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Abstract

In smart factories, integrated optimisation of manufacturing process planning
and scheduling leads to better results than a traditional sequential approach but
is computationally more expensive and thus difficult to be applied to real-world
manufacturing scenarios. In this paper, a working approach for cloud-based
distributed optimisation for process planning and scheduling is presented. Three
managers dynamically governing the creation and deletion of subpopulations
(islands) evolved by a multi-objective genetic algorithm are proposed, compared
and contrasted. A number of test cases based on two real-world manufacturing
scenarios are used to show the applicability of the proposed solution.

Keywords: Smart factory; Industry 4.0; Evolutionary algorithms; Distributed
optimisation; Multi-objective optimisation; Integrated process planning and
scheduling

1. Introduction

The versatile benefits stemming from cloud computing have been widely
adopted in smart factories under the name of cloud manufacturing [12]. Cloud
manufacturing offers assorted services, supporting collaboration, sharing and
management of manufacturing resources [33]. It can be treated as a solution to the
new manufacturing challenges related to manufacturing small batches of highly
customised commodities [35]. A smart factory can receive a new manufacturing
order at any time and for each such order, a process planning and scheduling need
to be performed with no delay [6]. Similarly, process planning and scheduling
are required to be re-executed in case any unexpected event occurs in the factory,

∗Corresponding author
Email addresses: piotr.dziurzanski@york.ac.uk (Piotr Dziurzanski),

shuai.zhao@york.ac.uk (Shuai Zhao), michal.przewozniczek@york.ac.uk (Michal
Przewozniczek), marcin.komarnicki@pwr.edu.pl (Marcin Komarnicki),
leandro.indrusiak@york.ac.uk (Leandro Soares Indrusiak)

Preprint submitted to Elsevier January 2, 2020



for example, a failure of a smart device (thing) is detected [34]. Process planning
and scheduling are notorious for being computationally demanding [32] and
hence require significant computational power to be performed in a time frame
acceptable for a company, which may be a few orders of magnitude lower than the
manufacturing process itself [6]. Between subsequent executions of the process
planning and scheduling, the computational power is not needed. Consequently,
the workload related to the process planning and scheduling follows the on-
and-off workload pattern and, as such, satisfies two out of the three criteria
for suitability for public cloud provided in [9], namely it has an unpredictable
load or a potential for an explosive growth and is characterised with different
computational power requirements at different time intervals. To fulfill the third
criterion, the workload needs to be horizontally scalable, so the process planning
and scheduling shall be parallelised easily.

Both process planning and scheduling are multi-criteria decision making
problems. In a process planning, methods to manufacture a commodity are
determined whereas in a project scheduling, specific tasks are assigned to specific
machines for certain time slots [26]. Both these stages can be integrated into one
process solvable with a typical metaheuristics, such as Genetic Algorithms (GAs)
[36], usually leading to better results than a sequential execution of these two
stages [26]. GA is an algorithm inspired by the process of natural selection that
is often used to solve optimisation problems by applying bio-inspired operators
named mutation, crossover and selection to a population of candidate solutions
to generate a new population with a higher quality. Such process of generating
new populations is continued until an assumed ending condition is satisfied. GAs
are known to be easily parallelisable at three levels: fitness evaluation, population
and individual [4]. Among these levels, the population-level parallelism (aka
the Island Model) is applied in this paper. In this model, a set of populations
are evolved independently but some individuals are migrated between these
populations. Such island communication pattern can be significantly more
advantageous than evolving a single large population [21]. Moreover, if the
process planning and scheduling are performed using the Island Model of GA,
the third workload criterion for cloud suitability from [9] is satisfied as well.

As the number of GA’s islands can be determined dynamically based on the
optimisation state [16, 27], it is important to have short island initialisation
time. However, provisioning of a single virtual machine (VM) in a cloud was
reported to take more than a minute [23]. Provisioning of VMs in a number that
is predicted to be sufficient for a certain optimisation process in advance will
both incur an inevitable monetary cost and cap the maximal possible number
of islands. An alternative is to execute islands in so-called serverless manner,
benefiting from the Function as a Service (FaaS) facilities available in major
public clouds [35, 5].

FaaS allows a cloud to run code without prior VM provisioning or managing.
The computational power scales automatically, is highly available and fault
tolerant. The first request can initially see several seconds response time but
is shorter than 1s for the subsequent requests1. Using such services is also

1https://console.bluemix.net/docs/openwhisk/openwhisk\_compare.html
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economically beneficial as there is no charge for the time when code is not
running. As FaaS automatically provides as much capacity as needed and a user
is billed based on per-second capacity consumption and executions, it is suitable
for performing distributed computation with several computing nodes.

It is then suitable for the Island Model of GA mentioned earlier.
Initially, FaaS was intended to execute short functions written in certain

programming languages (for example JavaScript or Java). IBM was the first
major public cloud vendor that permitted execution of Docker2 containers as a
function using IBM Cloud Function3 based on Apache OpenWhisk4. However,
by using open-source, Kubernetes5-native serverless framework named Fission6,
Docker containers can be executed as a function on any Kubernetes cluster,
available in all major cloud facilities. These possiblities are discussed later in
this paper.

The prospect of having a practically unbounded number of islands and the
short provisioning time of a new island encourage to investigate the algorithms
for dynamic managers governing the numbers of islands. In the manufacturing
domain, these managers need to be effective for generating production plan
and schedule for a wide range of smart factories. In particular, such managers
should be appropriate to factories assembling discrete parts through mechanical
processes (i.e. discrete manufacturing) and combining supplies or ingredients
according to recipes (i.e. process manufacturing).

In this paper, three proposed managers are used for both the discrete and
process manufacturing branches based on the real-world use cases provided
by our business partners. As the multi-objective extensions of the managers
known from the literature are shown to be successfully applicable only in certain
situations (discussed in this paper), a new manager is proposed that combines
the benefits of both the extensions and hence can be applied to assorted smart
factories for determining the production plan and schedule. It is then suitable
for the Island Model of GA mentioned earlier.

The main contribution of this paper can be summarised with the following
points:

• proposing of multi-objective extensions of two managers determining dy-
namically the number of islands for single-objective GAs,

• critical analysis of the applicability of these two extensions,

• proposing of a new, more universal dynamic manager,

• describing a serverless cloud deployment of the Island Model of GAs,

• experimental evaluation of the proposed managers based on real-world
discrete and process manufacturing scenarios.

2https://www.docker.com/
3https://console.bluemix.net/openwhisk/
4https://openwhisk.apache.org/
5https://kubernetes.io/
6https://fission.io/
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A preliminary version of this work has been published in [38]. This paper
extends that work by proposing the third, more universal manager than the two
presented in [38] and providing an exhaustive critical analysis of the application
of the three managers. The plan of the conducted experiments has been altered
to evaluate all the three proposed approaches. The results have been evaluated
using a larger set of quality indicators, reflecting both the solution set convergence
and diversity.

The rest of this paper is organised as follows. After the brief survey of related
works in Section 2, the general architecture of the developed system is presented
in Section 3. The cloud deployment of the optimisation module is sketched in
Section 4. The strategies for determining the number of islands are proposed in
Section 5 and applied to real-world use cases in Section 6. Finally, the paper is
concluded in Section 7.

2. Related Work

As this paper considers a dynamic number of GA islands in clouds, the prior
research related to both the GA cloud execution and determining the number of
islands is reviewed in this section.

One of the first research on executing GAs in clouds has been conducted by
Di Martino et al. [4]. They proposed GA parallelisation at the fitness evaluation,
population or individual levels applying the popular Map/Reduce programming
model. The presented proof-of-concept implementation was performed using the
Google App Engine web framework. It evaluated the fitness values of individuals
in parallel and hence a significant overhead was reported. To decrease the
communication overhead, the population-level parallelism (aka the Island Model)
has been applied to the solution proposed in this paper.

Leclerc et al. in [18] proposed a framework for evaluating the fitness values
in parallel across a heterogeneous pool of computing nodes. These nodes were
both personal computers and VMs from a cloud vendor. Again, the master-slave
architecture was applied. The nodes communicated with each other using JSON
over HTTP. Due to the applied parallelism at the fitness evaluation level, the
solution was reported to be beneficial only for expensive fitness evaluations. As
in the proposed solution, the parallelisation is performed at the population level,
it shall be beneficial for the less time-consuming fitness evaluations. Similarly,
executing a number of GA iterations inside a slave node decreases the communi-
cation overhead caused by transferring the data using the rather verbose JSON
data-interchange format.

The release of the Docker software in 2013 changed software deployment and
orchestration in cloud systems. Since that time, the operating system virtualisa-
tion has gained popularity due to much higher performance and flexibility in
comparison with a traditional, hypervisor-based virtualisation, offering sufficient
isolation for numerous applications [3]. Initially, Docker containers were executed
on a single machine, but soon a few of orchestration software managing a number
of nodes in a cluster emerged, such as Docker Swarm or Google Kubernetes.
For the first time, GA has been containerised using Docker in positional paper
[30]. Its authors stressed that using containerisation facilities benefiting from
one of the most attractive features of cloud computing which is the possibility of
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on-demand resources allocation. This idea has been implemented in [29], where
a conceptual workflow to support the development, deployment and execution of
distributed GAs has been proposed. Following that workflow, a parallel GA has
been employed where a master node executed the entire GA except for the fitness
evaluation performed on slave nodes. In contrast to that approach, the proposed
solution benefits from the population-level parallelism and uses the Kubernetes
container-orchestration system for automating application deployment rather
than CoreOS, used in that paper. In contrast to [29], the containers are executed
in the serverless manner that enhances the scalability of the Dockerised GA
optimisation process. In a serverless approach, no state needs to be maintained
between invocations and, consequently, no VM is required to be instantiated in
advance. The available computing resource is hence practically unbounded. The
payment is made only for the real computation time of the computing resources.

Ma et al. employed the population-level parallelisation in [22]. Their solution
followed the master-server architecture. The number of the slaves was decided
statically. Each slave obtained a subpopulation of the size inversely proportional
to its CPU utilisation. Then the corresponding fitness values were computed
and returned to the master. In the proposed solution, the subpopulations have
an equal size, but their number is changed dynamically during the optimisation
process.

A simple proof-of-concept GA implementation in [8] applied the Island Model
GA. The islands have been executed in the serverless manner which leverages
the scaling capabilities of that solution. However, the number of islands was
set statically and could not be altered during the optimisation process. No
implementation details nor experimental results were provided to back the claims
regarding the performance of that proposal.

Selecting an appropriate fixed number of islands is difficult and hence the
methods that employ dynamic strategies for determining the number of islands
have been proposed. During their run, the subpopulations are created and
deleted, depending on the optimisation process state.

An idea to increase the number of subpopulations when the optimisation
process is stuck and to decrease it when the globally best-found solution is
frequently improved has been proposed for single objective optimization problems
in [17]. In that paper, the number of islands has been doubled in each generation
which has not improved the quality of the found solution. Otherwise, the number
of islands has been either halved or decreased to one, depending on the applied
algorithm. That technique has been shown, in a theoretical way, to reduce
the expected computation time significantly compared to a panmictic (serial)
GA. However, that approach is difficult to applied in practice as doubling the
island number is not trivial in practice considering the limits of various cloud
vendors (for example 20 EC2 instances in AWS EKS as in Spring 2019 and the
initialisation time required by massive island creation can be significant, as a
Linux instances were reported to be up and running as late as 90 seconds after
launch [23]). That is the reason we followed strategies with a slower instance
growth.

In [15], a Variable Island GA has been proposed where the initial number
of islands has been set to one and each island has been populated by only two
individuals. The decision of an island creation or removal has been taken based on
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the status of convergence and the fitness of their two individuals. These resizing
operations have been performed at each generation. The number of islands has
been demonstrated to be rather stable and low during the entire minimisation
process of benchmark multimodal continuous functions. That approach, however,
would be difficult to be applied to multi-objective optimisation as covered in
this paper since the total population size on all islands would be too low to
offer required diversity of the solution space. Also, the overhead related to the
frequent resizing operations would be rather significant in a cloud environment.

A Population-Merging Parallel Model for Evolutionary Algorithms has been
proposed in [1]. In that model, a predefined number of islands is created at
the beginning of the optimisation process. Then, the subpopulations evolve but
no migration is performed. Periodically, a pair of islands whose entropy value
maximises the diversity of the resulting island population is merged into one
island and the best-fitted individuals survive on such merged island. The number
of islands in that model is impossible to grow and the authors of that paper
suggested splitting subpopulations with a high entropy value as future work.

The centralisation-clustering framework managing the number of islands
has been proposed in [24]. With that framework, the optimisation process
starts with a single island. After evolving a predefined number of populations,
the individuals in that island are split into a set of new islands in a way that
similar individuals are assigned to the same islands. Then, at another predefined
generation, all the subpopulations in the islands are combined and split again
into a certain number of new islands. That method has been demonstrated
to maintain diverse subpopulations, yet the computational cost of similarity
measurement or spectral clustering can be perceived as too high for the real-life
industrial scenarios considered in this paper. In addition, the number of islands
in the method is determined solely by the number of clusters and, hence, is
unbounded. The subpopulations’ sizes can be very different and hence, when
executing in a cloud, the workload of particular instances would vary significantly.

The examples of strategies with bounded and rather slow islands’ number
growth are Classic [16] and Active [27] strategies, also for single objective
problems. Both these strategies increase the number of subpopulations by
one when all subpopulations are stuck. The difference between them is that
the Classic strategy removes the subpopulation when there is another one
investigating the same or a similar part of solution space size. The Active
strategy removes all subpopulations except the one containing the global best
solution when this solution is improved. In this paper, both these strategies are
extended to multi-objective optimisation and used for real-world problems.

In [5], a GA has been parallelised at the population level and each subpopula-
tion has been optimised by a Dockerised slave in accordance with the serverless
computing paradigm. The optimisation process started with a predefined number
of islands. In case an island had not improved the results for a certain number
of GA iterations, it was removed from the pool. However, the main contribution
of that paper was a new ending criterion based on the predicted profit rather
than determining the number of islands in a dynamic manner. In this paper, a
similar deployment scheme is applied, but the focus is on the determining of the
number of islands.
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3. System Architecture and Problem Description

Things
Situation 

Determination

Optimisation 

Engine

Predictive Analytics

Figure 1: Overall architecture of the proposed system

The optimisation problems considered in this paper concern an integrated
process planning and scheduling in smart factories, performed by the component
named Optimisation Engine (OE). This component is a part of a larger project
whose overall architecture is sketched in Figure 1. The scope of the entire
project flow starts with data acquisition from various industrial devices (so-
called things) using well-known protocols, according to the standards such as
ISA95 or IEC 61449. This data is transferred to the Situation Determination
(SD) module, which identifies the current state of the commodities, machines
and/or processes. SD employs a specific use-case situation model based on an
ontology similar to the one presented in [19]. The SD module monitors raw data
provided by systems/sensors, which is also forwarded to the Predictive Analytics
(PA) module. This module executes machine-learning-based methods to identify
patterns in data to influence the decisions made by SD. When SD detects any
relevant change of the factory state, including arrival of a new manufacturing
order or a resource failure, the factory reconfiguration is performed by triggering
the optimisation process performed by OE again. All the modules exchange
information by employing Kafka7, a high-throughput, low-latency platform for
handling real-time data feeds. The messages sent between SD and OE follow
a custom, well-defined textual protocol containing three types of numeric or
enumerated values: (i) key objectives to be optimised, (ii) control metrics whose
values can be altered to obtain various solutions and (iii) observable metrics,
which contain other important information, for example unavailability of certain
resources. Despite the appropriate functionality of both the SD and PA modules
are critical for performing effective optimisation, the detailed descriptions of
these modules are not in this paper scope.

The key capability of OE is the ability to respond to dynamic reconfiguration
requests. Functionally, OE takes as input a configuration (an instantaneous

7https://kafka.apache.org/
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description of the manufacturing process), issued by SD, and outputs a reconfig-
uration containing the proposed control values to be applied to the smart factory.
The proposed reconfiguration is one that is of high quality, as determined by the
objective function. This function is generated automatically based on a factory
configuration specified by an XML-based format derived from the ontology used
by SD.

4. Cloud deployment

SD

Kubernetes cluster

Load balancer

Pod
Manager

Services Horizontal Pod Autoscaler

Pod

OE
Containers

Addon 

CoreDNS

Horizontal Pod Autoscaler

Figure 2: Kubernetes cluster for OE

OE is available as a Docker container, to be deployed in a cluster of the
Kubernetes container-orchestration system. Kubernetes clusters are available
in all major cloud facilities, including AWS Elastic Kubernetes Service (EKS),
Azure, CloudStack, GCE, OpenStack, OVirt, Photon, IBM Cloud Kubernetes
Service, as well as can be installed locally. Since OE is a stateless container
whose optimisation function is executed by Kafka requests, it is suitable to use
Fission, a framework for serverless functions on Kubernetes.

The services and pods (co-located containers) deployed in a Kubernetes
cluster are presented in Figure 2. The number of OE containers is scaled
automatically using the autoscaling facilities. This way a parallel optimisation
process is performed by a distributed evolutionary algorithm. In this approach,
each OE container executes one or more islands. Each island maintains its own
subpopulation for GA-based search. The islands periodically exchange the best
solutions found so far in a process called migration. The proposed algorithms
determining the number of islands are presented in the following section. A new
island is initiated by calling the main function of the OE container. Then the
autoscaler provided by Fission decides whether the new island is to be maintained
on the existing OE containers or a new container needs to be initiated. Not only
the number of OE containers is steered automatically by the cloud services, but
also the load balancing facility selects the least busy container to maintain a new
island. In the current version of Fission, the autoscaler and load balancer are
based solely on the CPU usage. In future, however, it is announced to include
other metrics, such as based on memory footprint or network traffic.

The number of OE containers is dynamically changed to answer the recon-
figuration process needs. In case of a higher demand caused by e.g. a need
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for performing optimisation using a large number of islands, the number of
containers is seamlessly scaled up to keep the appropriate computing power
and similarly scaled down in case of lower demand. Such an approach not only
guarantees the high system uptime, theoretically equal 100%, but also increases
the responsiveness of OE and lowers the monetary cost in case of the deployment
in a public cloud. The autoscaling feature is utterly transparent to the user.
Even in an unlikely case of any container crash, the load balancer immediately
switches the user to another container built from the same image in a way that
no user data nor session details are lost. This feature is possible due to the fact
that the OE containers are designed to be stateless, i.e., they do not store any
session-related data that shall be persistent. Such a distributed, container-based
architecture of the proposed solution is in line with the state-of-the-art software
design and deployment, as mentioned in the Related Work section.

5. Dynamic determination of the number of islands

This section presents a cloud-based multi-objective optimisation using an
Island Model of GA where the number of islands is determined dynamically
by a master node named manager. Each island executes a single instance of
OE for a fixed number of generations. In total, four versions of managers
with various criteria for island creation and deletions have been developed:
ManagerStatic, ManagerClassic, ManagerActive and ManagerCalmActive,
where ManagerStatic provides the fundamental architecture of the proposed
approach and is treated as the baseline approach. The remaining three algo-
rithms introduce the dynamic islands management facility. The design rationale
of ManagerClassic and ManagerActive is inspired by the single-objective man-
agers presented in [27, 16].

5.1. ManagerStatic Strategy

Algorithm 1 presents the pseudo-code for ManagerStatic. The algorithm
starts by creating N islands with OE which are executed using one or more OE
containers, as decided by the Kubernetes cluster. Each island contains a typical
GA optimiser with a randomly generated population of size P . The choice
of the GA applied is user-defined, and using various GAs in different islands
simultaneously is also possible. The manager maintains a global Pareto Front
approximation (PF ) that stores non-dominated solutions8 reported by all the
islands. The number of generations optimised during execution of each island is
controlled by stage parameter S. In one stage, GA is executed for I generations
in each island. Then, the global PF is updated with the results of all islands.
Finally, the global PF is returned as the output of the entire optimisation.

Instead of performing an isolated optimisation on each individual island
during the entire optimisation process, a migration functionality is introduced to
allow periodic information exchanges between all the islands at the end of each
optimisation stage. After one stage execution of all islands, the manager iterates

8For a solution s and a Pareto Front approximation P F , s is said to be non-dominated if s

has a better value than any solutions in P F for any objective.
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Algorithm 1: Algorithm of ManagerStatic

inputs : N : initial number of islands;
I: number of iterations per stage;
P : number of individuals per island;

outputs : P F : a global Pareto Front approximation maintained by the manager;

1 P F = ∅, s = 0;
2 Create N islands with P randomly generated individuals;
3 while ¬ stopCondition do

4 Execute all islands for I iterations;
5 Add non-dominated solutions returned from all islands into P F ;
6 Make migrations;

end

7 return P F ;

through each island (starting from island 1) and randomly selects another island
(e.g., island 3). Then, the best individual in island 1’s population is selected
and added to island 3’s population by replacing the individual with the worst
quality. Since any two islands can be selected as a source and destination of the
migration process, the applied island topology is a fully connected graph. The
approach for measuring the quality of individuals under multi-objectives can be
various (e.g., weighted sum with normalisation) and is user-defined based on
the specific optimisation problem. By default, we measure the general distance
of individuals to select the individual that is the closest to the ideal point9

for migrations. With the migrations applied, information from independent
search processes conducted by various isolated islands can be shared and utilised
by each individual optimisation process, which could improve the diversity of
populations in all the islands, and hence, prevents a premature convergence.

5.2. ManagerClassic Strategy

Based on the fundamental architecture of ManagerStatic, ManagerClassic
introduces an island management mechanism so that the number of islands
changes dynamically based on the temporal state of the optimisation process, as
shown in Algorithm 2.

With ManagerClassic, the manager checks the quality of the global PF at
the end of each stage and compares it with that of the PF in the previous stage
(Line 7). Various comparator indicators (CI) are available for obtaining the
quality for Pareto Front approximations and the choice is arbitrary. However,
in this work, we assume a higher value returned by the applied CI represents
higher quality. If the current global PF has a higher CI value (i.e., CIP F ) than
that of the previous one, it indicates that a better solution has been found in at
least one island during the current stage and the Diversity Comparator Indicator
(DCI) from [20] is used in proposed managers. Then the algorithm proceeds to
the next stage. Otherwise (e.g., a local optimal point has been reached), the

9The ideal point is computed by optimizing each objective individually.
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Algorithm 2: Pseudo-code of ManagerClassic

1 P F = ∅, s = 0;
2 Create N islands with P randomly generated individuals;
3 while ¬ stopCondition do

4 Execute all islands for I iterations;
5 Add non-dominated solutions returned from all islands into P F ;
6 Make migrations;

7 if CIP F is higher than in the previous iteration then

continue;
else

8 Delete islands that meet island deletion criteria;
9 Create one island with P randomly generated individuals;

end

10 Return P F ;

end

manager removes an island if at least one from the criteria listed below is fulfilled
(Line 8):

• a considered island has a population where all its individuals have the
same genotype,

• there exists an identical population at another island,

• the population of a considered island is strictly dominated10 by that of
another island.

The above situations indicate that either the optimisation in an island is converged
(i.e., the solutions found by each island are increasingly similar to each other)
or the island is dominated by others and, hence, its population is not likely to
improve the final result. As the island’s population is unlikely to contribute to
the finally reported optimum, it is dropped by the manager. Finally, the manager
creates new islands to increase the total number of individuals in subpopulations
and proceeds to the next optimisation stage11. Notice, in case of many-objective
optimisation problems, most of the solutions may become non-dominated [31].
In such cases, a relaxed variant of Pareto dominance can be applied as an island
removal criterion instead of the strict dominance, for example, partial Pareto
dominance, where only a subset of objectives is considered [31]. Other relaxed
variants of Pareto dominance can be also used, for examples α-dominance, ǫ-
dominance or cone ǫ-dominance, all compared in e.g. [2]. We plan to investigate
the influence of various dominance relations on the optimisation process quality
and cost in future.

With this algorithm, the quality of each island is monitored periodically and
is handled dynamically based on the quality of its population. Intuitively, after

10For two Pareto Front approximations P F1 and P F2, P F1 strictly dominates P F2 if P F1

contains at least one solution that has a better value than any solutions in P F2 for all objectives.
11New islands are created with individuals generated randomly. This generation applies here

and after for all island managers proposed in this paper.
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applying this approach, islands are likely to have better quality than that of
ManagerStatic and hence it could lead to a better optimisation performance.
This claim is confirmed by the experiments shown later in this paper.

5.3. ManagerActive Strategy

Similar to ManagerClassic, islands in ManagerActive are managed dynam-
ically, but with different island deletion and creation conditions, as given in
Algorithm 3.

Algorithm 3: Pseudo-code of ManagerActive

1 P F = ∅, s = 0;
2 Create N islands with P randomly generated individuals;
3 while ¬ stopCondition do

4 Execute all islands for I iterations;
5 Add non-dominated solutions returned from all islands to P F ;
6 Make migrations;

7 if CIP F is higher than in the previous iteration then

8 Delete all islands that do not provide new solutions to P F ;
else

9 Create one island with P randomly generated individuals;
end

end

10 return P F ;

At the end of each stage, the manager compares the current PF with the
previous one via the assumed CI (Line 7). If the quality of the current PF

improves, it iterates through all the islands and deletes each island that does
not provide new non-dominated solutions (Line 8). Otherwise (i.e., no islands
can provide new solutions), it adds a new island to improve the exploration of
the search space. Then the manager proceeds to the next optimisation stage.

Under ManagerActive, the islands are less stable than with the remaining
algorithms as the manager either deletes a certain number of islands or adds
a new one at each optimisation stage. The advantage of this approach is that
once a local optimal point has been reached and the PF quality stays the same
for several stages, ManagerActive is able to maintain the highest number of
individuals among the algorithms proposed earlier in this paper. Hence it is
more likely to make further progress. However, in the case the global PF is
improved continuously, this approach deletes islands at each stage regardless of
whether the island reached its local optimum or not. Consequently, the island is
removed even if it could potentially improve the final solution at a later stage.

5.4. Properties of ManagerClassic and ManagerActive

The effectiveness of a single-objective ManagerClassic has been discussed in
[27]. From that discussion, it follows that ManagerClassic is less effective when
a long period of a relatively easily achievable growth is observed after the method
is stuck. In such the situation, ManagerClassic maintains too many subpopula-
tions which hardly contribute to the final solution as the subpopulation with the
easily achievable growth is likely to outperform the remaining subpopulations
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in the following iterations. It is then reasonable to decrease the number of
subpopulations to one and evolve only the most promising subpopulation. This
tactic prevents from wasting computational power on evolving the remaining,
less encouraging subpopulations. This situation is presented in Fig. 3. In that
figure (and also in the remainder of this subsection), term iteration refers to
a single manager iteration rather than a single iteration of GA. Thus, in each
method iteration, subpopulations are processed during a user-defined number of
GA generations.

Figure 3: Example of a globally-best individual fitness over time in the Island Mode GA
governed by ManagerClassic

Fig. 3 presents an example of a multi-population GA run where the number
of islands is governed by ManagerClassic. In the beginning of the timeline, the
globally best-found individual is improved at each method iteration. During that
interval, a low number of subpopulations is sufficient to gain a continuous growth
of the best-found individual. At a certain iteration, the method gets stuck. To es-
cape from the local optima, the manager increases the number of subpopulations.
This action increases the diversity of the individuals in these subpopulations and
finally leads to a breakthrough. After the breakthrough, ManagerClassic may
slightly reduce the subpopulation number. Then, after a short period of growth,
the method is stuck again. However, since ManagerClassic has preserved most
of the subpopulations, it is relatively easy to reach another breakthrough. After
the second breakthrough, ManagerClassic preserves the majority of the subpop-
ulations again. However, this time it is not beneficial as the method encounters
a period of long and easy to find growth. At this point, the maintenance of
many subpopulations wastes computational power.

The behavior of ManagerActive is similar to ManagerClassic. The only
difference is removing all subpopulations except the one including the globally
best individual after the fitness of that individual improves.

Fig. 4 presents an example of the globally-best individual fitness obtained dur-
ing a multi-population GA-based optimisation process governed by ManagerAc-
tive. In the beginning of the timeline, the manager behaves similarly to
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Figure 4: Example of the globally-best individual fitness over time in the Island Mode GA
governed by ManagerActive

ManagerClassic. However, after reaching the first breakthrough, all subpop-
ulations except the one containing the best individual are removed. Such a
tactic appeared to be not beneficial due to the relatively short time of the
following easy-improvement period. Therefore, when the method is stuck again,
the subpopulation number is increased, which is rather costly. However, the same
tactic is beneficial after the second breakthrough, as the improvement interval
of the current globally-best individual is longer. Consequently, removing all
subpopulations except the one containing the best-found individual is beneficial
as it decreases the unnecessary computational cost of evolving the remaining
islands.

5.5. ManagerCalmActive Strategy

As discussed in the previous subsection, the situations in which one manager
outperforms another are contradictory. Therefore, a new manager can be
proposed that removes unnecessary subpopulations when they are less likely
to influence the final solution (i.e., not after every single breakthrough). The
manager shall behave appropriately in both the situations described above,
namely: (i) it should avoid the premature deletions of the subpopulations
without the globally-best individual found so far and (ii) it should not preserve
too many unnecessary subpopulations. A manager with these properties is
presented in Algorithm 4, and is later referred to as ManagerCalmActive.

As presented in Algorithm 4, the proposed ManagerCalmActive, behaves
in the same way as ManagerActive, but it delays the deletion of subpopu-
lations other than containing the best-found individual. The assumed delay
interval is equal to the number of created subpopulations. For instance, if
ManagerCalmActive had created eight subpopulations before a breakthrough
was reached, all the subpopulations except the one containing the globally best
individual are deleted if during subsequent eight iterations the fitness of the
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Algorithm 4: Pseudo-code of ManagerCalmActive

1 P F = ∅, ImprInARowCounter = 0;
2 Create N islands with P randomly generated individuals;
3 while ¬ stopCondition do

4 Execute all islands for I iterations;
5 Add non-dominated solutions returned from all islands to P F ;
6 Make migrations;

7 if CIP F is higher than in the previous iteration then

8 ImprInARowCounter = ImprInARowCounter + 1;
9 if ImprInARowCounter is equal to the island number then

10 Delete all islands that do not provide new solutions to P F ;

else

11 Create one island with P randomly generated individuals;
12 ImprInARowCounter = 0;

end

end

13 return P F ;

best-found individual has not been improved. This tactic scales automatically
and does not suffer significant costs increase during long periods of easy-to-find
growths. On the other hand, the manager does not prematurely delete the
subpopulations when the best-found individual has not been improved recently.
Despite its simplicity, the proposed manager leads to a significant results quality
increase, as shown in Section 6.

6. Real-world Manufacturing Problems

Based on a number of problems originated in two real-world smart factory
optimisation scenarios, this section presents experiments evaluating the proposed
cloud-based GA optimisation approaches. To provide a fair comparison, a typical
MOEA/D multi-objective genetic algorithm presented in [37] is applied to the
OE, and the Diversity Comparator Indicator (DCI) from [20] is used where
applicable to compare the quality of Pareto Front approximations for all the
managers. The individual with the minimal makespan in a population will be
selected for migration, which describes the manufacturing time of a commodity
and is a crucial metric for both the studied real-world manufacturing use cases.
For each MOEA/D solver, the size of its external population (which contains the
resulting non-dominated solutions) is set to 100 and the size of neighbourhood
is set to 30. The one-point crossover is applied to generate new individuals,
with the mutation rate set to 0.1. Tournament selection is applied with a size
of 3. The weights of the individuals are generated using the Hammersley’s low-
discrepancy sequence generator [10] and the fitness values are computed based
on the Tchebycheff approach [25]. If not explicitly stated otherwise, parameter
settings of N = 5, Nmax = 10, S = 40, G = 50 and I = 20 are applied throughout
this section. These values have been determined experimentally using a set of
various optimisation problems [7, 38].
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6.1. Graph-based comparison

In this subsection, the quality of the results obtained with all the proposed
managers is visualised in graphs. More detailed comparison, using various
numeric indicators, are given in Subsection 6.2 by conducting these experiments
under 40 test cases.

6.1.1. Process Manufacturing Optimisation Problem

The first real-world scenario is related to a manufacturing process for mix-
ing/dispersion of powdery and liquid components, following a stored recipe. The
main optimisation objective of this case study is to increase production line
utilisation and, consequently, to decrease the makespan of batch production. The
recipes can be executed on different compatible resources. Various recipes can
be used to produce the same commodity. Consequently, the decision problem
includes the selection of the multisubset (i.e. a combination with repetitions) of
the recipes and their allocation to compatible resources, such that the appro-
priate amount of goods are produced with the minimal surplus in the shortest
possible time.

The considered problem is characterised with multi-objective criteria, since
not only the makespan needs to be minimised, but also the number of manu-
factured commodities should be as close to the ordered amounts as possible to
minimise the storage costs.

The example factory consists of a set of mixers. There are five identical 5
tonne mixers, named Mixer 1-5 (M1, M2, M3, M4, M5, respectively), and two
identical 10 tonne mixers, named Mixer 6 (M6) and Mixer 7 (M7). There are two
special 10 tonne mixers: Mixer 8 (M8) and Mixer 9 (M9). Four types of white
paint can be produced in the factory and each mixer can be used to produce any
commodity. However, the amount of paint produced during one manufacturing
process and processing time vary depending on the mixer and paint types. For
each combination of a mixer type and paint type, there is a unique recipe. The
storage tanks, connected with the mixers via pipelines, limit the amount of the
paints that can be produced as they have limited capacity. In case two recipes
producing a different paint type are executed by the same mixer in sequence, a
short sequence-dependent setup interval of the length provided by the business
partner is enforced. A more detailed description of this scenario is presented in
[7].

Table 1: Dynamic islands changes during one optimisation process execution process.

Manager Island Executions Islands Created Islands Deleted
ManagerStatic 200 5 0
ManagerClassic 137 25 23
ManagerActive 192 29 19

ManagerCalmActive 339 11 1

Figure 5 shows the number of islands in subsequent stages during example
execution of the optimisation process using the four managers described ear-
lier. The number of islands creations, deletions and executions during these
optimisation processes are given in Table 1.
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Figure 5: Number of dynamic islands during example execution of optimisation using different
managers.

The ManagerStatic approach has the same number of islands during each
optimisation stage, where the initial islands will be maintained and executed
S = 40 times. For ManagerActive, this approach deletes islands that do not
provide new globally non-dominated solutions (in case at least one island does so,
see the 9th and the 20th stages) and keeps adding new islands as long as none can
provide new non-dominated solutions at each stage (e.g., stages from the 13th to
19th). The figure demonstrates that the ManagerActive approach is converged at
the 24th stage. After this stage, it keeps adding new islands and finally maintains
10 islands (i.e., the maximum allowed number of islands at one stage for all
managers) at the 33rd stage and the later stages. Under ManagerClassic, the
number of islands is decreasing in most stages. This approach firstly maintains
the same number of islands in most stages before the 19th stage (where each
island can provide new non-dominated solutions), but then the number of islands
starts to decline. This indicates that a local optimal point has been reached
and the algorithm is deleting islands that are less likely to contribute to the
final solution while introducing new islands with random individuals. Finally,
this approach is converged at the 23rd stage, where the algorithm deletes one
existing island and then add a new one, as no island improves the quality of
the global Pareto Front approximation. Notably, ManagerClassic performs the
lowest number of island executions (137 in 40 stages) among all three algorithms
but has the highest number of island deletions (i.e., the algorithm concludes
that the optimisation has reached a local optimum). The number of islands
maintained by ManagerCalmActive grows the fastest, but, as shown later in
this paper, this manager is more efficient for a wider problem range than its
competitors. Hence, an explicit trade-off between the optimisation quality and
cost (but not time thanks to the distributed island execution in a cloud) can be
observed.

The optimisation results for the considered process manufacturing optimi-
sation problem is given in Figure 6, with a manufacturing order of 45, 40, 30,
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Figure 6: Process manufacturing optimisation results by all Managers

20 (in tonnes) of “Std Weiss”, “Weiss Matt”, “Super Weiss” and “Weiss Basis”,
respectively (the paint type names are in German). The makespan obtained
using each manager is presented as a box with a blue frame and is associated
with the blue Y-axis on the left-hand side of the figure. Commodity surpluses
are denoted with the discrepancy scores (boxes with black frames), which are
associated with the Y-axis on the right-hand side of the figure. Finally, the
magenta box gives the sum of discrepancy scores of all commodities for each
solution. As given in the figure, the ManagerStatic approach is outperformed
by all three dynamic managers which provide a better minimisation for all the
objectives. This is expected given the fact that this approach has a larger number
of individuals (5 islands with 50 individuals, 250 individuals in total). However,
although ManagerActive has the largest number of individuals (25 × 50), its
optimisation results are outperformed by ManagerClassic, which has a similar
number of individuals but requires significantly fewer island executions.

The experiment has been conducted using Amazon EKS service in AWS Lon-
don zone. The EKS cluster has been composed of m5.large EC2 instances, each
including 8GiB RAM and 2 virtual CPU cores equivalent to 3.1 GHz Intel Xenon
Platinum series cores. In case of ManagerClassic, maximum 4 EC2 instances
have been used during the optimisation process, whereas ManagerActive and
ManagerCalmActive used as many as 6 EC2 instances during 8 and 24 (out of 40)
execution stages, respectively. On average, the number of m5.large EC2 instances
has been equal to 2.5, 3.2 and 5.1 for ManagerClassic, ManagerActive and
ManagerCalmActive, respectively. During the entire process, ManagerStatic
has used 3 EC2 instances. In general, the prices paid for performing each of the
above optimisation processes are less than 30$, where ManagerClassic incurs
the least cost due to its well-controlled number of islands (i.e., 11$ against 15$ for
ManagerStatic, 12.1$ for ManagerActive and 25.4$ for ManagerCalmActive).

6.1.2. Discrete Manufacturing Optimisation Problem

The second considered real-world use case is based on the discrete manufac-
turing process of Wire-cut Electrical Discharge Machining (WEDM), in which
the desired shape of a metal part is obtained by removing unnecessary material
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Figure 7: Pareto front approximations for the considered discrete manufacturing scenario

via a series of current discharges between two electrodes. One of these electrodes
is a wire that is wound between two spools to avoid its erosion. The wire is the
most expensive consumable in the process. Selecting a machine whose work cost
is lower and, if possible, applying an “eco mode”, can decrease the cost per part
significantly. More details about the considered scenario have been presented in
[6].

In the considered factory, a plant includes three WEDM machines: “small”,
“medium” and “large”. The cost of machine usage per hour grows with the
machine size. These machines are associated with various sizes of parts. Small
parts can be manufactured on any machine, medium parts require a medium or
large machine, and large parts are manufacturable only on large machines. All
parts can be manufactured in one from four Manufacturing Ways (MW) that
differ in wire types and machine modes.

The goal of this problem is to assign the part to machines, select its MW and
schedule the production to decrease both the total cost and the overall makespan.
Unlike the previous case, whose optimisation objectives are not necessarily
conflicting with each other, objectives in the considered discrete manufacturing
case (i.e., makespan and monetary cost) are difficult to be minimised at the
same time, as a short makespan usually indicates using a larger machine and
hence a higher monetary cost. Table 2 gives an example of the configuration for
one manufacturing part P 1, which can be produced via 12 different approaches
(i.e., machines with MWs) with various cutting time and monetary costs. In the
considered scenario, 16 various parts are ordered for production and each part
will be produced once.

Figure 7 presents the optimisation results using the proposed algorithms with
the following parameters: N = 5, Nmax = 10, S = 40, G = 50 and I = 20. As
shown in this figure, each proposed algorithm obtains a set of solutions evenly
distributed on the Pareto Front approximation. The approximation returned
by ManagerStatic has lower ranges with respect to both the objectives than
the results of both ManagerActive and ManagerClassic. In addition, we ob-
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Table 2: Example configuration of a manufacturing part for Discrete Manufacturing Optimisa-
tion Problem

Part
Machine

size
Manufacturing

Way

Cutting
time
(min)

Wire
cost

per part
($)

Machine
cost

per part
($)

Total
cost
per
part
($)

P 1

Small
Small
Small
Small

Medium
Medium
Medium
Medium

Large
Large
Large
Large

1
2
3
4
1
2
3
4
1
2
3
4

2833.5
2956.2
3042.1
3174.1
2033.5
2156.2
2242.1
2674.1
1256.2
1633.5
1842.1
1974.1

28.1
28.1
28.1
30.2
30.2
30.2
41.0
41.0
41.0
53.7
53.7
53.7

164.0
140.3
147.8
136.8
242.9
208.4
196.1
189.0
555.9
465.6
427.9
408.4

192.1
168.4
175.9
167.0
273.1
238.6
237.1
230.0
596.9
519.3
481.6
462.1

served that the ManagerActive approach obtains a Pareto Front approximation
with the widest range in both the objectives. Unlike the previous case, where
all objectives could be minimised at the same time and ManagerClassic out-
performed ManagerActive, in the considered case algorithm ManagerActive
delivers better results. Such a phenomenon is due to the nature of the considered
optimisation problem, where the objectives contradict each other so that having
a larger number of individuals in the entire population is more beneficial for the
optimisation process.

During this optimisation, the islands of each manager follow the trend
shown in Figure 5 in general, where islands with ManagerActive are created (or
removed) rapidly and then increased up to 10 when finished. The number of
islands in ManagerClassic remains stable and then decreases gradually in later
stages. In addition, due to the relative simplicity of the objective function of
the considered problem, the computation cost for performing this optimisation
is much lower than that of the considered process manufacturing optimisation
problem and does not exceed 0.5$ in general for all managers using the same
cloud instances as earlier.

In the next experiment, the scalability of the proposed cloud-based optimi-
sation algorithms is investigated. Scale factor i = 1, . . . , 10 is introduced to
control the size of the optimisation problem in a way that the number of ordered
parts, available machines and manufacturing ways are multiplied i times. For
instance, with i = 3, part P 1 will be produced 3 times with 36 possible selections
of machines and manufacturing ways. The cutting time and costs are consistent
with the values given in [6]. Using the scale factor, thirty test cases have been
generated. The use of ManagerActive has led to higher quality results than
ManagerClassic in 28 cases. Similarly, the GA employing ManagerClassic was
better than the one using ManagerStatic in 27 runs. This leads to the following
conclusions. For the considered problem, GA employing ManagerActive is more
effective than with ManagerStatic or ManagerClassic. All GAs using the
dynamic subpopulation number managements significantly outperform the one
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with the static number of islands. These conclusions were confirmed by Sign
Test with the probability exceeding 99%.

Figure 8: Makespan optimisation results of the proposed cloud-based approaches by scaling
the problem size

Figures 8 and 9 present the optimisation results of makespan and total mone-
tary cost, respectively, for the considered problem sizes. As given in Figure 8, opti-
misation results of makespan of all the proposed algorithms demonstrate a slowly
increasing trend, which implies the majority of the parts are produced in parallel.
Among the evaluated algorithms, ManagerStatic is outperformed by others in
all cases, where values of makespan obtained by ManagerStatic have a lower
range than those of ManagerActive, ManagerClassic and ManagerCalmActive.
In addition, the ManagerActive approach delivers Pareto Front approximations
with a higher diversity (for objective “makespan”) than that of ManagerClassic
in general, and this phenomenon is more visible for scaling factor i ≥ 7. This
observation again confirms the claim that algorithms with a larger population
would benefit in solving such problems. In contrast, objective “monetary cost”
in Figure 9 presents a linearly increasing trend. This is unavoidable as manufac-
turing each part is incurred with a certain cost. Such observation again confirms
that optimisation results remain predictable while scaling the factory size.

Finally, due to the relatively low computationally demanding objective func-
tion, performing optimisation of a scaled factory size does not incur a huge cost
for using cloud computing service. With i = 10, it takes 907s in average to
execute a single stage, and the entire optimisation process costs below 10$ on all
analysed AWS instance types of ECU12 between 13 to 68.

121 ECU is defined by Amazon as the compute power of a 1.0-1.2GHz of server CPU from
2007.
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Figure 9: Monetary cost optimisation results of the proposed cloud-based approaches by scaling
the problem size

6.2. Numeric comparisons

In order to compare the managers more accurratelly, an additional experiment
has been conducted. In this experiment, the testing cases have been split into
two separate groups, related to both the process and discrete manufacturing
optimisation problems described earlier. Each group consisted of 40 different
test cases. The limit of 40 stages was used as a stop condition. To assure the
fairness of the comparison, all methods shared all the possible parts of source
codes. Thus, the source codes quality should not influence the reliability of the
comparison.

To compare the results quality of the competing methods we use three
different numerous quality indicators which are popular in the multi-objective
optimization:

• Generational Distance (GD) [13],

• D1R [11],

• Diversity Comparator Indicator (DCI) [20].

The first indicator quantifies the convergence of the solution set, whereas
the remaining two indicators quantify the diversity of the solution set. The
simultaneous usage of the GD and D1R indicators to asses a front quality
has been proposed in [14]. Two of these indicators (GD and D1R) have been
listed in the top 10 list of the most used metrics in evolutionary multi-criterion
optimization according to [28], whereas DCI is more appropriate for many-
criterion optimisation [20].

For each indicator, the ranking has been constructed in the following manner.
The best method for a particular experiment receives the number of points equal
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to the number of competing methods. The second best method receives one
point lower, etc. If more than one method assumes the same score, they both
receive the same number of points. For example, let us consider a case of four
competing methods: A, B, C and D. Assuming that method A takes the first
place, it receives 4 points. If methods B and D both take the second place, they
both receive 3 points. If method C takes the last place, it receives 1 point. For
all the competing managers, the average and median ranking value depending
on experiment group are presented in Table 3.

Table 3: Average and median ranking for the considered Pareto front quality indicators

Process Manufacturing Optimisation Problem

Static Classic Active CalmActive

DCI
Average 2.45 3.13 1.85 2.88

Median 2 3 1 3

GD
Average 2.45 2.78 1.85 2.73

Median 3 3 1 3

D1R

Average 2.15 2.58 1.78 2.33

Median 2 3 1 2

Discrete Manufacturing Optimisation Problem

Static Classic Active CalmActive

DCI
Average 2.23 2.48 2.60 3.23

Median 2 2 3 4

GD
Average 2.58 2.20 2.35 2.80

Median 3 2 2 3

D1R

Average 2.10 2.20 2.25 2.90

Median 2 2 2 3

The motivation for ManagerCalmActive development was to propose a man-
ager that would report the results of quality that is close to ManagerClassic
for the experiments similar to the presented process manufacturing problem,
and close to ManagerActive for the experiments related to the presented dis-
crete manufacturing problem. The results reported in Table 3 show that
ManagerCalmActive is the best for all indicators when the discrete manufactur-
ing experiments are considered, but seems to be the second best for the process
manufacturing experiments. However, the results reported by Sign-test show
that there is no statistically significant difference in results quality between
ManagerClassic and ManagerCalmActive for the process manufacturing exper-
iments for experiment quality indicators. On the other hand, the same statistical
test shows that for the discrete manufacturing experiment group for two sta-
tistical indicators ManagerCalmActive reports significantly better results than
ManagerActive. The detailed p-values reported by Sign Test are reported in
Table 4. Note that for the standard 5% significance level, only tests for DCI and
D1R in the discrete manufacturing group are decisive. For the process manufac-
turing group, and the comparison of ManagerCalmActive and ManagerClassic,
the p-values related to hypothesis ’the median result quality is equal’ are higher.
Thus, we can state that proposed ManagerCalmActive has fulfilled its objectives
- it reports the results of quality that is at least equal to the results quality of
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ManagerClassic for the process manufacturing group and at least equal to the
results quality of ManagerActive for the discrete manufacturing group. Note
that proposed ManagerCalmActive has actually exceeded these expectations and
it reports results that are significantly better than the results of ManagerActive
for two indicators in the discrete manufacturing group.

Finally, a traditional (panmictic) MOEA/D GA with no islands has been
implemented, deployed to a cloud and tested against the proposed island-based
optimisation methods. This method has a population size of 250 and 800 iter-
ations (identical to 200 island executions in total). In general, the panmictic
version is outperformed by the proposed methods under each applied quality indi-
cator for both manufacturing scenarios in 40 different test cases with confidence
level exceeding 99%. For both manufacturing scenarios, [1.0, 0] is obtained by
comparing each dynamic island-based manager and the panmictic version under
DCI in 40 and 39 test casesl, respectively. In addition, the panmictic version
consumes about 5 times more computation time (approximately 6.2 hours for
process manufacturing and 24.2 minutes for discrete manufacturing) than that
of the proposed methods.

Table 4: The p-values reported by Sign Test for results quality comparisons between
ManagerCalmActive, ManagerClassic and ManagerActive

ManagerCalmActive vs ManagerClassic

better or equal equal worse or equal

Process
manufacturing

DCI 0.31 0.62 0.80
GD 0.57 1.00 0.57
D1R 0.18 0.36 0.90

ManagerCalmActive vs ManagerActive

better or equal equal worse or equal

Discrete
manufacturing

DCI 1.00 0.00 0.00
GD 0.96 0.15 0.08
D1R 1.00 0.01 0.00

6.3. Scalability and Run-time Cost

The above experiments have been preformed with a fixed setting of N = 5
and Nmax = 10. In this subsection, these parameters are increased to evaluate
the run-time costs of the proposed optimisation methods with a larger number
of islands. Table 5 presents the average run-time cost of various operations
in the proposed island-based optimisation methods for both the considered
manufacturing scenarios for scaled values of Nmax (and N = Nmax

2
). Each

value in this table is an average from 50 executions of ManagerActive (i.e.,
the manager that experiences the most frequent island creation and removal
operations). As shown in the table, the island execution time of each stage is
not affected by the growing number of islands. It takes about 104 s to execute
one stage for the process manufacturing and 9 s for the discrete manufacturing
optimisation. Besides, maximum one island can be created in each stage and
hence its cost is stable while increasing Nmax. However, the cost of island
removal and gene migrations demonstrates an increasing trend with the growth
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Table 5: Computation cost of operations in each execution stage in ManagerActive

Nmax 10 20 30 40 50 60

GA
execution
(process)

103.79 s 102.86 s 103.19 s 102.85 s 103.87 s 105.23 s

GA
execution
(discrete)

8.76 s 9.07 s 8.72 s 8.61 s 9.64 s 8.64 s

island
creation

0.25 s 0.18 s 0.18 s 0.15 s 0.13 s 0.18 s

island
removal

0.16 s 0.39 s 0.68 s 0.96 s 1.25 s 1.60 s

one
migration

0.03 s 0.05 s 0.07 s 0.10 s 0.12 s 0.15 s

of the number of islands and it takes up to 1.6 s, and 0.15 s, respectively, for
Nmax = 60. This growth is caused by the manager needs to iterate through all
the islands to determine the ones to be removed and to perform gene migrations.

For the considered values of Nmax and N , the cost for synchronising islands
and migrations is relatively low compared to the cost for one optimisation
stage. Thus, the total optimisation times of all the managers are dominated by
the computation time of the GA iterations performed in the execution stages,
especially in the process manufacturing case.

Table 6: DCI and GD measure of the proposed managers with varied Nmax under the discrete
manufacturing optimisation problem

Nmax 10 20 30 40 50

Classic
DCI 0.143 0.143 0.238 0.25 0.286
GD 124157.8 124019.8 124114.2 124122.7 123997.8

Active
DCI 0.04 0.16 0.28 0.2 0.4
GD 124106.7 124884.6 125928.9 124371.3 124566.9

CalmActive
DCI 0 0.138 0.276 0.276 0.31
GD 124456.3 123931.0 124288.3 124102.9 123997.8

At last, Table 6 presents the quality measure (by DCI and GD) for comparing
the optimisation results of each proposed manager via scaling Nmax, based on the
discrete manufacturing problem with a problem size i = 3. As shown in the table,
increasing Nmax improves the diversity (i.e., the DCI measure) of the Pareto
Front approximation obtained by each manager, where more evenly distributed
solutions can be found with a larger Nmax. As for the distance to the ideal point,
under the giving optimisation problem, the resulting GD measures are similar
for each manager under all Nmax settings. This observation demonstrates the
optimisation can be effectively converged (i.e., reaching a local optimum for
each objective) with the given configuration in the above experiments (i.e., with
N = 5 and Nmax = 0), and so for Nmax with larger values.
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6.4. Comparison with experts

The business partner defining the process manufacturing optimisation problem
has been gathering real production data for over a decade. It is then possible to
apply the proposed approach to real historic manufacturing orders and compare
the outcome with the decisions of a human expert operator. The related data
has been extracted by the business partner for a randomly selected day from
the considered factory past. Then, the OE configured in the way described
earlier has been executed. As a result, the usage time of the mixers needed to
produce the ordered amount of commodities has been decreased by about 13%
and the production line usage has been better balanced. The latter observation
can be backed with the comparison of standard deviation for the historical and
optimised schedule which decreased by above 61% (i.e., about 4 hours).

The business partner defining the discrete manufacturing problem has not
provided us with historic data but defined four simple heuristics that are typically
followed by human operators instead. These heuristics have been implemented
and then compared with OE for a randomly chosen historic part order. As
the heuristics lead to a single solution rather than a Pareto set as in OE, the
multi-objective problem has been transformed into a single-objective one by a
weighted average of both objectives. Depending on the heuristics, OE returned
a better solution from 10% to 18% in terms of the makespan, whereas the total
cost was lower from 4% to 14%.

In conclusion, the proposed system has performed better than human experts
in the analysed samples. Unfortunately, performing a comparison using a larger
set of historical data is difficult due to the data confidentiality.

7. Conclusion and future work

This paper describes three cloud-based optimisation algorithms using dy-
namic manager-islands architecture. The proposed algorithms are then applied
to real-world process planning and scheduling problems for two manufacturing
plants representing different manufacturing branches. The optimisation engine
for such problems and cloud deployment methods for the proposed optimisation
approach are explained. The obtained experimental results have demonstrated
the applicability and efficiency of the dynamic reconfiguration of resource al-
location and scheduling for smart factories as well as their superiority over
the traditional approach with a fixed number of islands. From the results,
ManagerClassic seems to be more favourable where objectives do not conflict
with each other (i.e., can be minimised at the same time) while ManagerActive
is beneficial for the optimisation problems that require more individuals during
each stage to list a larger number of possible solutions for conflicting objectives.
ManagerCalmActive is performing relatively well in both these situation and
hence can be preferable when the characteristics of the underlying optimisation
problem are not well explored. As for ManagerStatic, this algorithm is suitable
for cloud suppliers where creating (or removing) a distributed note is costly (in
terms of time or money).

Besides the manager-islands architecture adopted in this paper, other island
topologies can be used instead of the fully connected graph, e.g. a ring. This
would require executing an algorithm that forms such topologies out of the
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OEs and keeping the adjacency list in a database. In addition, some well-
known distributed system algorithms to guarantee consistency and robustness
(e.g. failure detectors) of the proposed system would be desirable for cloud-
based computing. Further, for the recipe scheduling problems described in
this paper, certain problem-specific islands management model and GAs could
further improve the optimisation results. Applying a relaxed version of Pareto
dominance as a criterion for island removal is likely to decrease the number
of islands and, consequently, lower the optimisation cost. Finally, the impact
of various quality indicators towards the optimisation results of the proposed
algorithms will be investigated in future.
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