10

10
∑

i=1

t−1
ν (u1,t−i)t

−1
ν (u2,t−i)

)

(Patton) (6)

ρt =
Q12,t

√

Q11,tQ22,t

, Qt = (1− φ− ψ)Ω + ψQt−1 + φz̄ct−1z̄
c⊤
t−1 (DCC) (7)

ρt =
Q̃12,t

√

Q̃11,tQ̃22,t

, Q̃t = (1− φ̃− ψ̃) [(1− κ)Ω + κDt] + ψ̃Q̃t−1 + φ̃z̄ct−1z̄
c⊤
t−1 (DSC) (8)

where ω, β, α, φ, ψ, φ̃, ψ̃, and κ are scalar parameters, Λ(x) ≡ (1−e−x)(1+e−x)−1 is a normalizing

function, u1,t and u2,t denote the ranks of the residuals from univariate GARCH processes, Ω andDt

are two-by-two correlation matrices containing constant correlations and time trends, respectively,

and z̄ct denotes a vector of (modified) copula shocks.10

Turning to the static LTD estimators, we first include two mixture copulas in our simulation

study which are based on two different convex combinations of the basic copulas.11 In the spirit

of Chabi-Yo et al. (2018), Rodriguez (2007), and Hong et al. (2007), we select the basic copulas

such that the resulting mixture copula allows for the maximum possible flexibility and is capable

of modeling upper and lower tail dependence as well as independence and asymmetry in the tails.

Accordingly, the first mixture is based on the Joe, Rotated-Joe, and the F-G-M copula and is given

by

Cmix,1 = w1CJoe + w2CrJoe + w3CFGM (9)

where wi ∈ [0, 1] for i = 1, 2, 3 with
∑3

i=1wi = 1. Following the same line of reasoning, the second

mixture is composed of the t copula as well as the Clayton and Frank copula, and can be expressed

as

Cmix,2 = w1Ct + w2CCl + w3CFr. (10)

The corresponding constant LTD coefficients can then be computed as

τLmix,1 = w2

(

2− 2
1
θ

)

and τLmix,2 = 2w1tν+1

(

−
√
ν + 1

√
1− ρ√

1 + ρ

)

+ 2−
1
θw2. (11)

Following existing empirical studies in the finance literature, both mixture models are estimated in

10Technical details can be found in the Internet Appendix. Note that the DSC model incorporates a time trend
into copula correlations and that setting κ = 0 in the DSC model yields the DCC model.

11Tawn (1988) shows that any convex combination of a given (finite) set of copulas is again a copula.
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two different ways, respectively. On the one hand, we estimate the mixtures via maximum likelihood

(ML) where the likelihood is maximized with respect to both copula parameters and the weights

at the same time (see, e.g., Ruenzi et al., 2018; Chabi-Yo et al., 2018). The respective models are

denoted as Mix1ML and Mix2ML. On the other hand, we estimate the mixtures via maximizing the

log likelihood function via the Expectation-Maximization (EM) algorithm as proposed by Dempster

et al. (1977) and call the respective models Mix1EM and Mix2EM (Okimoto, 2008; Chollete et al.,

2009). Note, however, that estimating mixture copulas by maximizing the log likelihood with

respect to both the copula parameters and the weights implicitly assumes that the latter are

observable, which is not the case here. The estimation of mixtures constitutes an incomplete-data

problem which needs to be estimated via the EM algorithm. Being aware of this fact, in our

simulation study we shall investigate how this potential bias translates into the calculation of LTD

coefficients.

Further, we include a static LTD estimator that is based on a regime-switching copula model

and referred to as the RS model. More precisely, we follow Okimoto (2008) and Garcia and Tsafack

(2011) and identify two regimes where we assume the first regime to be Gaussian and the second

regime to be specified by the Clayton copula. Formally, the LTD estimator is based on a mixture

of the regime copulas and thus given by

CRS = stCGA + (1− st)CCl (12)

where CGA and CCl denote the Gaussian and the Clayton copula, respectively. The variable st is

a latent state variable taking the values 0 (Gaussian regime) and 1 (Clayton regime) and follows a

Markov chain with a constant transitional probability matrix

P =

(

p00 1− p00

1− p11 p11

)

, pii = Pr[st = i|st−1 = i] for i = 0, 1. (13)

Since the Gaussian copula is asymptotically independent in the tails, the LTD coefficients generated

by this model are based on the LTD coefficient of the Clayton copula which is given in closed form.

Moreover, we include two simple static LTD estimators that are based on the Clayton copula.

The difference between the two estimators lies in the method used for modeling the margins.

While the first estimator is based on a nonparametric approach and uses the empirical distribution

function, the second estimator exploits results from Extreme Value Theory (EVT) and models

the margins semi-parametrically by assuming the Generalized Pareto Distribution (GPD) for the

distribution of excesses and the empirical distribution for the remaining portion. The two estimators

are called CL and CLEVT , respectively.

Finally, we follow Schmidt and Stadtmueller (2006) and include a nonparametric LTD estimator

in our simulation study, denoted as Nonparam. Schmidt and Stadtmueller (2006) build on the

concept of empirical tail copulas and introduce tail dependence estimators that are based on the

empirical copula. Formally, with X1 and X2 denoting two n-dimensional random vectors and with

7



Rm,1 = (Rjm,1)j=1,...,n and Rm,2 = (Rjm,2)j=1,...,n denoting the rank of X1 and X2, respectively,

they propose the following empirical LTD estimator

τLm =
1

k

n
∑

j=1

1{Rj
m,1≤k and Rj

m,2≤k} (14)

where the parameter k needs to be specified adequately. In our simulations and empirical study,

we follow Schmidt and Stadtmueller (2006) and choose k via a plateau-finding algorithm applied

to LTD estimates for successive k (similar to the Hill estimator).

The LTD estimators included in our simulation study are summarized in Table I along with

the expressions for the corresponding LTD coefficients and the correlation dynamics for the time-

varying estimators.

Table I: Lower tail dependence estimators under study.

The table presents the lower tail dependence (LTD) estimators included in our simulation study along with the expressions for
the corresponding LTD coefficients and the correlation dynamics for the time-varying estimators. We consider eight static LTD
estimators (Mix1ML, Mix1EM, Mix2ML, Mix2EM, RS, CL, CLEVT, Nonparam) and three dynamic estimators based on different
dynamizations of the Student’s t copula (Patton, DCC, DSC). The notation is as follows: tν and t−1

ν denote the univariate
distribution and quantile function of the Student’s t distribution with degrees of freedom parameter ν, respectively; w1 and w2

denote the weights of the mixture copulas. Regarding the correlation dynamics, ω, β, α, φ, ψ, φ̃, ψ̃, and κ are scalar parameters,
Λ(x) ≡ (1− e−x)(1+ e−x)−1 is a normalizing function, u1,t and u2,t denote the ranks of the residuals from univariate GARCH
processes, Ω and Dt are two-by-two correlation matrices containing constant correlations and time trends, respectively, and z̄ct
denotes a vector of (modified) copula shocks. The DSC model incorporates a time trend into copula correlations and nests the
DCC model in case of κ = 0. Technical details can be found in the Internet Appendix.

Model LTD estimator Correlation dynamics

Patton
τLt = 2tν+1

(

−
√
ν+1

√
1−ρt√

1+ρt

)
ρt = Λ

(

ω + βρt−1 + α 1
10

10
∑

i=1

t−1
ν (u1,t−i)t

−1
ν (u2,t−i)

)

DCC ρt =
Q12,t√

Q11,tQ22,t
, Qt = (1− φ− ψ)Ω + ψQt−1 + φz̄ct−1z̄

c⊤
t−1

DSC ρt =
Q̃12,t

√

Q̃11,tQ̃22,t

, Q̃t = (1 − φ̃ − ψ̃) [(1− κ)Ω + κDt] +

ψ̃Q̃t−1 + φ̃z̄ct−1z̄
c⊤
t−1

Mix1ML τL = w2

(

2− 2
1

θ

) −
Mix1EM −
Mix2ML τL = 2w1tν+1

(

−
√
ν+1

√
1−ρ√

1+ρ

)

+ 2−
1

θ w2
−

Mix2EM −
RS

τL = 2−
1

θ

−
CL −

CLEVT −
Nonparam τL = 1

k

n
∑

j=1

1{

R
j
m,1

≤k and R
j
m,2

≤k
} −

3.2 Simulation Design

We now present the setup of our simulation study. To investigate the performance of the LTD

estimators introduced in the previous section, we organize each simulation trial into two steps,

a simulation step and an estimation step. In the first step, we simulate copula data and LTD

coefficients from a specified data-generating process (DGP) and generate artificial price return

data on the basis of the simulated copula data. In the second step, we then apply the LTD

estimators to the artificial return data and evaluate the performance by comparing the estimated

8



LTD coefficients to the true LTD coefficients from the simulation step in terms of an appropriate

performance metric. We repeat these steps a large number of times and evaluate the performance

in each simulation trial, resulting in a vector of values for the corresponding performance metric.12

In the following, we discuss the two steps in more detail.

The simulation step comprises two tasks, simulating LTD coefficients and generating artificial

price return data to embed the simulation into an environment that is comparable to real-data

applications. To simulate LTD coefficients which will be assumed to describe the true LTD in-

herent to the data, we identify the three dynamic LTD estimators as the DGPs throughout the

simulation study.13 To simulate from the dynamic models, we first need to specify the parameters

driving the correlation dynamics in equations (6) to (8).14 For increased comparability with real-

data applications, parameter choices are based on the empirical studies in Engle (2002), Patton

(2006), and Christoffersen et al. (2012). Having determined the parameters, we are now able to

conduct the simulation of true LTD coefficients. Using the notation introduced in the previous

section, the simulation involves the following steps.15 First, as a starting point we randomly draw

u(0) = (u1,0, u2,0)
⊤ from a bivariate standard uniform distribution, U[0,1]. Then, we calculate ρ1

and τL1 using u(0) and, finally, simulate u(1) from the t copula, Ct2ν,ρ1
, implied by a bivariate t

distribution with correlation parameter ρ1. We repeat the latter steps for t = 2, ..., T and generate

true LTD coefficients, (τLt )
T
t=1, as well as copula data, (u(t))Tt=1. Estimation of LTD coefficients

in the second step is based on the the series (u(t))Tt=1. Since copula data are not directly observ-

able, we transform the series (u(t))Tt=1 into artificial price return data before moving on to the

estimation step. As is standard in the econometrics literature, we assume that the returns come

from a GARCH(1,1) process with zero mean and t-distributed innovations. With r(t) = (r1,t, r2,t)
⊤

denoting the (artificial) return corresponding to u(t), we thus define

ri,t =
√

hi,tzi,t, zi,t|Fi,t−1 ∼ tνi (15)

hi,t = ci + air
2
i,t−1 + bihi,t−1 (16)

where Fi,t denotes the information available on the ith series up to and including the tth observation,

i = 1, 2 and t = 1, ..., T . With θi = (ci, ai, bi, νi)
⊤ being the parameter vector of the GARCH

processes, we follow the empirical applications in Engle (2002), Kang et al. (2010), Christoffersen

et al. (2012) and set θ1 = (0.0005, 0.1, 0.85, 5)⊤ and θ2 = (0.0001, 0.05, 0.9, 10)⊤ to generate artificial

returns in line with the stylized facts on real price return series. To simulate return data from the

copula data, we set r1,0 = r2,0 = 0 and σ1,0 = σ2,0 = 0 as starting points and compute return

12Note that in our baseline simulation approach we simulate 500 data points from the DGP, use the mean squared
error to evaluate performance, and repeat the simulation and estimation step for a total of 1000 trials. Further details
are provided in Section 3.3.

13Note that, due to the time-varying nature of LTD, simulating from the dynamic LTD estimators will provide
simulated LTD coefficients that are comparable to the LTD coefficients implied by real data.

14The parameter choices as well as the resulting expressions for the correlation dynamics are given in the Internet
Appendix.

15Technical details on the simulation from the Patton, DCC, and DSC model can be found in the Internet
Appendix.
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innovations via zi,t = t−1
νi (ui,t).

Having simulated return data (r(t))Tt=1 with (true) LTD coefficients (τLt )
T
t=1, the second step

of our simulation study deals with computing estimated LTD coefficients, (τ̂Lt )
T
t=1, according to

the models discussed in the previous section. Since our LTD estimators are based on copulas

and copula theory requires white-noise residuals for the computation of unbiased LTD coefficient

estimates, we first apply the GARCH(1,1) filter to transform the marginal return series, (ri,t)
T
t=1,

into white-noise series, (ûi,t)
T
t=1, where û(t) = (û1,t, û2,t)

⊤. Then, we apply our LTD estimators

summarized in Table I to (û(t))Tt=1 to obtain the series (τ̂Lt )
T
t=1 of estimated LTD coefficients. To

evaluate the performance of the LTD estimators, we apply an appropriate performance metric,

Π, to the true and the estimated LTD coefficients. Thus, with τ = (τLt )
T
t=1 and τ̂ = (τ̂Lt )

T
t=1, the

performance of the corresponding LTD estimator is given by Π = Π(τ , τ̂ ).

Altogether, our simulation study is organized into the following steps:

1. Simulation step

1.1. Draw u(0) = (u1,0, u2,0)
⊤ ∼ U[0,1].

1.2. Calculate ρ1 and τL1 using u(0).

1.3. Simulate u(1) from Ct2ν,ρ1
.

1.4. Repeat steps 1.2. and 1.3. for t = 2, ..., T and obtain (τLt )
T
t=1 and (u(t))Tt=1.

1.5. Calculate zi,t = t−1
νi (ui,t), i = 1, 2.

1.6. Compute ri,t =
√

hi,tzi,t, where hi,t = ci + air
2
i,t−1 + bihi,t−1 and ri,0 = hi,0 = 0.

2. Estimation step

2.1. Apply the GARCH(1,1) filter to (ri,t)
T
t=1 and obtain (ûi,t)

T
t=1, i = 1, 2.

2.2. Apply LTD estimators to (û(t))Tt=1 and obtain (τ̂Lt )
T
t=1.

2.3. Apply the performance metric to (τLt )
T
t=1 and (τ̂Lt )

T
t=1 and obtain Π = Π (τ , τ̂ ).

These two steps are repeated for a total of N simulation trials resulting in the performance vector

Π = (Πn)
N
n=1, where Πn = Π(τn, τ̂n) with τn and τ̂n denoting the true and estimated LTD

coefficients drawn from the nth simulation trial.

3.3 Simulation Results

We now turn to the results of our simulation study. We first introduce our baseline approach

and discuss the corresponding results. In the following, we then extend our baseline approach with

respect to the sample size and performance metric and check the robustness of the conclusions drawn

from the baseline approach. Finally, we conduct a ranking approach to identify the best performing

LTD estimator across all simulation settings (i.e., across all sample sizes and performance metrics).
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3.3.1 Does the choice of estimator matter? The baseline approach.

The baseline approach is based on the following simulation setting. Given the notation intro-

duced in the previous section, we set

T = 500, N = 1000, and Π = Π(τ , τ̂ ) = T−1
T
∑

t=1

(τt − τ̂t)
2. (17)

That is, performance is measured in terms of the mean squared error (MSE). Thus, we simulate

500 LTD coefficients from the Patton, the DCC, and the DSC model, respectively, and then apply

the LTD models presented in Section 3.1 to the resulting series of artificial returns to generate

estimated LTD coefficients. For each of the three DGPs, these steps are repeated for a total of

1000 trials.

The panels of Table II report descriptive statistics of true and estimated LTD coefficients sep-

arately for each DGP.16

16Note that the estimation of most LTD models included in our study requires removing pseudo observations equal
to 1. To preserve comparability of true and estimated LTD coefficients, we remove the corresponding value from the
series of true LTD coefficients as well, resulting in 499× 1000 = 499, 000 true and estimated LTD coefficients for the
majority of LTD models.
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Table II: Descriptive statistics of true and estimated lower tail dependence.

The table presents descriptive statistics of true and estimated lower tail dependence (LTD) coefficients. True LTD coefficients are simulated from the Patton, DCC, and DSC
model and the corresponding results are shown separately for each of these data-generating processes (DGP) throughout the panels of the table. To compute estimated LTD
coefficients, we first generate artificial return data on the basis of the true LTD coefficients and then apply the different LTD estimators to the artificial returns. The descriptive
statistics listed in the table arise from the baseline simulation approach, which is based on a sample size of T = 500 and a number of simulation trials equal to N = 1000, i.e., we
estimate LTD coefficients on the basis of 500 simulated returns and repeat the simulation and estimation step for a total of 1000 trials. Except for the number of observations,
skewness, and (excess) kurtosis, all entries are denominated in %. In case of the DGP and the LTD estimator being identical, corresponding statistics are printed in bold type.
The names of the LTD estimators are abbreviated according to the notation introduced in Section 3.1.

Panel A: DGP Patton
Percentiles Moments

Number Min 1st 5th 25th Median 75th 95th 99th Max Mean St. Dev. Skewness Exc. Kurt.

Patton
True LTD 499,000 0.00 2.55 5.27 9.46 13.73 20.02 33.98 47.59 93.65 15.90 9.30 1.57 6.87

Est. LTD 499,000 0.00 0.01 0.46 7.41 15.36 24.21 38.80 51.65 85.18 16.84 12.03 0.80 3.68

DCC
True LTD 499,000 0.00 2.55 5.31 9.47 13.66 19.86 33.83 47.51 93.19 15.83 9.23 1.58 6.93
Est. LTD 499,000 0.00 0.01 0.43 8.24 16.13 24.14 36.50 46.70 76.52 16.88 11.15 0.54 3.05

DSC
True LTD 499,000 0.00 2.55 5.32 9.48 13.77 20.06 33.95 48.03 97.47 15.94 9.33 1.60 7.12
Est. LTD 499,000 0.00 0.32 4.73 15.71 23.27 30.41 41.32 51.16 78.82 23.22 10.99 0.20 3.11

Mix1ML
True LTD 499,000 0.00 2.55 5.28 9.44 13.66 19.80 33.45 47.38 96.67 15.76 9.15 1.60 7.17
Est. LTD 1,000 15.00 21.66 27.74 31.49 33.11 34.29 38.25 42.09 52.07 32.92 3.49 -0.32 8.33

Mix1EM
True LTD 499,000 0.00 2.55 5.31 9.49 13.79 20.06 33.92 47.86 94.26 15.93 9.29 1.59 7.02
Est. LTD 1,000 13.46 17.82 20.96 24.34 27.06 29.62 33.48 37.77 41.05 27.07 3.95 0.12 3.37

Mix2ML
True LTD 499,000 0.00 2.55 5.30 9.49 13.71 20.01 33.77 47.19 96.60 15.88 9.22 1.56 6.90
Est. LTD 1,000 0.01 0.08 5.90 14.12 20.61 29.39 40.14 42.31 54.20 21.89 10.45 0.24 2.32

Mix2EM
True LTD 499,000 0.00 2.55 5.27 9.46 13.74 19.99 33.90 48.09 88.42 15.89 9.30 1.58 6.89
Est. LTD 1,000 0.04 0.68 3.56 12.39 19.86 26.37 34.63 39.34 43.67 19.47 9.46 0.00 2.29

RS
True LTD 499,000 0.00 2.55 5.27 9.45 13.63 19.85 33.84 47.74 96.86 15.81 9.27 1.61 7.14
Est. LTD 1,000 0.00 0.00 0.00 3.45 20.10 44.46 71.63 87.26 95.78 25.30 23.64 0.76 2.67

CL
True LTD 500,000 0.00 2.55 5.27 9.43 13.68 19.86 33.59 47.23 96.16 15.79 9.18 1.58 7.07
Est. LTD 1,000 25.23 34.15 39.77 47.41 51.37 55.05 59.98 62.06 65.82 50.98 5.94 -0.49 3.57

CLEVT
True LTD 500,000 0.00 2.55 5.30 9.51 13.77 20.01 33.83 47.49 98.60 15.90 9.25 1.59 7.12
Est. LTD 1,000 14.82 23.70 29.53 36.06 40.23 44.15 49.51 52.15 55.42 39.96 6.21 -0.39 3.23

Nonparam
True LTD 500,000 0.00 2.55 5.27 9.47 13.74 20.06 33.94 47.44 96.64 15.89 9.25 1.55 6.79
Est. LTD 1,000 0.00 12.50 20.00 46.02 57.00 64.36 72.80 76.92 84.45 53.07 15.73 -0.95 3.35
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As can be seen from Panel A of the table, specifying the Patton model as the DGP (according

to the parameterization displayed in the Internet Appendix) leads to true LTD coefficients ranging

from 0% to 98.60%, where the means are close to 16%.17 Comparing the means of the true and

estimated LTD coefficients provides first evidence on the performance of the different estimators.

Regarding the dynamic estimators, the Patton and DCC model show an exceptionally good per-

formance, with the means of the estimated LTDs deviating by approximately 1% from the means

of the true LTDs in absolute terms.18 Not surprisingly, the Patton model, when determined to be

the DGP, is the best performing LTD estimator. The DSC model, however, shows a somewhat

worse performance, with the mean true and estimated LTD differing by more than 7% (in absolute

terms). Turning to the static estimators, the performance deteriorates considerably for most esti-

mators, with the differences in the means increasing dramatically to levels ranging between 3.58%

to more than 37% in absolute terms. Interestingly, the Mix2ML and Mix2EM model outperform

the DSC model as well as all other static estimators (including the Mix1ML and Mix1EM model) in

terms of the differences between the means. Further, with respect to the CL and the CLEVT model,

the table shows that modeling the excess distributions of the marginals by the GPD substantially

improves the estimates and decreases the differences in the means from 35% to 24%. The worst

performing estimator is the Nonparam model, with the difference being more than 37% in absolute

terms. These results are supported by the percentiles and the higher moments captured in Panel

A of Table II, which show the superior ability of the dynamic estimators to reproduce the distribu-

tional properties of the true LTD coefficients. Panels B and C show corresponding results for the

cases in which the DCC and the DSC model are specified as the DGP. As can be seen from the

panels, in these cases the true LTDs are 44% and 42% on average, respectively, indicating that the

parameterization of these models leads to remarkably higher LTDs than that of the Patton model.

The main conclusions, however, remain the same.

To further study the performance of the different estimators, we compute and compare the MSEs

across all estimators for each of the three DGPs and report the corresponding results in Table II.

This table presents descriptive statistics of the MSEs and splits up the MSEs into mean squared

positive deviations (denoted as MSE+) and mean squared negative deviations (denoted as MSE−)

to assess whether MSEs result from underestimation or overestimation of true LTD coefficients.

As can be seen from the table, the MSE results confirm the first evidence and support the above

conclusions. Irrespective of the choice of DGP, the dynamic LTD estimators consistently outperform

the static estimators in terms of MSE. Interestingly, when determined to be the DGP, the Patton

model has the lowest average MSE (0.0099) and is the best performing LTD estimator, whereas

the DSC model has a considerably worse (average) MSE of 0.0152 and is the most inaccurate

dynamic LTD estimator. In case of the DCC and the DSC model being the DGP, the DSC

model clearly outperforms the Patton and the DCC model, with the average MSE being around

0.0080 in both cases. Turning to the static LTD estimators, the mixture copula models dominate

17True LTD coefficients are simulated independently and separately for each LTD estimator in each simulation
trial.

18In the following, we will use the terms LTD coefficient and LTD interchangeably.
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Table I: Descriptive statistics of true and estimated lower tail dependence (continued).

Panel B: DGP DCC
Percentiles Moments

Number Min 1st 5th 25th Median 75th 95th 99th Max Mean St. Dev. Skewness Exc. Kurt.

Patton
True LTD 499,000 0.00 11.64 22.78 37.48 45.27 51.82 60.21 66.60 84.60 43.97 11.37 -0.59 3.57
Est. LTD 499,000 0.00 11.82 23.87 36.98 43.92 50.30 59.55 67.95 89.80 43.18 10.96 -0.44 3.94

DCC
True LTD 499,000 0.01 11.85 22.94 37.48 45.17 51.75 60.19 66.24 87.92 43.95 11.29 -0.60 3.57

Est. LTD 499,000 0.00 6.26 17.95 32.95 41.87 49.79 60.17 67.51 88.54 40.88 12.80 -0.39 3.15

DSC
True LTD 499,000 0.10 11.51 23.18 37.66 45.34 51.87 60.43 66.89 85.51 44.12 11.34 -0.59 3.62
Est. LTD 499,000 0.02 6.31 17.96 34.40 43.82 51.68 61.41 68.33 92.49 42.34 13.16 -0.50 3.16

Mix1ML
True LTD 499,000 0.00 11.81 23.34 37.61 45.23 51.66 60.27 66.94 89.90 44.03 11.25 -0.57 3.65
Est. LTD 1,000 6.31 22.09 30.14 33.08 34.37 36.39 46.04 54.77 69.72 35.54 5.61 1.34 10.93

Mix1EM
True LTD 499,000 0.00 12.70 23.39 37.48 45.21 51.69 60.22 66.46 87.11 44.01 11.18 -0.55 3.49
Est. LTD 1,000 21.81 23.96 27.85 32.34 35.60 38.92 44.18 47.58 51.70 35.76 4.95 0.10 2.89

Mix2ML
True LTD 499,000 0.01 12.22 23.27 37.61 45.25 51.73 60.23 66.57 94.62 44.04 11.25 -0.57 3.63
Est. LTD 1,000 0.06 11.75 20.80 32.24 39.47 47.18 58.07 62.43 66.10 39.36 11.08 -0.21 3.07

Mix2EM
True LTD 499,000 0.01 12.25 23.45 37.59 45.27 51.68 60.12 66.32 93.68 44.03 11.19 -0.58 3.62
Est. LTD 1,000 1.54 5.84 15.36 25.84 33.16 41.62 48.26 50.96 53.93 33.02 10.23 -0.33 2.58

RS
True LTD 499,000 0.00 12.13 23.10 37.37 45.08 51.54 59.96 66.19 87.00 43.85 11.21 -0.58 3.56
Est. LTD 1,000 0.00 0.00 0.00 15.22 32.81 46.35 61.00 78.69 94.01 31.28 19.80 0.10 2.40

CL
True LTD 500,000 0.06 12.18 23.02 37.43 45.25 51.77 60.23 66.47 87.23 43.98 11.29 -0.57 3.52
Est. LTD 1,000 36.29 49.19 58.28 64.67 68.68 72.05 76.05 78.00 80.35 68.00 5.84 -1.05 5.64

CLEVT
True LTD 500,000 0.03 11.89 23.06 37.45 45.24 51.80 60.35 66.56 88.81 43.99 11.33 -0.57 3.51
Est. LTD 1,000 25.54 41.32 47.59 54.29 59.00 62.77 67.71 69.92 73.26 58.32 6.31 -0.62 3.86

Nonparam
True LTD 500,000 0.00 12.44 23.57 37.60 45.15 51.64 60.17 66.44 88.97 44.01 11.15 -0.56 3.58
Est. LTD 1,000 12.50 28.57 45.45 60.52 66.00 71.16 77.13 82.71 91.07 64.60 10.08 -1.36 6.25

Panel C: DGP DSC
Percentiles Moments

Number Min 1st 5th 25th Median 75th 95th 99th Max Mean St. Dev. Skewness Exc. Kurt.

Patton
True LTD 499,000 0.00 5.51 13.54 30.67 43.90 53.48 62.88 68.66 85.45 41.55 15.28 -0.43 2.45
Est. LTD 499,000 0.00 6.35 18.18 33.79 42.04 49.52 60.27 69.16 90.57 41.15 12.62 -0.37 3.45

DCC
True LTD 499,000 0.00 5.48 13.42 30.68 43.63 53.18 62.92 68.86 85.55 41.40 15.25 -0.42 2.47
Est. LTD 499,000 0.00 4.93 13.09 29.35 40.25 50.17 62.93 70.57 89.87 39.46 14.92 -0.18 2.61

DSC
True LTD 499,000 0.10 5.91 13.87 30.89 43.93 53.45 63.04 68.85 88.62 41.65 15.21 -0.42 2.45

Est. LTD 499,000 0.00 3.03 9.32 28.06 41.50 51.89 63.62 70.86 89.34 39.52 16.42 -0.32 2.42

Mix1ML
True LTD 499,000 0.00 5.64 13.74 30.69 43.81 53.35 63.09 69.20 93.03 41.55 15.27 -0.41 2.47
Est. LTD 1,000 7.62 21.16 28.07 32.46 34.14 37.02 44.53 50.86 62.67 34.84 5.16 0.29 7.22

Mix1EM
True LTD 499,000 0.00 5.36 13.59 30.83 44.03 53.54 63.22 68.93 90.19 41.68 15.33 -0.43 2.47
Est. LTD 1,000 21.01 23.95 26.51 31.03 33.87 37.33 42.44 45.98 49.35 34.18 4.81 0.22 2.89

Mix2ML
True LTD 499,000 0.01 5.57 13.39 30.75 43.79 53.34 62.92 68.78 91.19 41.48 15.30 -0.42 2.46
Est. LTD 1,000 0.30 8.31 19.58 30.78 38.46 47.05 56.54 61.58 72.24 38.50 11.47 -0.23 3.00

Mix2EM
True LTD 499,000 0.01 5.34 13.35 30.81 43.89 53.31 62.91 68.99 95.31 41.52 15.31 -0.43 2.49
Est. LTD 1,000 1.38 5.29 14.11 24.33 31.25 39.48 47.08 50.96 53.70 31.27 10.25 -0.24 2.63

RS
True LTD 499,000 0.02 5.15 13.27 30.64 43.99 53.60 63.22 69.13 92.44 41.59 15.45 -0.43 2.46
Est. LTD 1,000 0.00 0.00 0.00 11.91 29.15 42.34 57.83 70.51 90.49 28.06 18.76 0.14 2.29

CL
True LTD 500,000 0.02 5.31 13.44 30.79 43.81 53.31 62.92 68.89 87.04 41.49 15.28 -0.43 2.48
Est. LTD 1,000 32.86 46.17 54.50 61.17 65.62 69.24 73.52 76.25 81.17 64.89 6.16 -0.79 4.37

CLEVT
True LTD 500,000 0.03 5.98 14.01 31.00 44.12 53.71 63.30 69.08 88.26 41.83 15.27 -0.42 2.44
Est. LTD 1,000 17.59 36.47 42.15 50.72 55.77 60.08 66.15 69.42 74.87 55.19 7.21 -0.55 3.86

Nonparam
True LTD 500,000 0.05 5.67 13.52 30.60 43.84 53.44 62.98 68.86 87.94 41.52 15.31 -0.42 2.44
Est. LTD 1,000 0.00 23.05 36.35 57.14 64.00 69.00 75.34 81.82 89.75 61.46 11.86 -1.47 6.14
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Table II: Performance of lower tail dependence estimators.

The table shows descriptive statistics on mean squared errors (MSE) for the lower tail dependence (LTD) estimators included in our simulation study. MSE is computed according

to MSE = Π(τ , τ̂ ) = T−1
∑T

t=1(τt − τ̂t)2, where τ = (τt)Tt=1 and τ̂ = (τ̂t)Tt=1 denote the series of true and estimated LTD coefficients, respectively. The statistics in the table
result from the baseline approach, which is determined by setting the sample size, T , to 500 and the number of simulation trials, N , to 1000. MSE is computed in each simulation
trial, resulting in a total of 1000 MSEs for each combination of data-generating process (DGP) and LTD estimator. In addition to the mean, median, minimum, and maximum

MSE, the table reports statistics on mean squared positive and negative deviations (denoted as MSE+ and MSE−, respectively), where MSE+ = T−1
∑T

t=1 [max{0; τt − τ̂t}]2
and MSE− = T−1

∑T
t=1 [min{0; τt − τ̂t}]2. The first column of the statistics on MSE+ and MSE− reports the corresponding average across the simulation trials, the second

column shows the average of the ratios MSE+/MSE and MSE−/MSE, and the third column reports the average of the numbers T−1
∑T

t=1 1{τt>τ̂t} and T−1
∑T

t=1 1{τt<τ̂t}
(with 1 denoting the indicator function), respectively. In case of the DGP and the LTD estimator being identical, corresponding statistics are printed in bold type. The names
of the LTD estimators are abbreviated according to the notation introduced in Section 3.1.

Panel A: DGP Patton
MSE MSE+ MSE−

Mean Median Min Max Mean % of MSE # Underest. (in %) Mean % of MSE # Overest. (in %)
Patton 0.0099 0.0069 0.0004 0.0560 0.0048 51.69 55.69 0.0051 48.15 44.31

DCC 0.0115 0.0077 0.0012 0.0548 0.0054 49.57 55.51 0.0061 50.28 44.49
DSC 0.0152 0.0121 0.0016 0.0634 0.0020 22.77 78.86 0.0132 77.07 21.14

Mix1ML 0.0388 0.0384 0.0059 0.1379 0.0008 2.66 94.14 0.0379 97.18 5.86
Mix1EM 0.0220 0.0208 0.0050 0.0633 0.0016 9.04 88.16 0.0203 90.80 11.84
Mix2ML 0.0220 0.0139 0.0034 0.1336 0.0049 41.20 68.37 0.0171 58.63 31.63
Mix2EM 0.0179 0.0138 0.0034 0.0772 0.0061 45.86 62.60 0.0118 53.98 37.40

RS 0.0739 0.0299 0.0040 0.6382 0.0114 48.11 56.02 0.0624 51.73 43.98
CL 0.1343 0.1344 0.0219 0.2328 0.0001 0.06 99.36 0.1342 99.94 0.64

CLEVT 0.0687 0.0677 0.0077 0.1416 0.0004 0.77 97.34 0.0684 99.23 2.66
Nonparam 0.1705 0.1746 0.0046 0.4606 0.0005 4.18 96.15 0.1700 95.82 3.85

Panel B: DGP DCC
MSE MSE+ MSE−

Mean Median Min Max Mean % of MSE # Underest. (in %) Mean % of MSE # Overest. (in %)
Patton 0.0117 0.0095 0.0033 0.1564 0.0066 49.48 46.49 0.0052 50.40 53.51
DCC 0.0095 0.0049 0.0007 0.2038 0.0075 59.22 38.50 0.0020 40.65 61.50

DSC 0.0081 0.0056 0.0007 0.1433 0.0060 60.02 45.85 0.0021 39.86 54.15
Mix1ML 0.0223 0.0214 0.0052 0.1515 0.0191 82.89 21.97 0.0032 16.99 78.03
Mix1EM 0.0199 0.0184 0.0032 0.0647 0.0174 84.57 21.77 0.0025 15.30 78.23
Mix2ML 0.0236 0.0186 0.0052 0.2036 0.0169 62.59 35.97 0.0067 37.29 64.03
Mix2EM 0.0319 0.0240 0.0043 0.1578 0.0291 80.99 21.02 0.0028 18.88 78.98

RS 0.0609 0.0309 0.0044 0.2471 0.0533 70.47 29.03 0.0075 29.41 70.97
CL 0.0698 0.0705 0.0141 0.1097 0.0000 0.07 98.96 0.0698 99.93 1.04

CLEVT 0.0334 0.0330 0.0090 0.0673 0.0004 1.66 90.88 0.0330 98.34 9.12
Nonparam 0.0629 0.0605 0.0064 0.2654 0.0011 4.48 92.86 0.0618 95.52 7.14

Panel C: DGP DSC
MSE MSE+ MSE−

Mean Median Min Max Mean % of MSE # Underest. (in %) Mean % of MSE # Overest. (in %)
Patton 0.0157 0.0140 0.0069 0.0633 0.0078 48.61 46.69 0.0079 51.25 53.31
DCC 0.0106 0.0073 0.0018 0.1587 0.0067 48.22 41.62 0.0040 51.65 58.38
DSC 0.0080 0.0049 0.0008 0.1586 0.0059 60.42 42.05 0.0021 39.45 57.95

Mix1ML 0.0300 0.0287 0.0079 0.1235 0.0226 73.25 32.18 0.0074 26.62 67.82
Mix1EM 0.0296 0.0289 0.0098 0.0789 0.0233 76.95 30.38 0.0062 22.92 69.62
Mix2ML 0.0336 0.0296 0.0075 0.1707 0.0200 54.79 41.46 0.0135 45.08 58.54
Mix2EM 0.0411 0.0354 0.0065 0.1765 0.0349 76.68 27.76 0.0062 23.19 72.24

RS 0.0719 0.0431 0.0074 0.3680 0.0618 72.56 28.20 0.0099 27.31 71.80
CL 0.0780 0.0791 0.0178 0.1119 0.0002 0.31 95.99 0.0778 99.69 4.01

CLEVT 0.0417 0.0413 0.0109 0.0734 0.0015 4.51 79.53 0.0402 95.49 20.47
Nonparam 0.0744 0.0718 0.0105 0.2619 0.0026 7.18 87.32 0.0718 92.82 12.68
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the remaining LTD models irrespective of the DGP. When we specify the Patton model as the

DGP, the results are as expected; due to their greater flexibility, the Mix2ML and Mix2EM model

outperform the Mix1ML and Mix1EM model as indicated by the consistently lower average MSEs.

Moreover, estimating the mixtures via the EM algorithm yields considerably better results than

ML estimation for both mixture models. Somewhat surprisingly, these results do not hold anymore

for the Mix2ML and Mix2EM model when specifying either the DCC or the DSC model as the DGP.

As can be seen from the table, in these cases the corresponding average MSEs of the Mix2ML and

Mix2EM model are greater than those of the Mix1ML and Mix1EM model and increase from 0.0236

to 0.0319 and from 0.0336 to 0.0411 when changing from ML to the EM algorithm, respectively.

Furthermore, the most inaccurate LTD estimates are generated by the CL and the Nonparam

model, with the average MSEs ranging from 0.0698 to 0.1343 and from 0.0629 to 0.1705 across

the DGPs, respectively. Remarkably, with the Patton model being the DGP, the average MSEs

for the two estimators are substantially greater than those resulting from choosing the DCC or

the DSC model as the DGP (e.g., the average MSEs for the CL and Nonparam model decrease

from 0.1343 to 0.0698 and from 0.1705 to 0.0629 when switching from the Patton model to the

DCC model, respectively). Further, confirming the evidence from Table II, the CLEVT model has

a much lower average MSE than the CL model across all DGPs, indicating that the EVT approach

of applying the GPD to the marginal distributions prior to estimating the copula model results in

a material improvement in the accuracy of LTD estimates. More precisely, as shown in Table II,

MSEs of the CLEVT model are roughly half the MSEs of the CL model on average, irrespective

of the DGP. With respect to under- and overestimation, Table II shows that there is no specific

pattern in the statistics of MSE+ and MSE− for most of the LTD estimators. In case of the Patton

model, however, approximately 50% of MSE results, on average, from under- or overestimation of

true LTD coefficients across all DGPs. Interestingly, in case of the CL, CLEVT, and the Nonparam

model, the percentages of MSE that on average result from underestimation are consistently low

across all DGPs, ranging from 0.06% (CL, DGP Patton) to 7.18% (Nonparam, DGP DSC) and

indicating that these models systematically overestimate LTD.19

3.3.2 How important is sample size? Extending the baseline approach.

When estimating copula models, sample size is a critical issue. In this section, we extend our

baseline approach and examine the performance of the LTD estimators with respect to varying

sample sizes. More precisely, we include two additional simulation specifications that arise from

the baseline approach by altering the number of simulated (true) LTD coefficients, T , from 500 to

19The results discussed above are illustrated and supported by additional figures reported in the Internet Appendix
that plot MSEs separately for each of the three DGPs as well as for each of the LTD estimators studied in our
simulation approach. MSEs remain relatively flat for the dynamic models with sporadic peaks across the simulation
replications for some of the DGP specifications. The MSEs for the static LTD estimators, on the other hand, are
for the most part characterized by considerable fluctuations and a generally higher level than that of the dynamic
estimators’ MSEs. Supporting the evidence from Table II, the mixture copula models show the best performance
among the static estimators, whereas the MSEs of the remaining static models exhibit an increased variability and
magnitude.
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250 and to 1,000, respectively.

The results of the extended simulation approach are illustrated in Figure 1. As can be seen

Figure 1: Average mean squared errors for different sample sizes.

The figure shows average mean squared errors (MSE) for the lower tail dependence (LTD) estimators with respect to
different sample sizes and separately for each of the three data-generating processes (Patton, DCC, and DSC model).
MSE is computed according to MSE = Π(τ , τ̂ ) = T−1

∑T

t=1(τt − τ̂t)
2, where τ = (τt)

T
t=1 and τ̂ = (τ̂t)

T
t=1 denote

the series of true and estimated LTD coefficients, respectively. For each LTD estimator, the figure plots three bars
showing the average MSE for each of the three sample sizes considered (T = 250; 500; 1000), where the average is
calculated across a total of N = 1000 simulation replications. The names of the LTD estimators are abbreviated
according to the notation introduced in Section 3.1.
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from the figure, the general conclusions drawn in the previous section remain valid when varying

the sample size, i.e., the dynamic models are the best performing LTD estimators and the mixture

copula models clearly dominate the remaining static models across all three sample sizes. Further,

the figure shows that the performance of the dynamic LTD estimators substantially improves with

increasing sample size, irrespective of the specified DGP. This effect is particularly pronounced

when the DCC model is specified as the DGP. In this case, when increasing the sample size, T ,

from 250 to 1,000, the average MSE for the Patton, the DCC, and the DSC model decreases

considerably from 0.0224 to 0.0083, from 0.0224 to 0.0041, and from 0.0146 to 0.0047, respectively.

Put differently, reducing sample size from 1,000 to 250 (that is, by a factor of 4.00) increases the

average MSE by a factor of 2.94 for the Patton model, a factor of 5.46 for the DCC model, and

a factor of 3.11 for the DSC model, leading to a remarkable deterioration in performance. Hence,

we find clear evidence of consistency for the dynamic LTD estimators studied in our simulation

approach so that the dynamic models provide statistically consistent estimates of LTD coefficients.

However, the pattern is not as pronounced for the static estimators. In fact, for most of the

static models, increasing the sample size does not necessarily result in a better performance, i.e.,

decreasing MSEs. Except for the RS and the Nonparam models, which exhibit decreasing (average)

MSEs for increasing sample sizes across all DGP specifications, the relation between performance

and sample size is not as clear for the remaining static estimators.20 Consequently, we do not find

evidence of consistency for most of the static LTD estimators in our simulation approach so that

20In case of the Mix1ML model, for example, we can see from results tabulated in the Internet Appendix that,
when the Patton model is determined to be the DGP, the average MSE slightly decreases from 0.0386 to 0.0370 when
increasing sample size from 250 to 1,000. When specifying the DSC model as the DGP, the average MSE increases
substantially from 0.0212 to 0.0374, implying a worse performance for a greater sample size.
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most static models in our study seem to deliver inconsistent estimates of LTD coefficients.

Overall, the extended baseline approach shows the robustness of our results with respect to

sample size on the one hand, and demonstrates the importance of considering sample size when

estimating LTD models on the other hand. Based on our results, the issue of sample size is

particularly relevant for the dynamic estimators. Increasing the sample size results in a material

improvement in the performance of the estimators, or put the other way round, decreasing sample

size deteriorates LTD estimates substantially.

3.3.3 Is performance measurement crucial? Reevaluating simulation results.

One concern about our simulation study might be the choice of performance metric we used to

evaluate the accuracy of the LTD estimates. Up to this point, performance evaluation exclusively

relied on the mean squared error criterion and neglected any other performance measures. Hence,

in this section we introduce additional performance metrics and check the robustness of the results

presented in the preceding sections with respect to performance measurement. More precisely, we

include three additional performance metrics in the evaluation of our simulation results, namely a

slight variation of MSE (denoted as MSE2) and two metrics based on the absolute deviation between

true and estimated LTD coefficients (denoted as MAD1 and MAD2). The additional performance

metrics are computed according to the following formulas

MSE2 = T−1
T
∑

t=1

(

τ2t − τ̂2t
)2

(18)

MAD1 = T−1
T
∑

t=1

|τt − τ̂t| (19)

MAD2 = T−1
T
∑

t=1

∣

∣τ2t − τ̂2t
∣

∣ . (20)

Results on average values of the performance metrics are illustrated in Figure 2 separately for

each DGP, performance metric, and each sample size (T = 250; 500; 1, 000).21 Figure 2 demon-

strates that the main results and conclusions drawn in the previous sections remain valid when

altering the performance metric, indicating that our findings from above are robust towards perfor-

mance measurement and do not depend on the specific properties of MSE. More precisely, we can

see from the figure that the dynamic LTD estimators clearly outperform the static models across

all DGPs and across all performance metrics, with the superiority becoming increasingly evident as

sample size grows. Further, as in the case of MSE being the performance metric, both MSE2 and

the MAD measures decrease with increasing sample size, indicating better performance for larger

sample sizes.22

21We report a comprehensive result table in the Internet Appendix, from which we retrieve several numerical
examples discussed below.

22An exception to this pattern is constituted by the Patton model when the DSC model is specified as the DGP.
As shown in the results table in the Internet Appendix, in this setting, average MSE2 and MAD2 increase from 0.0083
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Figure 2: Average alternative performance metrics for different sample sizes.

The figure shows average values of the alternative performance metrics for the lower tail dependence (LTD) estimators
with respect to different sample sizes and separately for each of the three data-generating processes (Patton, DCC,
and DSC model). The alternative performance measures include a modified version of the mean squared error
(denoted as MSE2) and two mean absolute deviation measures (MAD1 and MAD2), which are computed according

to MSE2 = T−1
∑T

t=1

(

τ2
t − τ̂2

t

)2
, MAD1 = T−1

∑T

t=1 |τt − τ̂t|, and MAD2 = T−1
∑T

t=1

∣

∣τ2
t − τ̂2

t

∣

∣, where τ = (τt)
T
t=1

and τ̂ = (τ̂t)
T
t=1 denote the series of true and estimated LTD coefficients, respectively. For each LTD estimator,

the figure plots three bars for each performance metric showing the average MSE2, MAD1, and MAD2 for each of
the three sample sizes considered (T = 250; 500; 1000), where the average is calculated across a total of N = 1000
simulation replications. The names of the LTD estimators are abbreviated according to the notation introduced in
Section 3.1.
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Moreover, the mixture copula models are the dominating static LTD estimators across all DGPs,

performance metrics, and sample sizes.

Regarding the mixture copula models, the results do not provide evidence of one of the two

mixture models being superior to the other or of the EM algorithm leading to more accurate LTD

estimates. Further, similar to the results in the previous sections, the CL and the Nonparam model

are the worst performing LTD estimators across all simulation settings, with the performance

metrics being substantially higher than those of the other estimators.23 Assuming the Patton

model as the DGP and a sample size equal to 1,000, for example, average MSE2 for the CL and the

Nonparam model is approximately 42 (0.0552/0.0013) and 77 (0.1012/0.0013) times the average

MAD2 of the Patton model. As expected, the effect of the EVT approach remains significant across

all DGPs and sample sizes as can be seen from the considerable reduction in the average values of

the MSE and MAD measures for the CLEVT model when compared to the CL model in Figure 2.

3.3.4 Which estimator performs best? Summary and conclusions.

This section summarizes the results from our simulation study and shortly reviews the most

important conclusions. Table III provides a ranking of the LTD estimators included in our study for

each of the simulation specifications investigated in the previous sections (i.e., for each performance

metric, DGP, and sample size), where each estimator is assigned a number between 1 (best per-

former) and 11 (worst performer). For each performance metric and LTD estimator, the rankings

are summed up and the values of the corresponding performance metric are averaged across all

DGPs and sample sizes (see the last two columns in Table III), with low sums and average values

implying global superior performance (that is, across all simulation settings). The rankings, sums,

and averages reported in the table summarize our general findings, which can be stated as follows.

First, the dynamic LTD estimators clearly dominate the static estimators, with the superiority

of the former becoming increasingly evident with growing sample sizes.24 Among the dynamic

estimators, the Patton model is the best performing model only when at the same time assumed to

be the DGP. Otherwise, the DSC model outperforms the Patton and the DCC model.25 Second,

the mixture copula models are the best performing static LTD estimators, irrespective of the

to 0.0105 and from 0.0679 to 0.0824, respectively.
23In some settings, the RS model performs even worse than the CL or the Nonparam model. These settings are,

however, restricted to the small sample size specifications. When sample size is increased, the performance metrics
consistently decrease to values below those of the CL and Nonparam model.

24As mentioned before, tail dependence coefficients, i.e., asymptotic probabilities that are an inherent feature
of a copula, are different from other tail risk measures such as VaR or ES. Therefore, the best performing copula
model with respect to tail dependence estimation may not necessarily be the best estimator for VaR and ES figures.
In unreported simulation results for different sample sizes, we see that in fact the mixture models may sometimes
provide better accuracy with regard to VaR and ES measures than dynamic models. However, these differences in
performance, as indicated by MSEs, are not as striking as the differences in MSEs of LTD estimates as shown before.
In short, the performance of dynamic models with respect to LTD coefficient estimates is relatively better than the
performance of static models for VaR and ES.

25Note the corresponding pattern in Table III. When specified as the DGP, the Patton model ranks on first place
for the most part, while the rankings of the DSC model range between the third and fifth place. Changing the DGP
from the Patton to the DCC or DSC model, however, results in the Patton model ranking between the second and
fourth place and the DSC model ranking on first place for most specifications.
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Table III: Ranking and overall performance of lower tail dependence estimators.

The table provides a ranking of the lower tail dependence (LTD) estimators for each of the simulation specifications investigated in our simulation study, i.e., for each performance
metric, data-generating process (Patton, DCC, DSC), and sample size (T = 250; 500; 1000). Each LTD estimator is assigned a number between 1 (best performer) and 11
(worst performer) and for each performance metric and estimator the rankings are summed up and the values of the corresponding performance metric are averaged across
all data-generating processes (DGP) and sample sizes (see the last two columns in the table). The performance metrics included are two versions of the mean squared error

(denoted as MSE and MSE2) and mean absolute deviation (MAD1 and MAD2), which are computed according to MSE = T−1
∑T

t=1(τt − τ̂t)2, MSE2 = T−1
∑T

t=1

(

τ2t − τ̂2t
)2

,

MAD1 = T−1
∑T

t=1 |τt − τ̂t|, and MAD2 = T−1
∑T

t=1

∣

∣τ2t − τ̂2t
∣

∣, where τ = (τt)Tt=1 and τ̂ = (τ̂t)Tt=1 denote the series of true and estimated LTD coefficients, respectively. In
case of the DGP and the LTD estimator being identical, corresponding statistics are printed in bold type. The names of the LTD estimators are abbreviated according to the
notation introduced in Section 3.1.

Panel A: MSE
DGP Patton DGP DCC DGP DSC

Sum Average MSE
n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

Patton 1 1 1 4 3 3 2 3 3 21 0.0162

DCC 2 2 2 3 2 1 3 2 2 19 0.0167

DSC 4 3 3 1 1 2 1 1 1 17 0.0221

Mix1ML 7 7 7 2 5 5 5 5 5 48 0.0386

Mix1EM 5 5 5 5 4 6 4 4 6 44 0.0224

Mix2ML 6 6 6 6 6 4 6 6 4 50 0.0307

Mix2EM 3 4 4 8 7 7 7 7 7 54 0.0194

RS 9 9 8 10 9 9 11 9 9 83 0.1248

CL 10 10 10 11 11 11 9 11 11 94 0.1384

CLEVT 8 8 9 7 8 8 8 8 8 72 0.0615

Nonparam 11 11 11 9 10 10 10 10 10 92 0.1790

Panel B: MSE2

DGP Patton DGP DCC DGP DSC
Sum Average MSE2n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

Patton 2 1 1 3 3 3 3 3 3 22 0.0038

DCC 1 2 2 2 2 1 2 2 2 16 0.0034

DSC 5 4 3 1 1 2 1 1 1 19 0.0056

Mix1ML 7 7 7 6 6 5 4 6 6 54 0.0084

Mix1EM 4 5 5 4 4 6 5 5 7 45 0.0044

Mix2ML 6 6 6 5 5 4 7 4 4 47 0.0077

Mix2EM 3 3 4 7 7 7 6 7 5 49 0.0039

RS 10 9 9 9 8 8 10 9 9 81 0.0806

CL 9 10 10 11 11 11 9 11 11 93 0.0625

CLEVT 8 8 8 8 9 9 8 8 8 74 0.0193

Nonparam 11 11 11 10 10 10 11 10 10 94 0.1072

Panel C: MAD1

DGP Patton DGP DCC DGP DSC
Sum Average MAD1n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

Patton 1 1 1 2 3 3 2 3 3 19 0.1021

DCC 2 2 2 3 2 2 3 2 2 20 0.1026

DSC 4 3 3 1 1 1 1 1 1 16 0.1249

Mix1ML 7 7 8 4 6 5 5 5 7 54 0.1788

Mix1EM 5 6 6 5 4 6 4 4 8 48 0.1301

Mix2ML 6 5 5 6 5 4 6 6 4 47 0.1432

Mix2EM 3 4 4 8 7 7 7 8 6 54 0.1123

RS 9 8 7 9 9 9 10 9 9 79 0.2845

CL 10 10 10 11 11 11 9 11 11 94 0.3568

CLEVT 8 9 9 7 8 8 8 7 5 69 0.2227

Nonparam 11 11 11 10 10 10 11 10 10 94 0.3892

Panel D: MAD2

DGP Patton DGP DCC DGP DSC
Sum Average MAD2n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

Patton 2 1 1 3 3 3 3 3 3 22 0.0397

DCC 1 2 2 2 2 2 2 2 2 17 0.0372

DSC 5 4 3 1 1 1 1 1 1 18 0.0557

Mix1ML 7 7 7 6 6 5 5 5 6 54 0.0830

Mix1EM 4 6 6 4 4 6 4 4 7 45 0.0543

Mix2ML 6 5 5 5 5 4 7 6 4 47 0.0652

Mix2EM 3 3 4 7 7 7 6 7 5 49 0.0443

RS 9 8 8 9 8 8 9 9 9 77 0.1933

CL 10 10 10 11 11 11 10 11 11 95 0.2370

CLEVT 8 9 9 8 9 9 8 8 8 76 0.1201

Nonparam 11 11 11 10 10 10 11 10 10 94 0.2864
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specification of the mixture and the estimation method. Occasionally, when sample size is low

(T = 250), the mixture copula models outperform some of the dynamic LTD estimators, but

as sample size increases, the mixtures considerably underperform the dynamic models.26 Third,

neither the specification of the mixture nor the estimation method has a distinct impact on the

accuracy of LTD estimates. The two mixture models provide similarly accurate LTD estimates and,

somewhat surprisingly, the bias arising from using the two different maximization strategies for the

log likelihood (one step and the EM algorithm) for estimation of the mixtures does not translate

into a consistent deterioration in performance. Fourth, the worst performing LTD estimators are

the CL and the Nonparam model, where the performance of the former improves significantly

when modified by the EVT approach of applying the GPD to the marginal distributions prior to

estimating the copula. The resulting CLEVT model as well as the RS model fall somewhere in

between the mixture models and the CL and Nonparam model regarding their performance, with

the lowest values of their corresponding performance metrics reaching those of the mixtures and

the highest reaching those of the CL and Nonparam model.

4 Tail dependence in finance

We now apply selected tail dependence estimators to the universe of U.S. equities from 1980

to 2011 to investigate the economic implications of the choice of tail dependence estimator used

in many empirical asset pricing studies.27 We estimate the Mix1EM model28 (as used in, e.g.,

Chabi-Yo et al., 2018), the Patton model as one that outperformed the mixture model, and the un-

derperforming Clayton (EVT) model, and then compute corresponding tail dependence coefficients

for each stock and year.29

Figures 3 and 4 depict and compare the time series of aggregate LTD and the range between

the 25th and 75th percentile of LTD across the sample for the three tail dependence estimators.

We define aggregate LTD as the yearly cross-sectional and equal-weighted average LTD over all

stocks in our sample (cf. Chabi-Yo et al., 2018). As can be seen from the panels in Figure 3,

the general patterns in the temporal variation of aggregate LTD are similar across all estimators.

Peaking in 1987 (the year of Black Monday), aggregate LTD stayed relatively flat during the 1990s

and has been on a strong and stable upward trend since the turn of the millennium.30 However,

26Note that this difference in performance is also economically relevant. For example, the mean absolute deviation
(MAD1) in Panel C of Table III shows that the average error across all settings for the Patton model is 10.2%, while
the corresponding average deviations for mixture models are between 11.2% (Mix2EM) and 17.9% (Mix1ML), i.e., a
spread of 1% to 7.7% (on average).

27As an example, we further replicate the study by Chabi-Yo et al. (2018) to show that the choice of tail dependence
estimators and the potential, economically large bias can lead to different results in empirical asset pricing studies
involving extreme dependence measures. We refer to the Internet Appendix for a detailed discussion of the replication
procedure and additional portfolio sorts and regression results confirming our prior.

28As found in Chabi-Yo et al. (2018), the Mix1 model, consisting of the Joe, F-G-M, and the Rotated-Joe copula,
is the most frequently selected convex combination.

29Here, we concentrate on those dynamic and static LTD estimators/models that have been used in previous
studies on asset pricing to allow for a direct comparison of the results.

30Note that Chabi-Yo et al. (2018) find no specific pattern in aggregate LTD and the estimates of aggregate LTD
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Figure 3: Aggregate lower tail dependence over time.

The figure depicts the time evolution of aggregate lower tail dependence (LTD) and the range between the 25th and 75th percentile of LTD across the sample
estimated from the three tail dependence models employed in our empirical study, including the Mix1EM, CLEVT, and the Patton model. Aggregate LTD is
defined as the cross-sectional, equal-weighted average of the individual LTD coefficients computed between stock returns and market returns over all stocks and
years in the sample. Our sample encompasses all U.S. common stocks trading on the NYSE, AMEX, and NASDAQ from January 1, 1980 to December 31, 2011.
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the panels show considerable differences in the amount and variation of aggregate LTD across the

estimators, with the less sophisticated estimators implying a greater and more volatile amount of

tail dependence.

Figure 4 investigates the differences in aggregate LTD across the three tail dependence estima-

tors in more detail. As can be seen from the panels, there are considerable differences between the

estimates from the Patton model and the two static models, whereas the differences between the

estimates from the Mix1EM and CLEVT model are somewhat less pronounced but still significant.

For example, when comparing the CLEVT and Patton model in the lower panel we observe that the

estimated tail dependence is more than twice as high for the former estimator than for the latter

in most of the years.

In line with the results from our simulations, neglecting intra-year time dynamics appears to

have severe consequences for the tail dependence estimates.

are somewhat more erratic and characterized by occasional spikes.
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Figure 4: Comparing aggregate lower tail dependence across estimators.

The panels of the figure compare the time evolution of aggregate lower tail dependence (LTD) across the LTD
estimators included in our empirical study. Aggregate LTD is defined as the cross-sectional, equal-weighted average
of the individual LTD coefficients computed between stock returns and market returns over all stocks and years in the
sample. The estimators included in our study comprise the Mix1EM, CLEVT, and the Patton model. The left-hand
panels show the range between the aggregate LTD coefficients computed from the different estimators (shaded area)
as well as corresponding mean squared errors (MSE, light-gray bars) calculated according to the formula in (17) for
each stock and year in the sample. The right-hand panels directly compare the amounts of tail dependence over
time by means of bar plots. Our sample encompasses all U.S. common stocks trading on the NYSE, AMEX, and
NASDAQ from January 1, 1980 to December 31, 2011.
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(b) Aggregate LTD: Mix1EM vs. Patton
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(c) Aggregate LTD: CLEVT vs. Patton
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5 Conclusion

In this paper, we have demonstrated that several estimators of tail dependence used in the

literature produce severely biased estimates, especially when static models are used to describe

time-varying extreme dependence in data samples. Estimators that do not account for time-varying

tail dependence or that are incorrectly used (e.g., using Maximum Likelihood in finite mixture

models), and nonparametric estimators regularly overestimate the actual level of tail dependence

in simulated samples.

Within financial economics, our empirical findings suggest that several key results from the

literature (e.g., Okimoto, 2008; Kang et al., 2010; Garcia and Tsafack, 2011; Chabi-Yo et al., 2018;

Ruenzi et al., 2018) need to be treated with care as the actual extreme dependence in asset prices,

which often have time-varying dependence structures (see, e.g., Christoffersen et al., 2012, 2018),

could be lower than stated. We confirm this conjecture from our Monte Carlo experiments in an

empirical analysis of the factors that drive the cross-sectional variation of U.S. stocks between 1980

and 2011. Several estimators of tail dependence that have been extensively used in the previous

literature significantly overestimate the level of lower tail dependence inherent in stock returns.

The implications of our article for future investigations into the role of extreme dependence

are simple, yet important. Choosing a static, nonparametric, or statistically incorrectly estimated

model for measuring extreme dependence in random variables invalidates any conclusions drawn

from potential applications. Economic intuition and previous findings in the literature (even from

those studies that later on employ static models) state that extreme dependence in most financial

data (stock, bond, option, CDS prices) is time-varying. Consequently, future studies in this field

need to account for the time-variation in extreme dependence by using sophisticated dynamic

models, of which some have been proposed almost a decade ago.
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