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Abstract: Observations from radiosondes or from vertically pointing remote sensing profilers
are often used to estimate the vertical flux of momentum due to gravity waves. For planar,
monochromatic waves, these vertically integrated fluxes are equal to the phase averaged flux and
equivalent to the horizontal averaging used to deduce momentum flux from aircraft data or in
numerical models. Using a simple analytical solution for two-dimensional hydrostatic gravity waves
over an isolated ridge, it is shown that this equivalence does not hold for mountain waves. For a
vertical profile, the vertically integrated flux estimate is proportional to the horizontally integrated
flux and decays with increasing distance of the profile location from the mountain. For tilted profiles,
such as those obtained from radiosonde ascents, there is a further sampling error that increases as
the trajectory extends beyond the localised wave field. The same sampling issues are seen when the
effects of the Coriolis force on the gravity waves are taken into account. The conclusion of this work
is that caution must be taken when using radiosondes or other vertical profiles to deduce mountain
wave momentum fluxes.
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1. Introduction

Atmospheric gravity waves play a key role in the atmosphere in transporting energy and
momentum. The drag exerted by gravity waves acts as an important brake on atmospheric circulations,
and failure to account for this drag properly in global weather and climate models can lead to
significant biases. Often however, these waves are not explicitly resolved, either due to model
resolution or because the model numerical scheme acts to damp the wave motion (e.g., [1]). As a
result, gravity wave drag has to be parametrised in weather and climate models. Parametrisations
for orographically generated gravity wave (mountain wave) drag have been widely used since the
1980s [2–4], and many models also include parametrisations for non-orographic gravity wave drag [5,6].
As model resolutions increase, there is also a need for “scale aware” schemes that can smoothly deal
with wave fields where the large scale waves are resolved, but shorter wavelength waves are not [7].
The need to understand and quantify gravity wave drag better has led to a number of international
field campaigns in recent years including Concordiasi [8], DEEPWAVE [9], GW-LCYCLE [10] and
SGWEX [11], as well as new developments in satellite and remote sensing retrievals of gravity wave
characteristics (e.g., [12]).

Validation and tuning of gravity wave drag parametrisation schemes ideally need observations of
gravity wave momentum fluxes, although often, the parametrisations are tuned to climatology [13].
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The work in [13] gave a review of the different methods and platforms used to measure the momentum
flux. Analytically, the two components of the vertical flux of horizontal momentum are defined as:

(Mx(z), My(z)) =
∫ ∞

−∞

∫ ∞

−∞
ρw′(u′, v′) dx dy (1)

where ρ is the density of air and u′, v′, w′ are the three components of the wave induced velocity
perturbations. Some methods use velocity directly, while others instead use the gravity wave
polarization relationship and temperature fluctuations, T′, to derive w′ and sometimes also u′ [14].
Radiosondes can measure both velocity and temperature perturbations directly; however, other remote
sensing techniques often just measure temperature perturbations. The work in [15] showed that
the different ways of calculating the momentum flux are sensitive to different frequencies of gravity
waves. One feature of the method of [14] is that it uses the rotation of wind vectors with height due
to the Coriolis force to estimate the wave frequency, and so, it only works for inertia gravity waves,
i.e., for long enough horizontal wavelength (or sufficiently low frequency) waves that the Coriolis
force becomes important. A similar method was used for retrieving gravity wave momentum fluxes
from satellite observations of temperature [16].

For quasi-2D wave fields (e.g., generated by flow over a mountain ridge), Equation (1) can
be approximated to a reasonable degree by one or several horizontal profiles measured from an
aircraft [17] or quasi-Lagrangian balloon [18]. In 3D wave fields, there will be a sampling error due to
the spatial variability (see, e.g., [17,19]). Due to the requirement for expensive aerial platforms, such
observations are rare, typically only taken during field campaigns. As a result, use is often made of
ground based (quasi-)vertical profiles from radiosondes [15,20–22] or remote sensing techniques such
as radio occultation [23] to determine wave characteristics. The work in [24] compared observations
of gravity wave momentum flux from a variety of methods, including radiosondes, with wave
flux in several climate models. Like many other studies, they discussed a number of limitations of
the observations, including the different wavelengths/frequencies observed by different techniques,
but not the impact of sampling errors. The work in [25] discussed some of the challenges in interpreting
LiDAR observations of gravity wave wave packets due to their localisation in space and time, but did
not explicitly consider the retrieval of momentum fluxes.

This paper aims to assess the potential impact of the sampling error from using radiosondes or
other vertical profiles to determine momentum flux. For simplicity, profiles are taken from analytical
gravity wave solutions where the true momentum flux is known. Section 2 briefly presents the results
for a simple two-dimensional planar monochromatic wave field. In Section 3, the case of an isolated
source of mountain waves is examined using the solution of [26] for two-dimensional hydrostatic
flow over a Witch of Agnesi mountain. This is extended to include the impact of the Coriolis force
in Section 4. Section 5 discusses the results and the impact this may have on the observational
measurement of gravity wave momentum flux in the real atmosphere. Although the focus of this paper
is on direct calculation of momentum fluxes from the perturbations in the velocity field, the same
sampling errors occur for retrievals that use the polarization equations where the velocity perturbations
are assumed proportional to the temperature fluctuations, T′.

2. Sampling a Planar Monochromatic Wave Field

For a two-dimensional stationary planar monochromatic wave field:

w′ = w0 cos(kx + mz) (2)

u′ = −m
k

w0 cos(kx + mz) (3)
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where k and m are the horizontal and vertical wavenumbers, respectively [27]. In general,

m2 =
k2U2

k2U2 − f 2

(
N2

U2 − k2
)

, (4)

where U is the horizontal wind, N is the Brunt–Väisälä frequency, and f is the Coriolis parameter.
In the large Rossby number limit (kU/ f � 1) where Coriolis effects are negligible, this reduces to
m2 = N2/U2 − k2. The wave momentum flux estimated by sampling along a profile at position
x between heights z1 and z2 is:

τ =
ρ

z2 − z1

∫ z2

z1

u′w′ dz, (5)

where τ is the depth averaged flux. We now substitute in u′ and w′ and consider the case where the
profile is obtained with a radiosonde with constant ascent rate, W, which drifts with the background
wind, so that x = x0 + zU/W. Integrating then gives:

τ = τ0

{
1 +

cos(2kx0 + n(z1 + z2)) sin(n(z2 − z1))

n(z2 − z1)

}
, (6)

where τ0 is the correct vertical momentum flux obtained by averaging over a whole number of
wavelengths in the horizontal and n = m + kU/W. For a truly vertical profile, n = m. The second
term in the bracketed expression in (6) is the relative error due to sampling the flux over a non-integer
number of wavelengths. This term is oscillatory, but the amplitude decreases as the number of
wavelengths sampled over increases, i.e., z2 − z1 increases; so, the error is largest for sampling depths
of less than around one third of a wavelength along the path. Note that for a monochromatic planar
wave, this result is true whether or not the effects of the Coriolis force are included, although the value
of m will be different in the two cases.

3. Isolated Mountain Waves without Coriolis Force

Here, we examine how the momentum flux obtained by sampling in the vertical, or along a
slanted trajectory such as that of a radiosonde, relates to a flux sampled in the horizontal, for example
along an aircraft leg or in a numerical model simulation. For simplicity, we considered the Queney
solution [26] for an idealised two-dimensional hydrostatic mountain wave without the inclusion
of the Coriolis force. Further, the effects of changing density with height were ignored, and both
background wind speed and Brunt–Väisälä frequency were assumed constant. Strictly speaking,
the radiosonde retrieval techniques assumed inertia gravity waves in order to retrieve vertical velocity
fluctuations from temperature fluctuations. The solutions including the Coriolis force were more
complicated, however, and did not admit a simple analytical solution, so we will first illustrate the
importance of sampling in the non-rotating case, before considering the impact of the Coriolis force in
the following section.

The Queney solution [26] for hydrostatic flow over a Witch of Agnesi mountain is:

h(x̃) =
H

1 + x̃2 (7)

u′(x̃, z̃) = HA
sin(Az̃) + x̃ cos(Az̃)

1 + x̃2 (8)

w′(x̃, z̃) = H
(x̃2 − 1) sin(Az̃)− 2x̃ cos(Az̃)

(1 + x̃2)2 (9)

where u′ and w′ are the horizontal and vertical velocity perturbations, non-dimensionalized on the
background wind speed U, x̃ and z̃ are non-dimensionalized by the horizontal length scale of the hill,
a, h(x̃) is the terrain height, H is the maximum mountain height (both non-dimensionalized by a), and
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A = (Na)/U is the inverse Froude number based on mountain width with background stability N.
Both U and N were assumed independent of height. Note the non-dimensional vertical wavelength of
all waves was λz = 2π/A, irrespective of horizontal wavenumber, since the hydrostatic assumption
(A� 1) was made.

An isolated mountain wave field such as that given by (7)–(9) consists of multiple horizontal
wavelengths, and there is no single wavelength over which to measure a (reference) horizontally
averaged flux. The relevant length scale is instead the mountain length scale, a. We first considered
how the measured total flux on a horizontal leg converged as a function of the integral length. The total
flux is defined as:

F =
∫ Lx/2

−Lx/2
ρu′w′ dx̃, (10)

where Lx is the non-dimensional integral length and x̃ is relative to the position of the mountain
summit. Substituting for u′ and w′ and evaluating the integral give:

F = D

{
2
π

arctan(Lx/2) +

(
L3

x/4− Lx + 4Lz sin2(Az)
)

π(L2
x/4 + 1)2

}
(11)

where D = −ρH2 Aπ/4 is the total non-dimensional flux, integrating to infinity. The first term in
brackets tends to one for large Lx, and the second term tends to zero; so, for large Lx, the total flux is
recovered as expected. Taking Lx = 8 gave a maximum error of less than 2.5% in the total flux across a
range of cross-section heights, as shown in Figure 1. Aircraft horizontal flight legs should therefore
ideally sample from at least −4a upstream of the summit to 4a downstream in order to sample the
momentum flux accurately from an isolated mountain wave field.
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z / z = 0.0
z / z = 0.125
z / z = 0.25
z / z = 0.375
z / z = 0.5

Figure 1. Relative total momentum flux F/D as a function of integral length Lx at different heights.
Note: periodicity means the z/λz = 0.0 and z/λz = 0.125 lines correspond exactly to the z/λz = 0.5
and z/λz = 0.375 lines, respectively.

To compare with the vertically integrated mean flux, we need to average the total flux D over
some horizontal length scale. The obvious length scale is the mountain half width, which is unity in
non-dimensional form, and so, we define the horizontally integrated mean flux τx = D.

Virtual profiles are sampled from the analytic wave solution for different values of W/U (0.1, 0.2,
0.5, ∞). Note that W/U = ∞ (i.e., an infinitely fast ascent rate) equates to a vertical profile. Figure 2
shows the trajectories superimposed on a contour plot of vertical velocity perturbations for the A = 10
and A = 100 cases. For the hydrostatic wave solution of [26], the waves are stacked vertically above
the mountain, and so, a vertical profile will continually sample the wavefield, while a sounding with a
finite ascent rate will drift out of the wavefield. This problem is worse for smaller values of A as the
radiosonde drifts out of the main wave field sooner.
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Figure 2. Vertical velocity from the Queney mountain wave solution for (a) A = 10 and
(b) A = 100. Plotted on top are the virtual radiosonde trajectories for non-dimensional ascent rates,
W/U = 0.1, 0.2, 0.5, and ∞ (a vertical profile).

For each profile, the integrated mean flux in this case is:

τs =
1
s

∫ s

0
ρu′w′ds, (12)

where s is the distance along the trajectory. For a vertical profile, this integral can be evaluated
analytically and divided by the total horizontally averaged flux, D, to give:

τs

τx
=

2
π(1 + x̃2)2

[
1 +

3x̃2 − 1
4ALz

sin(2ALz) +
x̃(x̃2 − 3)

4ALz
(cos(2ALz)− 1)

]
(13)

assuming z̃ goes from zero to Lz. The second and third terms in the bracket decay for large Lz,
i.e., sampling over several vertical wavelengths, in which case, asymptotically, the non-dimensional
vertically integrated mean momentum flux is related to the non-dimensional horizontally averaged
mean flux by:

τs/τx ∼
2

π(1 + x̃2)2 . (14)

For tilted profiles, the vertically integrated mean momentum flux cannot be evaluated analytically,
and so, numerical solutions (calculated using the fft routines in the Python Numpy library) were used.

Figure 3 shows the flux, normalised by the horizontal mean flux τx, as a function of the height to
which the integral was calculated, for three different launch locations (x̃ = −1.0, 0.0, 1.0), for different
ascent rates (W/U = 0.1, 0.2, 0.5, ∞), and for different non-dimensional mountain widths (A = 10, 100).
The differences between different ascent rates were (as might be expected) more pronounced for
smaller values of A. As in the planar wave case, the fluxes for a vertical profile appeared to converge
towards a constant mean value, with some sinusoidal error due to sampling an incomplete number
of wavelengths. Unlike the planar wave case, this value depended on the sample x̃ location and was
not equal to the horizontal mean flux τx. For tilted profiles (like a radiosonde trajectory), the mean
flux τs did not converge, but decayed with increased trajectory length as the trajectory moved out
of the peak localised wave field. Note that in all but the wide (A = 100) mountain case where
the radiosonde was launched from the summit, the flux estimates obtained from vertical profiles
significantly underestimated the true horizontally averaged value. These flux profiles were also not
independent of height, and this could be incorrectly interpreted as implying wave dissipation and
transfer of momentum to the mean flow.
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Figure 3. The along-trajectory integrated mean momentum flux, τs, normalized by the horizontal total
flux, τx, as a function of the normalised height, z/λz, for the Queney mountain wave solution. Subplots
are for launch locations x̃ = −1 (a,d) , x̃ = 0 (b,e), x̃ = 1 (c,f), and for A = 10 (a–c) and A = 100 (d–f).
In each subplot, results are shown for a range of non-dimensional ascent rates, W/U, of 0.1, 0.2, 0.5, and
∞ (a vertical profile). The dotted vertical line shows the asymptotic correction factor 2/(π(1 + x̃2)2)

for a vertical profile in each case.

4. Isolated Mountain Waves with Coriolis Force

In many applications, the Rossby number Ro = U/( f a) is sufficiently small that the Coriolis force
cannot be neglected completely. The wave equation for an isolated Witch of Agnesi hill, including the
effects of the Coriolis force, does not permit such simple analytical solutions as the case with f = 0
presented in Section 3, but the solutions can be evaluated numerically using a fast Fourier transform to
calculate the contribution of different wavenumbers in the topography to the wave spectrum. Figure 4
is the equivalent of Figure 2 including the effects of the Coriolis force. For the smaller (A = 10) width
hill with Ro = 10, the solutions with and without the Coriolis force were very similar (Figure 4a).
With Ro = 1, the effect of the Coriolis force was to tilt the longer wavelength components of the wave
downstream. In this case, the tilt was such that the different radiosonde trajectories all sampled the
wave better, rather than passing out of the wavefield as in the case without Coriolis force. As a result
the along-trajectory integrated fluxes in Figure 5 showed much less dependence on the balloon ascent
rate than for the case without Coriolis force, and also less dependence on whether a whole number
of vertical wavelengths was sampled. On the other hand, as the wave field was tilted, the vertically
integrated fluxes did not converge to a constant value, even for a truly vertical profile. Any estimate
of the flux would therefore always be sensitive to the height over which the integral was calculated.
Again, the estimated fluxes were always much smaller than the horizontally integrated flux. Unlike
the limiting case without Coriolis force (the dashed line), the downwind shift in the wave field meant
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that the vertically integrated fluxes (along vertical profiles) were not symmetrical about the summit of
the mountain. Upwind and near the summit, they were reduced compared to the limiting case, while
downwind, they may be larger.
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Figure 4. Vertical velocity for the mountain wave solution for the (a) A = 10.0, Ro = 10.0 and (b)
A = 100.0, Ro = 1.0 cases. Plotted on top are the virtual radiosonde trajectories for non-dimensional
ascent rates, W/U = 0.1, 0.2, 0.5 and ∞ (a vertical profile).
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Figure 5. As in Figure 3, but for the case with A = 100, Ro = 1. Results are plotted at (a) x̃ = −1,
(b) x̃ = 0, and (c) x̃ = 1. The dotted vertical line shows the asymptotic correction factor 2/(π(1 + x̃2)2)

for a vertical profile in the case without Coriolis force.

5. Discussion and Conclusions

These simple calculations highlighted the impact of sampling on estimated mountain wave
momentum fluxes from radiosondes or other systems for vertical profiling. For monochromatic, planar
waves, the horizontally and vertically integrated momentum fluxes were equivalent, even for tilted
profiles (such as a radiosonde trajectory), simply because these sampled the full phase of the waves.
Errors were solely due to sampling a non-integer number of wavelengths, and this decreased with an
increase in the path length.

In contrast, for isolated mountain waves in which rotation was unimportant, there were a number
of complicating factors that made it difficult to obtain accurate estimates of the momentum flux from
profile sampling:

• For the Queney solution, the vertically integrated mean flux (for W/U = ∞) at the summit of the
orography was not equal to the horizontally integrated mean momentum flux, but was related by
a factor of 2/π.
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• Vertically averaged fluxes, τs (for W/U = ∞), were strongly dependent on the horizontal
location of the profile relative to the summit of the orography, decaying like 1/(1 + (x/a)2)2

in dimensional form.
• Integrating along a tilted path (e.g., a radiosonde trajectory) led to an additional sampling error

as the trajectory would move out of the localised wave field. This effect was worse for smaller
values of A, i.e., shorter horizontal wavelengths/narrower topography and higher wind speeds.

These issues may seem obvious, yet they are frequently overlooked when interpreting momentum
fluxes inferred from measurements. Using a simple analytical solution, we were able to quantify
the impacts. For truly vertically profiles from, e.g., remote sensing instruments, then the instrument
should be located as close to the summit of the topography as possible. Assuming the relationship
for the Queney solution, the measured vertically integrated momentum flux could then, in theory, be
corrected to give the total horizontal momentum flux assuming the width of topography, a, is known.
For instruments not sited at the summit, an additional correction factor would be required to account
for the decay of the wave field with distance x/a from the summit.

For tilted profiles such as radiosonde trajectories, even this did not work, and so, it was hard to
relate the measured along-path integral momentum flux to the horizontal momentum flux. For large
values of A (wide topography, long horizontal wavelengths) and for faster ascent rates, the impact
was less, and so, the profile may be assumed quasi-vertical, as was the case for A = 100 shown above.
For smaller values of A, this was not a good assumption.

The effect of the Coriolis force mitigated some of these issues. In particular, it led to less sensitivity
of the along-trajectory integrated flux to the balloon ascent speed, although the fluxes no longer
converged. The values were however still strongly dependent on the balloon launch location relative
to the hill and were less than the horizontally averaged momentum flux.

These issues all acted to reduce the measured vertically integrated momentum flux compared to
the horizontally averaged flux, and so, there was a likelihood that gravity wave momentum fluxes
would be underestimated by radiosonde measurements as a result of sampling errors. There was some
evidence of this in the literature. The work in [21] showed that radiosonde derived momentum fluxes
were a factor of 5–6 smaller than previous satellite derived momentum fluxes over the island of South
Georgia. The radiosonde launch site on South Georgia’s east coast was located approximately 2a from
the summit, suggesting that estimates of momentum flux obtained from radiosonde measurements of
mountain waves could actually be a factor 40 times smaller than those that would have been obtained
from horizontal sampling (neglecting Coriolis effects). One would expect the satellite retrieved fluxes
to be smaller than the true flux due to their relative coarse resolution (see, e.g., [11]), and so, the factor
of 5–6 noted by [21] was likely an underestimate of the true error in the radiosonde derived fluxes.

The assumptions of constant wind speed and Brunt–Väisälä frequency in this study were of
course somewhat limiting, as was the use of very simple idealised 2D mountain profiles. Changes in
the wind speed and Brunt–Väisälä frequency would lead to the wave ray path bending with height.
This could further exacerbate the sampling issues discussed here. Further, we did not consider the
impact of transient wave packets in time, which as pointed out by [25], may also be important when
interpreting observations of gravity waves. Nonetheless, we would expect that the gravity wave fields
generated by real isolated mountains would share at least qualitatively the features of the idealised
wave fields considered here, and so, these same sampling issues would be relevant to more complex
real-world situations.

Most satellite retrievals of gravity wave momentum flux (e.g., [12,16]) use horizontal fluctuations
in temperature at a particular height level and so do not suffer from the sampling issues discussed
here. They do however have their own limitations, for example not being able to resolve the shorter
wavelength parts of the wave spectrum, which carry much of the momentum, as demonstrated by [11].

Even if relating the vertically integrated gravity wave momentum fluxes from radiosondes to a
horizontally averaged flux from an aircraft or model is difficult, these data sources are still immensely
useful. They provide the only routine in situ measurements of gravity wave activity globally in the
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troposphere and so are key for identifying spatial and temporal variations in wave activity. They are
also essential for validating high resolution models. Such models give access to the whole 3D wave
field and its temporal evolution in a way that is not possible with any observational techniques, and so,
they are increasingly being used to develop, tune, and test gravity wave parametrisation schemes
(e.g., [28]).
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