UNIVERSITY OF LEEDS

This is a repository copy of Melt-present shear zones enable intracontinental orogenesis.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/155034/

Version: Accepted Version

Article:

Piazolo, S orcid.org/0000-0001-7723-8170, Daczko, NR, Silva, D et al. (1 more author) (2020) Melt-present shear zones enable intracontinental orogenesis. Geology, 48 (7). pp. 643-648. ISSN 0091-7613

https://doi.org/10.1130/G47126.1

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1 Melt-present shear zones enable intracontinental

2 orogenesis

3 Sandra Piazolo^{1,2*}, Nathan R. Daczko², David Silva² and Tom Raimondo³

- 4 ¹School of Earth & Environment, University of Leeds, Leeds, LS29JT, UK
- 5 ²Department of Earth & Environmental Sciences, Macquarie University, Sydney,
- 6 NSW 2109, Australia
- 7 ³School of Natural and Built Environments, University of South Australia, Mawson
- 8 Lakes, SA 5095, Australia
- 9

10 ABSTRACT

11 Localized rheological weakening is required to initiate and sustain intracontinental 12 orogenesis, but the reasons for weakening remain debated. The intracontinental Alice 13 Springs Orogen (ASO) dominates the lithospheric architecture of central Australia 14 and involved prolonged (450-300 Ma) but episodic mountain building. The mid-15 crustal core of the ASO is exposed at its eastern margin, where field relationships and 16 microstructures demonstrate that deformation was accommodated in biotite-rich shear 17 zones. Rheological weakening was caused by localized melt-present deformation 18 coupled with melt-induced reaction softening. This interpretation is supported by the 19 coeval and episodic nature of melt-present deformation, igneous activity and sediment 20 shed from the developing ASO. This study identifies localized melt availability as an 21 important ingredient enabling intracontinental orogenesis.

22

23 INTRODUCTION

24	Collisional mountain belts distal to plate boundaries are commonly referred to as
25	intracontinental orogens (Cunningham, 2005; Aitken, 2011, 2013; Raimondo et al.,
26	2014). Continental plates exhibit prolonged periods of tectonic quiescence at plate
27	interiors, consistent with the scarcity and low magnitude of seismicity, and low
28	maximum horizontal stresses compared to plate boundaries (e.g. Coblentz et al., 1998;
29	Quigley et al., 2010; Aitken et al., 2013; Mueller et al., 2012, 2015; Heidbach et al.,
30	2016). This contrasts with strain localization at the 10–100 km scale observed in
31	intracontinental orogens. Whereas lithospheric weakening is essential to enable such
32	strain localization, its root causes remain largely unexplored besides suggestions of
33	gravitational, thermal instabilities and weak/strong provinces (Houseman & Molnar,
34	2001; Holford et al., 2011, Dyksterhuis & Mueller, 2008).
35	Central Asia (Tian Shan and Altai) and central Australia (Alice Springs and
36	Petermann Orogens) feature the best known modern and ancient examples of
37	intracontinental orogens, respectively. The Paleozoic Alice Springs Orogen (ASO;
38	Fig. 1) lies within a >1 Ga stable tectonic plate and involved shortening of up to 100
39	km and deposition of multiple synorogenic, up to 4 km thick sedimentary sequences
40	in line with large scale convergence and mountain building (e.g. Teyssier, 1985;
41	Haines et al., 2001; Klootwijk, 2013; Raimondo et al., 2014). Differential exhumation
42	has resulted in a tilted crustal section exposing the orogenic core; progressively from
43	NW to SE metamorphic grade increases, shear zones widen and their deformation
44	behavior changes from brittle to increasingly ductile (Raimondo et al., 2011; 2014).
45	Whereas upper-crustal processes can be studied in active orogens, the eastern ASO
46	offers the opportunity to investigate the deep-seated mechanics of intracontinental
47	orogenesis. We link field and microstructural observations from a representative high-
48	grade crustal-scale shear zone to episodic orogen-wide igneous activity, localized

49 deformation and metamorphism, and synorogenic sedimentation to evaluate the role

- 50 of melt availability in enabling intracontinental orogenesis.
- 51

52 SHEAR ZONE CHARACTERISTICS

53 **Regional structure**

54 The ASO is characterized by a pervasive network of NW–SE-trending zones of

- 55 reverse shear displacement with hydrous mineral assemblages that truncate
- 56 Paleoproterozoic granulite facies metamorphic fabrics (e.g. Collins & Teyssier, 1989;
- 57 Cartwright & Buick, 1999; Fig. 1). In the NW, the orogen is ~300 km wide and
- 58 involves 10-300m wide, reverse-shear zones with < 2 km spacing (Fig. 1c; Collins &
- 59 Teyssier, 1989). Shear zones are dominated by low-pressure (< 5 kbar) greenschist to
- 60 lower amphibolite facies mica schists and quartzo-feldspathic mylonites characterized
- 61 by solid-state deformation and aqueous fluid-rock interaction (e.g., Cartwright &
- 62 Buick, 1999; Raimondo et al., 2011, 2017). In contrast, the deeper orogenic section to
- 63 the SE is \sim 80 km wide, of higher metamorphic grade (6.5–7.0 kbar; 650–700 °C;
- 64 Mawby et al., 1999; Raimondo et al., 2014) and has a bivergent structure. Strain is

65 localized into 5–8 crustal-scale steep reverse shear zones which are 1–4 km wide,

66 spaced at 8–12 km intervals and dominated by biotite-bearing rocks.

67

68 Features of a representative mid-crustal shear zone

69 The reverse-shear Gough Dam shear zone (GDSZ) is 1–2 km thick, steeply north-

- 70 dipping (60–80°), E–SE striking (090–150°) over 55 km and juxtaposes two different
- 71 Proterozoic basement packages (Collins & Shaw, 1995; Fig. 1). It accommodated a
- 72 dip-slip, reverse-sense displacement of ~40 km based on its steep dip angle, and the
- number of shear zones and total shortening across the orogen in the SE. Shear strain is

74	~20–40 considering its 1–2 km thickness. Shear zone boundaries are abrupt without
75	foliation deflection. Adjacent to these boundaries, anhydrous granulite facies
76	basement rocks show irregularly spaced foliation and cm to dm scale folding with
77	little strain localization along lithological contacts. In contrast, within the shear zone
78	biotite alignment forms a pervasive shear foliation consistent over hundreds of meters
79	across and along strike. Centimeter- to dm-scale compositional banding is foliation-
80	parallel, continuous and varies in biotite mode: three components are distinguished
81	(Fig. 2; see DR1 for details and methods).
82	Biotite-poor felsic Component 1 (C1; <5% biotite) includes lenses and layers of
83	varying thickness (0.5–10 cm); they form rootless folds or continuous trains
84	resembling apparent pinch-and-swell structures (Fig. 2a-d); swells and lenses are
85	often connected by mm thick, foliation-parallel biotite-rich seams. C1 is K-feldspar-
86	and quartz-rich and frequently bordered by biotite-rich selvedges (Fig. 2d-e; DR2).
87	Feldspar grains have a small grain size range (2–3 mm), may be rectangular,
88	interlocking and without clear crystallographic or shape preferred orientation (DR2).
89	They occur with interstitial quartz and less commonly plagioclase. Interstitial grains
90	show connectivity in 3D (i.e. interstitial grains that are spatially separate in 2D
91	sections exhibit the same crystallographic orientation), often aspect ratios > 8 and low
92	dihedral angles (<60°, Fig. 2e). Irregular boundaries may also occur (Fig. 2e).
93	Finer-grained (~1 mm) granitic Component 2 (C2; 5–25% biotite) constitutes most of
94	the shear zone (Fig. 2), forms foliation-parallel dm thick continuous bands and
95	displays the same microstructures observed in C1 along with "string of beads"
96	textures (i.e. an array of quartz grains along grain boundaries; Fig. 2f).
97	Biotite-rich Component 3 (C3, >50 %biotite) is seen as selvedges around C1 and as
98	mm-thick seams and continuous cm- to m-thick glimmerite bands in C2 (Fig. 2a-d).

- 99 Biotite is medium grained (1 mm), aligned foliation-parallel and rarely kinked and
- 100 bent (Fig. 2g). Quartz is interstitial with aspect ratios >8 (Fig. 2g) and rectangular
- 101 single K-feldspar grains and clusters of interlocked feldspar grains are seen in the
- 102 glimmerite matrix (Fig. 2c). The glimmerite contains 1–3 additional minor phases e.g.
- 103 interstitial muscovite, elongate sillimanite clusters (Fig. 2g).
- 104

105 TEMPORAL PATTERNS OF OROGENIC ACTIVITY

- 106 A compilation of orogen-wide geochronological datasets shown in Fig. 3 and DR3
- 107 demonstrates an episodic temporal evolution of the ASO. The data exhibit overlap of
- 108 igneous activity (Ig), derived from peraluminous granitic pegmatite dykes (Buick et
- al., 2008) and decameter scale granitic plugs (Buick et al., 2001), with metamorphic
- 110 and deformation ages of shear zone rocks (D). Geochronological data shows that
- 111 some shear zones are active during separate episodes of orogenic activity (e.g.
- 112 Raimondo et al., 2014; DR3). The timing of peaks in synorogenic sedimentation (S) at
- 113 c. 450–435 Ma, c. 385–365 Ma and c. 340–315 Ma coincides with three of the
- 114 igneous and tectonometamorphic episodes.

115

116 **DISCUSSION**

117 Melt-present deformation

- 118 The GDSZ lacks microstructural evidence of solid-state, crystal-plastic deformation,
- e.g. mantled porphyroclasts, bimodal grain size distribution, undulose extinction or
- 120 kinking (Fig. 2, DR1, Passchier and Trouw 2005). Instead, microstructures indicative
- 121 of the former presence of melt are preserved. These include disequilibrium grain
- 122 boundaries (dashed lines; Fig. 2e–f), interstitial minerals with low dihedral angles,
- 123 grains with aspect ratios > 8 and "string of beads" textures; the latter two textures are

124 interpreted as remnants of former grain boundary melt films (Vernon, 2011; Holness 125 et al. 2011). Component C1 also exhibits typical igneous features including interstitial 126 quartz and interlocking, rectangular feldspar crystals with unimodal grain size and no 127 clear preferred orientation (inset Fig. 2d, DR2). 128 Recent work has shown that during melt-present deformation, microstructures 129 indicative of the former presence of melt are formed and preserved (Stuart et al., 130 2018a,b; Meek et al., 2019). In such shear zones, strain is dominantly accommodated 131 by viscous melt flow, resulting in a viscosity drop of at least one order of magnitude 132 relative to solid-state deformation (Lee et al., 2018; Pakrash et al., 2018). If annealing 133 had been an important process, subtle microstructures such as interstitial grains with 134 low dihedral angles and "string of beads" textures would likely have been erased 135 (Piazolo et al. 2006). 136 The ubiquitous evidence of former melt presence within the GDSZ focuses attention 137 on the origin of the melt. The anhydrous and infertile nature of the granulite facies 138 basement rocks that host the shear zone is inconsistent with local melt derivation 139 (Buick et al., 2008) and strongly contrasts with the abundance of hydrous minerals in 140 the deformed rocks. Biotite growth during shearing and a lack of partial melting 141 hallmarks (e.g., presence of peritectic minerals and reaction textures indicating the 142 consumption of hydrous phases) further argue against in-situ melting of the host 143 rocks. This suggest that melt was externally derived, implying syntectonic melt flux 144 through the shear zone. 145

146 Melt-present shearing and melt-rock interaction facilitate enhanced rheological 147 weakening

148	In the GDSZ biotite-rich selvedges and felsic igneous lenses are spatially linked (Fig.
149	2d), individual lenses are commonly connected by biotite seams and cm- to dm-thick
150	biotite-rich glimmerite bands invariably contain some igneous features (Fig. 2c,g).
151	This spatial association suggests a causal relationship, whereby biotite formed due to
152	interaction between a hydrous melt and the host rock. Like a dynamic version of the
153	hydration crystallization reactions of Beard et al. (2004), disequilibrium during melt-
154	rock interaction drives the dissolution of precursor granulite and the precipitation of a
155	biotite-rich assemblage in equilibrium with the fluxing melt (Stuart et al., 2016, 2017;
156	Meek et al., 2019). This results in melt-mediated replacement reactions (Daczko et al.,
157	2016), analogous to lower temperature aqueous fluid-mediated replacement reactions
158	(Putnis, 2009).
159	Hence, in the biotite-rich glimmerite bands, melt flux drove widespread melt-rock
160	interaction and metasomatism, producing a locally hydrated rock. Experiments show
161	that ascending peraluminous melts become increasingly reactive (Clemens, 2003)
162	explaining widespread melt-induced reactions during melt flux. Exothermic biotite
163	growth (Haack & Zimmerman, 1996) and melt flux-related heating maintained
164	sufficiently high temperatures to limit melt crystallization during reaction and ascent.
165	Deformation inconsistencies between adjacent grains caused increased porosity and
166	permeability and enhanced melt migration (Menegon et al. 2015). Additionally,
167	deformation assisted melt expulsion by synkinematic filter pressing (Park & Means,
168	1996), explaining the observed low abundance of preserved quartzo-feldspathic
169	igneous material in the glimmerite bands.
170	Development of the biotite-rich glimmerite bands represents a form of reaction
171	softening (Watts & Williams, 1983), commonly attributed to aqueous fluid-rock
172	interaction (Teall, 1885; Brodie & Rutter, 1985). We argue that melt-rock interaction

173	is the root cause of mica growth and drives concomitant rheological weakening. Fluid
174	(including melt) cannot support shear stresses; hence, melt-bearing rocks are
175	intrinsically weak (e.g., van der Molen & Paterson, 1979; Rutter & Neumann, 1995).
176	Rosenberg & Handy (2005) show that >7 vol.% melt weakens rocks by at least one
177	order of magnitude. This observation has been extended to shear zones to infer
178	rheological weakening of 1-2 orders of magnitude at the km-scale (Brown & Solar,
179	1998; Marchildon & Brown, 2003; Weinberg & Mark, 2008; Jamieson et al., 2011)
180	and orogen-scale (Hollister & Crawford, 1986; Harris, 2007). Fluid overpressure
181	(Hubbert & Rubey, 1959) and melt-induced heating may enhance weakening within a
182	deforming rock (Tommasi et al., 1994). We therefore interpret that the ASO shear
183	zones were weak during episodes of melt flux due to melt-present deformation and
184	melt-induced reaction softening.
185	
186	Orogenic episodicity: dynamic feedback between far-field stresses, melt
187	availability and rheological weakening
188	The intracontinental setting of the ASO suggests that orogenesis involved a localized
189	weak zone within otherwise strong lithosphere. Recent work shows that the failed
190	Larapinta Rift (LR; Fig. 3), together with its thick sedimentary fill, represents the

191 required weak zone and, additionally, global-scale plate reorganization drove rift-

192 inversion and strain localization (Silva et al., 2018). Whereas the importance of fault

- 193 reactivation in controlling deformation patterns during orogenesis has been
- recognized (e.g. De Graciansky et al. 2010, Kober et al. 2013), the episodic nature of
- 195 the ASO (Fig. 3) suggests another factor must play a role. If orogenesis was enabled
- 196 solely by reactivation of pre-existing faults, strain localization at rheological
- 197 interfaces or in the presence of weak rift fill sediments, then continuous deformation

198	may be expected. In contrast, magmatic systems are inherently episodic due to the
199	link between melt pressure build-up, release and melt extraction (e.g. Schmeling
200	2006).
201	Episodic melt-present deformation requires a fertile source, a mechanism to cause
202	melting, and alternating melt-present weakening/deformation and fault strengthening.
203	For the ASO, a fertile source has been contentious, as hydrous shear zones cut
204	anhydrous granulite (Buick et al., 2008); proposed candidates include
205	unmetamorphosed sedimentary rocks of the neighboring intracratonic
206	Neoproterozoic-Paleozoic Amadeus and Georgina Basins (Fig. 1), or the Cambrian-
207	Ordovician Harts Range Group deposited in the epicratonic Larapinta rift basin
208	(Irindina Province, Fig. 1; Maidment et al., 2013). These sources require either
209	tectonic underthrusting (Buick et al., 2008) or deep burial (Tucker et al., 2015) to
210	supply fertile crust to deeper structural levels and facilitate melt production.
211	We argue that in the deep crust, recently deposited sediments underwent prograde
212	metamorphism to produce melt over a sustained period, but that melt migration and
213	associated deformation was only facilitated when (a) an external force was applied
214	due to plate reorganization and associated continuous external stresses; and (b) melt
215	pressure was sufficiently high to overcome yield stresses. During melt release,
216	deformation was highly localized and melt-present (see experiments by Zanella et al.,
217	2015), facilitating fault reactivation in zones of relative weakness (biotite-rich shear
218	zones rather than strong granulites). Upon melt source drainage (Schmeling 2006),
219	shear zones became strong and deformation ceased, allowing melt pressure to
220	gradually increase. Conceptually this is similar to the fault valve fluid-deformation
221	cycles envisaged by Sibson (1990). Once melt pressure was sufficiently high, shear
222	zones became active again, initiating another episode of simultaneous igneous and

- 223 tectonic activity. By this mechanism, repeated episodes of melt-present deformation
- and melt-induced reaction softening drove substantial weakening, and thus melt
- availability played a critical role in enabling intracontinental orogenesis.
- 226

227 ACKNOWLEDGMENTS

- 228 This research was supported by ARC Discovery Grant DP160103449. A. Putnis
- 229 (Curtin University) is thanked for discussions. This is contribution XXXX from the
- 230 ARC Centre of Excellence for Core to Crust Fluid Systems
- 231 (http://www.CCFS.mq.edu.au) and XXXX from GEMOC
- 232 (http://www.GEMOC.mq.edu.au). We thank L. Ratschbacher, G. Solar, R. Trouw and
- 233 C. Teyssier and two anonymous reviewers for constructive reviews and D. Brown for
- editorial handling.
- 235

236 **REFERENCES**

Aitken, A. R. A., 2011, Did the growth of Tibetan topography control the locus and evolution of Tian Shan mountain building?: Geology, v. 39, p. 459–462.

- Aitken, A. R. A., Raimondo, T., & Capitanio, F. A. 2013, The intraplate character of
 supercontinent tectonics: Gondwana Research, v. 24, p. 807–814.
- Beard, J. S., Ragland, P. C., & Rushmer, T., 2004, Hydration crystallization reactions
 between anhydrous minerals and hydrous melt to yield amphibole and biotite
- 243 in igneous rocks: description and implications: The Journal of Geology, v.
- 244 112, p. 617–621.
- Brodie, K. H., & Rutter E. H., 1985, On the relationship between deformation and
 metamorphism, with special reference to the behaviour of basic rocks. In:

247	Metamorphic Reactions: Kinetics, Textures and Deformation (eds Thompson,
248	A. B. and Rubie, D. C.): Advances in Physical Geochemistry, v. 4, p. 138–179.
249	Brown, M., & Solar, G. S., 1998, Shear-zone systems and melts: feedback relations and
250	self-organization in orogenic belts: Journal of Structural Geology, v. 20, p. 211-
251	227.
252	Buick, I. S., Miller, J. A., Williams, I. S., & Cartwright, I., 2001, Ordovician high-grade
253	metamorphism of a newly recognised late Neoproterozoic terrane in the
254	northern Harts Range, central Australia. Journal of Metamorphic Geology, v.
255	19, p. 373–394.
256	Buick, I. S., Storkey, A., & Williams, I. S., 2008, Timing relationships between
257	pegmatite emplacement, metamorphism and deformation during the intra-plate
258	Alice Springs Orogeny, central Australia: Journal of Metamorphic Geology, v.
259	26, p. 915–936.
260	Cartwright, I., & Buick, I. S., 1999, Meteoric fluid flow within Alice Springs age shear
261	zones, Reynolds Range, central Australia: Journal of Metamorphic Geology, v.
262	17, p. 397–414.
263	Clemens, J. D., 2003, S-type granitic magmas-petrogenetic issues, models and
264	evidence: Earth-Science Reviews, v. 61, p. 1-18.
265	Coblentz, D. D., Zhou, S., Hillis, R. R., Richardson, R. M., Sandiford, M., 1998,
266	Topography, boundary forces, and the Indo-Australian intraplate stress field:
267	Journal of Geophysical Research, Solid Earth, v. 103, p. 919-931.
268	Collins, W. & Shaw, R., 1995, Geochronological constraints on orogenic events in the
269	Arunta inlier: A review: Precambrian Research, v. 71, p.315–346.
270	Collins, W. & Teyssier, C., 1989. Crustal scale ductile fault systems in the Arunta inlier,
271	central Australia: Tectonophysics, v. 158, p. 49-66.

- Collins, W. J., & Teyssier, C., 1989, Crustal scale ductile fault systems in the Arunta
 Inlier, central Australia: Tectonophysics, v. 158, p. 49-66.
- Cunningham, D., 2005, Active intracontinental transpressional mountain building in
 the Mongolian Altai: Defining a new class of orogen: Earth and Planetary
 Science Letters, v. 240, p. 436–444.
- Daczko, N. R., Piazolo, S., Meek, U., Stuart, C. A., & Elliott, V., 2016, Hornblendite
 delineates zones of mass transfer through the lower crust: Scientific reports, 6.
- 279 De Graciansky, P. C., Roberts, D. G., & Tricart, P., 2010. The late Cretaceous phase
- 280 and Onset of Alpine shortening. In: "The Western Alps, from rift to passive
- 281 margin to orogenic belt: an integrated geoscience overview": v. 14, p. 169-182.
- Dyksterhuis, S., & Müller, R. D., 2008, Cause and evolution of intraplate orogeny in
 Australia: Geology, v. 36, p. 495–498.
- Haack, U. K., & Zimmermann, H. D., 1996, Retrograde mineral reactions: a heat source
 in the continental crust?: Geologische Rundschau, v. 85, p. 130–137.
- Haines, P. W., Hand, M., & Sandiford, M., 2001, Palaeozoic synorogenic
 sedimentation in central and northern Australia; a review of distribution and
 timing with implications for the evolution of intracontinental orogens:
 Australian Journal of Earth Sciences, v. 48, p. 911–928.
- Harris, N., 2007, Channel flow and the Himalayan-Tibetan orogen: A critical review:
 Journal of the Geological Society, v. 164, p. 511–523.
- Heidbach, O., Rajabi, M., Reiter, K., & Ziegler, M., 2016, World stress map 2016:
 Science, v. 277, p. 956-1.
- Hollister, L. S., & Crawford, M. L., 1986, Melt-enhanced deformation: A major
 tectonic process: Geology, v. 14, p. 558–561.

296	Holness, M. B., Cesare, B., & Sawyer, E. W., 2011, Melted rocks under the microscope:
297	Microstructures and their interpretation: Elements, v. 7, p.247-252.
298	Holford, S. P., Hillis, R. R., Hand, M. & Sandiford, M., 2011. Thermal weakening
299	localizes intraplate deformation along the southern Australian continental
300	margin. Earth and Planetary Science Letters, v. 305, p. 207-214.
301	Houseman, G., & Molnar, P., 2001, Mechanisms of lithospheric rejuvenation
302	associated with continental orogeny: Geological Society, London, Special
303	Publications, v. 184, p. 13–38.
304	Hubbert, M. K., & Rubey, W. W., 1959, Role of pore fluid pressure in the mechanics
305	of overthrust faulting, in Mechanics of fluid-filled porous solids and its
306	application to overthrust faulting: Geological Society of America Bulletin, v.
307	70, p. 115–205.
308	Jamieson, R.A., Unsworth, M.J., Harris, N.B., Rosenberg, C.L. & Schulmann, K.,
309	2011, Crustal melting and the flow of mountains: Elements, v. 7, p. 253–260.
310	Klootwijk, C., 2013, Middle-Late Paleozoic Australia-Asia convergence and tectonic
311	extrusion of Australia: Gondwana Research, v. 24, p. 5-54.
312	Kober, M., Seib, N., Kley, J., & Voigt, T., 2013. Thick-skinned thrusting in the northern
313	Tian Shan foreland, Kazakhstan: structural inheritance and polyphase
314	deformation. Geological Society, London, Special Publications, v. 377, p. 19-
315	42
316	Lee, A. L., Torvela, T., Lloyd, G. E., & Walker, A. M. (2018). Melt organisation and
317	strain partitioning in the lower crust: Journal of Structural Geology, v. 113, p.
318	188-199.

- DOI:XX.XXXX/GXXXXX.X 319 Maidment, D. W., Hand, M. & Williams, I. S., 2013. High grade metamorphism of 320 sedimentary rocks during Palaeozoic rift basin formation in central Australia: 321 Gondwana Research, v. 24, 865-885. 322 Marchildon, N., & Brown, M., 2003, Spatial distribution of melt-bearing structures in 323 anatectic rocks from Southern Brittany, France: implications for melt transfer 324 at grain-to orogen-scale: Tectonophysics, v. 364, p. 215-235. 325 Mawby, J., Hand, M. & Foden, J. 1999. Sm-Nd evidence for high-grade Ordovician 326 metamorphism in the Arunta Block, central Australia: Journal of Metamorphic 327 Geology, v. 17. 328 Meek, U., Piazolo, S., & Daczko, N. R., 2019. The field and microstructural signatures 329 of deformation-assisted melt transfer: insights from magmatic arc lower crust, 330 New Zealand: Journal of Metamorphic Geology, v. 37, p. 795-821. 331 Menegon, L., Fusseis, F., Stünitz, H., & Xiao, X., 2015. Creep cavitation bands control
- 331 Intelegon, E., Fussers, F., Stuffitz, H., & Arao, A., 2015. Creep cavitation bands control
 332 porosity and fluid flow in lower crustal shear zones: Geology, v.43, p. 227-230.
- Mueller, R., Dyksterhuis, S., Rey, P., 2012, Australian paleo-stress fields and tectonic
 reactivation over the past 100 Ma: Australian Journal of Earth Sciences, v. 59,
 p. 13-28.
- Mueller, R., Yatheesh, V., Shuhail, M., 2015. The tectonic stress field of India since
 the Oligocene: Gondwana Research, v. 28, p. 612-624.
- Park, Y., & Means, W. D., 1996. Direct observation of deformation processes in crystal
 mushes: Journal of Structural Geology, v. 18, p. 847–858.
- Passchier, C. W., & Trouw, R. A., 2005. Microtectonics. Springer Science &
 Business Media.
- Piazolo, S., Bestmann, M., Prior, D.J. and Spiers, C.J., 2006. Temperature dependent
 grain boundary migration in deformed-then-annealed material: observations

- 344 from experimentally deformed synthetic rocksalt: Tectonophysics, v. 427, p.
- 345 55-71.
- 346 Prakash, A., Piazolo, S., Saha, L., Bhattacharya, A., Pal, D. K., & Sarkar, S., 2018.
- 347 Deformation behavior of migmatites: insights from microstructural analysis of
- 348 a garnet–sillimanite–mullite–quartz–feldspar-bearing anatectic migmatite at
- 349 Rampura–Agucha, Aravalli–Delhi Fold Belt, NW India: International Journal
- 350 of Earth Sciences, v. 107, p. 2265-2292.
- Putnis, A., 2009. Mineral replacement reactions: Reviews in mineralogy and
 geochemistry, v. 70, p. 87–124.
- Quigley, M.C., Clark, D., Sandiford, M., 2010. Tectonic geomorphology of Australia:
 Geological Society, London, Special Publications, v. 346, p. 243–265
- Raimondo, T., Clark, C., Hand, M., & Faure, K., 2011, Assessing the geochemical and
- tectonic impacts of fluid–rock interaction in mid-crustal shear zones: a case
 study from the intracontinental Alice Springs Orogen, central Australia: Journal
 of Metamorphic Geology, v. 29, p. 821–850.
- 359 Raimondo, T., Hand, M., & Collins, W. J., 2014, Compressional intracontinental
- 360 orogens: Ancient and modern perspectives: Earth-Science Reviews, v. 130, p.
 361 128–153.
- Raimondo, T., Payne, J., Wade, B., Lanari, P., Clark, C., & Hand, M., 2017, Trace
 element mapping by LA-ICP-MS: assessing geochemical mobility in garnet:
 Contributions to Mineralogy and Petrology, v. 172, p. 17-38.
- Rosenberg, C. L., & Handy, M. R., 2005, Experimental deformation of partially melted
 granite revisited: implications for the continental crust: Journal of Metamorphic
 Geology, v. 23, p. 19–28.

368	Rutter, E. H., & Neumann, D. H. K., 1995, Experimental deformation of partially
369	molten Westerly granite under fluid-absent conditions, with implications for
370	the extraction of granitic magmas: Journal of Geophysical Research: Solid
371	Earth, v. 100, p. 15697-15715.
372	Shaw, R. D., Zeitler, P. K., McDougall, I., & Tingate, P. R., 1992, The Palaeozoic
373	history of an unusual intracratonic thrust belt in central Australia based on
374	40Ar-39Ar, K-Ar and fission track dating: Journal of the Geological Society,
375	v. 149, p. 937-954.
376	Sibson, R. H., 1990. Conditions for fault-valve behavior: Geological Society, London,
377	Special Publications, v. 54, p. 15-28.
378	Silva, D., Piazolo, S., Daczko, N. R., Houseman, G., Raimondo, T., & Evans, L.,
379	2018, Intracontinental Orogeny Enhanced by Far-Field Extension and Local
380	Weak Crust: Tectonics, v. 37, p. 4421-4443.
381	Stuart, C. A., Piazolo, S., & Daczko, N. R., 2016, Mass transfer in the lower crust:
382	Evidence for incipient melt assisted flow along grain boundaries in the deep
383	arc granulites of Fiordland, New Zealand: Geochemistry, Geophysics,
384	Geosystems, v. 17, p. 3733–3753.
385	Stuart, C. A., Daczko, N. R., & Piazolo, S., 2017, Local partial melting of the lower
386	crust triggered by hydration through melt-rock interaction: an example from
387	Fiordland, New Zealand: Journal of Metamorphic Geology, v. 35, p. 213–230.
388	Stuart, C. A., Meek, U., Daczko, N. R., Piazolo, S., & Huang, J. X., 2018a, Chemical
389	signatures of melt-rock interaction in the root of a magmatic arc: Journal of
390	Petrology, v. 59, p. 321–340.

- Stuart, C. A., Piazolo, S., & Daczko, N. R., 2018b, The recognition of former melt flux
 through high-strain zones: Journal of Metamorphic Geology, v. 36, p. 10491069.
- Teall, J. J. H., 1885, The metamorphism of dolerite into hornblende schist: Quart. J.
 Geol. Soc. London, v.41, p. 133–145.
- Teyssier, C., 1985. A crustal thrust system in an intracratonic tectonic environment:
 Journal of Structural Geology, v. 7, p. 689–700.
- Tommasi, A., Vauchez, A., Femandes, L. A., & Porcher, C. C., 1994, Magma-assisted
 strain localization in an orogen-parallel transcurrent shear zone of southern
 Brazil: Tectonics, v. 13, p. 421-437.
- 401 Tucker, N. M., Hand, M., & Payne, J. L., 2015, A rift-related origin for regional
 402 medium-pressure, high-temperature metamorphism: Earth and Planetary
 403 Science Letters, v. 421, p. 75–88.
- 404 Van der Molen, I., & Paterson, M. S., 1979, Experimental deformation of partially405 melted granite: Contributions to Mineralogy and Petrology, v. 70, p. 299–318.
- 406 Vernon, R. H., 2011, Microstructures of melt-bearing regional metamorphic
 407 rocks: Geological Society of America Memoirs, v. 207, p. 1–11.
- Watts, M.J., & Williams, G.D., 1983, Strain geometry, micro- structure and mineral
 chemistry in metagabbro shear zones: a study of softening mechanisms during
 progressive mylonitization: Journal of Structural Geology, v. 5, p. 507–517.
- 411 Weinberg, R. F., & Mark, G., 2008, Magma migration, folding, and disaggregation of
- 412 migmatites in the Karakoram Shear Zone, Ladakh, NW India: Geological
 413 Society of America Bulletin, v. 120, p. 994-1009.
- Zanella, A., Cobbold, P. R., & de Veslud, C. L. C., 2014, Physical modelling of
 chemical compaction, overpressure development, hydraulic fracturing and

thrust detachments in organic-rich source rock: Marine and Petroleum Geology,

416

417

v. 55, p.262-274.

418

419 FIGURE CAPTIONS

420 Figure 1. Geological context of the Alice Springs Orogen (ASO). (a,b) Lateral extent 421 and position of the orogen within the Paleozoic Australian continent (white outline 422 with major terranes shown); note the ASO was approximately 1000 km inland from 423 the W, N and S continental margins and 200–300 km from the E. The intracratonic 424 sedimentary basins of central Australia indicate the footprint of the former Centralian 425 Superbasin and key ASO synorogenic depocenters; (c) Generalised geological map of 426 the eastern Arunta Region; note the Gough Dam shear zone field site indicated with a 427 gold star (23.147 °S, 134.565 °E); (d) Cross-section along profile X–Y indicated in 428 (c), showing a bivergent crustal-scale pop-up structure. Figure modified from Collins 429 & Teyssier (1989), Raimondo et al. (2011) and Scrimgeour (2013). AB-Amadeus 430 Basin, AR-Arunta Region, CB-Canning Basin, EGC-Entia Gneiss Complex, GB-Georgina Basin, GDSZ-Gough Dam shear zone, HRMC-Harts Range Metaigneous 431 432 Complex, MP-Musgrave Province, NB-Ngalia Basin, OB-Officer Basin, RR-AR-433 Reynolds-Anmatjira Ranges, SMC-Strangways Metamorphic Complex, SR-434 Strangways Range, WB–Wiso Basin. 435

436 Figure 2. Field and microstructural relationships of the Gough Dam shear zone; S1

437 represents the shear foliation; see DR1 for further details. (a) Outcrop-scale features

- 438 showing fine-grained, well-foliated granitic bands with biotite-rich glimmerite (white
- 439 arrows) and trains of biotite-poor components (black arrows); scale bar is 1 m; (b,c)
- 440 Fine-grained and well-foliated granitic component with elongate lens-shaped biotite-

441	poor component (rare rootless folds) and biotite-rich glimmerite components (white
442	arrows). (d) Outcrop-scale and detailed views of the granitic component with a high
443	abundance of lens-shaped biotite-poor felsic components with pronounced biotite-rich
444	selvedges; (e-f) Photomicrographs and detailed views featuring K-feldspar-quartz-
445	rich lens (e) and granitic component (f) showing interlocked rectangular K-feldspar
446	grains with quartz grain boundary films and an array of 0.1 - 0.2 mm,
447	equidimensional quartz grains decorating grain boundaries forming "string of beads"
448	textures. Inset to right shows interstitial K-feldspar with low apparent dihedral angles
449	(LDA) between "fingers" of a single quartz grain (LDA q-k-q); all minerals display
450	limited evidence of crystal-plastic deformation (i.e. undulose extinction, subgrain
451	boundaries, core-mantle structures, shape and crystallographic preferred orientation
452	etc.) and have irregular disequilibrium boundaries (dashed lines); (g)
453	Photomicrographs of biotite-rich glimmerite components showing assemblages
454	including biotite, muscovite, quartz and sillimanite; quartz and biotite are intergrown
455	such that quartz displays low apparent dihedral angles between two biotite grains
456	(LDA b-q-b); all minerals display limited evidence of crystal-plastic deformation (i.e.
457	grains lack undulose extinction, kinking, etc.).
458	
459	Figure 3. Gaussian-summation probability density distribution plots of orogen-wide
460	age data for synorogenic sedimentation (S , orange), deformation/metamorphism (D ,
461	blue) and igneous activity (Ig, red) (for methods and tabulated data see DR3).

462 Synorogenic sedimentation intervals are based on biostratigraphic evidence in

- 463 orogenic deposits (Haines et al., 2001; Shaw et al., 1992), metamorphic and
- 464 deformation ages are established by syntectonic monazite, garnet and mica
- 465 geochronology (DR3 and related references), and igneous activity is derived from

466	peraluminous granitic pegmatite dykes (Buick et al., 2008) and minor plutons (Buick
467	et al., 2001). North-south extensional activity formed the deep epicratonic Larapinta
468	Rift (LR; 460–480 Ma) and immediately preceded the compressional Alice Springs
469	Orogeny. The timing of orogenic activity along the eastern margin of Australia in the
470	Tasmanides (Tasman.) is dominantly extensional, with periods of compression
471	(marked as "x") or significant strike slip movement (double arrows) shown
472	(Raimondo et al. 2014: Silva et al. 2018)
172	(Ramondo et al., 2014, Shva et al., 2018).
473	(Ramondo et al., 2014, Suva et al., 2016).
473 474	¹ GSA Data Repository item 201xxxx, Appendix containing Table DR1
473 474 475	¹ GSA Data Repository item 201xxxx, Appendix containing Table DR1 (characteristics of compositionally and texturally distinct rock components identified
473 474 475 476	¹ GSA Data Repository item 201xxxx, Appendix containing Table DR1 (characteristics of compositionally and texturally distinct rock components identified in outcrop and petrographic thin sections), Figure DR2 (petrographic image) and
 473 474 475 476 477 	¹ GSA Data Repository item 201xxxx, Appendix containing Table DR1 (characteristics of compositionally and texturally distinct rock components identified in outcrop and petrographic thin sections), Figure DR2 (petrographic image) and Table DR3 (age compilation table including methods), is available online at

- 478 www.geosociety.org/pubs/, or on request from editing@geosociety.org or Documents
- 479 Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.