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Abstract: Li-ion batteries have been widely used in electric vehicles, power systems and home
electronics products. Accurate real-time state-of-charge (SOC) estimation is a key function in the
battery management systems to improve the operation safety, prolong the life span and increase
the performance of Li-ion batteries. Kalman Filter has shown to be a very efficient method to
estimate the battery SOC. However, the battery models are often built off-line in the literature.
In this paper, a least squares support vector machine (LS-SVM) model trained with a small
set of samples is applied to capture the dynamic characteristics of Li-ion batteries , enabling
the online application of the modelling approach. In order to improve the model performance
of battery model, a sparse LS-SVM model is first built by a fast recursive algorithm. Then,
the batteries SOC is estimated using an unscented Kalman filter (UKF) based on the sparse
LS-SVM battery dynamic model. Simulation results on the Hybrid Pulse Power Characteristic
(HPPC) test data and the Federal Urban Drive Schedule (FUDS) test data confirm that the
proposed approach can produce simplified yet more accurate model.

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: state-of-charge (SOC); least squares support vector machine (LS-SVM); unscented
Kalman filter (UKF).

1. INTRODUCTION Over the years, a number researchers have paid consid-
erable attention to the SOC estimations using various
methods. These methods can be divided to two groups.
The first one is model-free methods where the Ampere-
hour method (Jeong et al. [2014]) and the open circuit

voltage (OCV) based method (Petzl and Danzer [2013])

To tackle the global challenges such as climate change
and environment pollutions due to the extensive consump-
tion of fossil fuels, batteries energy storage systems have
become increasingly popular in various applications to

improve the acceptance and usage of electricity generated
from renewables, such as power systems and electric vehi-
cles (EVs) (Zhang et al. [2015]). Due to the merits of high
energy density and long cycle life (Meng et al. [2016]),
Li-ion batteries have been widely adopted as the energy
sources for EVs and power systems. However, limited by its
chemistry of a single cell, the storage should use a battery
pack consisting of hundreds or more battery cells which
is managed by a battery management system (BMS) for
the safety. The state of charge (SOC), like a fuel gauge in
an ICE vehicle, is an important performanceindicator for
managing the operation and control of batteries.
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are among the most popular approaches (Zhang et al.
[2015]). However, the measurement errors will be accu-
mulated, leading to estimation deviations. The second one
is the model-based methods, for example the equivalent
electric circuit models (EECMs) (Zhang et al. [2015]),
artificial neural networks (Zhang et al. [2017]) and least
square support vector machine (LS-SVM) (Meng et al.
[2016], Shi et al. [2008]), etc.. Most of these methods are
used to build model offline , and experiments need to be
conducted to acquire sufficient data samples to train the
model.

The Kalman filter is often used to improve the SOC esti-
mation accuracy. Considering the nonlinear characteristics
of the battery electrical dynamics, the extended Kalman
filter (EKF) (Chen et al. [2013]) , the unscented Kalman
filter (UKF) (Xiong et al. [2013]) and adaptive Kalman
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filter variants (Meng et al. [2016]) have been used in
the battery SOC estimation. While the existing model
based methods for the battery SOC estimation lead to
more accurate results, the generalization performance of
these method can be degraded if a number of unseen
data samples, which are not used in the offline modelling,
emerge in the applications. To overcome the drawback,
online battery model identification have been used in the
last few years, such as the RTLS-based observer method
(Wei et al. [2018]) and the Gaussian process regression
method (Sahinoglu et al. [2018]). This paper follows this
technical route, and an online battery state-space model
is built. In order to reduce the calculation time, a least
square support vector machine (LS-SVM) model using a
small set of samples is built for SOC estimation.

The general LS-SVM method has a well-known drawback
in terms of the sparsity. In this paper, a sparse least
square support vector machine proposed in Zhang et al.
[2012] is first used for the battery state-space model. From
the reference Zhang et al. [2012], Li presented a sparsity
solution to build a the least square support vector machine
is obtained by selecting the features in high dimensions
using the fast recursive algorithm (FRA) (Li et al. [2005]).
The sparse least square support vector machine method
uses a mapping function instead of the kener function
which remains the information of the all samples.

The remainder of this paper is organized as follows. The
battery state-space model is formulated in Section 2 for
the batteries SOC estimation. Section 3 is introduces the
sparse LS-SVM solution. In Section 4, the SOC estimation
and the test data are presented in detail. The simulation
results are analysed in Section 5. Finally, Section 6 con-
cludes the paper.

2. THE BATTERY MODEL

Using the UKF method for the SOC estimation of Li-ion
batteries, an accurate model needs to be built in the first.
The model is described in state space equation including
a recursive state equation and a measurement equation.
Here the iterative formula for the battery SOC is derived
from the definition. Then the measurement equation is
built by a spare LS-SVM method. The structure is illus-
trated in Fig.1.
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Fig. 1. Flow diagram for battery SOC estimation

From Fig.l, it can be seen a set samples [soc,,(k —
m : k),i(k —m : k)|;v(k —m : k) at the time instant
k are employed to build the spare LS-SVM model. Then
the estimation noise e(k + 1) is fed to the UKF gain K

block. The SOC estimation SOC(k+1) is obtained by the
prior estimate SOC(k + 1) and the gain. The state-space
model for UKF is formulated as

SOC), = f(SOCkfl,ik) + Sk 1

Vi = h(SOCk,ik) + v (1)
where i, X3 and Vj, are the terminal current, SOC and
terminal voltage at the time instant k respectively. si
and vy represent the process and the measurement noise
respectively which are determined by the estimation error
e.

2.1 State Equation

Battery SOC indicates the residual capacity and can be
expressed in a recursive form

Xp=Xp1—n-At-i/Qn (2)
where @,, is the nominal capacity and the constant n =
1/3600. X and i) are the SOC and terminal current at
the time instant k£ respectively, and At is the sampling
time .

2.2 Measurement Equation

Suppose the discharging current, SOC and terminal volt-
age at the time instant k are iy, SOC; , and Vj re-
spectively, the measurement equation using the LS-SVM
method referring for ((Zhang et al. [2012] is expressed as
follows

Vi = h(ug)

- (3)
Z W jexp{ g (uk —uc) T (g, — uey))
=1

where u, = [ix, SOCy] is the control variable in the
UKF method. wy, ; are linear coeflicients to the Gaussian
function exp{f%(ukfucj)TI‘j_l(uk — uc;)} which is used
to produce the jth dimension space, and m is the final
dimension of the support vector space. uc; and I'; are some
training vectors and width to produce the support vectors.

3. THE SPARSE LS-SVM ALGORITHM

It is well-known the traditional LS-SVM method lacks of
sparseness which affacts the models generalization perfor-
mance. Accordingly, a fast recursive algorithm is applied
to select the features which is produced by the mapping
function instead of the kernel function.

3.1 The conventional LS-SVM method

For N pairs of training samples {(x1,y1), (®2,92), -,
(xn,yn)}, x € RV*F and y € %NX17 the system is
formulated using LS-SVM:

y=®(x) w (4)

where w € R™*! is the linear parameters. & =
[@1(x), P2(x), -+, Pn(x)] € RV*N are basic mapping
functions which are used for the space projection.

The least squares algorithm (Lapin et al. [2014]) is applied
as follows:

1 1
in J=2= 2, - . 2
wee el + 5 ;e (5)

st e =y —P(x;) w
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where ¢ is the regularization term. ®(x;) = [P (xz;). P2 (x;)
;oo ,®n(x;)] is N-dimensional feature space. e; is the
estimate error.

Using the Lagrangian method, the problem is reformulated
as:

N N
1 1
=Sl Y=Y e @) wre -y} (©)
i=1 i=1
where o = [ay, - -+, an]T a vector of Lagrange multipliers.

Using the Karush-Kuhn-Tucker(KKT) optimality condi-
tion:

oL N
— =0=w= Za1§($1)7

ow —
oL € . (7)
— S 1.---. N
B, 0= qy C,Vze{, , N}
oL .
e :0:>w~<I>(:ci)+ei—yi:0,Vze {1,~~~ ,N}
the optimality problem is rewritten as
Ma =y (8)

where M = K + c¢-I is the definite symmetric matrix. I
and K is the unit matrix and the kernel function matrix
respectively.

3.2 A sparse solution

A sparse solution proposed in Zhang et al. [2012] is proved
to have good generalization performance in the classifier.
The sparse model is built using FRA which avoids to solve
a set of linear equations and retains the samples infor-
mation by the mapping function. The mapping function
using the Gaussian Basis function generates a m dimension
support vector space as

@, (x;) = [P1(i), -

@, (@) = exp{— 5 (i -

8;) T (i — 55)}
where j = 1,--- ,m and m is the maximal dimension of
the mapped high dimensional space.

According to ((Zhang et al. [2012],
matrix R of k + 1 regression terms as

Ry, =1 — O,[®] @) + cI| 7' O]

and two intermediate matrices both A €
{ak+1,:} and Ay € R™ = {bp41} is calculated

T p-1
apy1, = P Ry Py

b1 =y Ry '@y
=I,k=0,---,m—1landi=1,---,N.

(9)

define a recursive

(10)
mme

(11)
where Ry
ar+1,; can be iteratively calculated as follows:
k
@i k1 :
TPy, -y —LLE i<k+1
ks 32::1 c+aj;
,. (12)
Aj,i05,k+1
c+ a]"j

i k+1 =
€ Gkt i i>k+1
b

c+a
+ Qg b2

"a b
T Z J,k+195
:y ¢k+1 —_ R ———

bk+1
c+aj;
j=1 7,3

where ¢ and k is the position of candidate regressors in the
matrix ® given in (9).

Thus the net contribution of a candidate regressor is
calculated by

1 (bpp)?

AJ
b = 2 C+apH kh

(14)
where k=0, --- ,m — 1.

Finally, m support vectors are selected, the linear coeffi-
cient vector w is computed by

N a;
W, = -~ Z ]Z (15)
c—|—a” [ 7+lc—|—a“

i=1,---,m are the estimate coefficients.

Accordingly, the procedure of the LS-SVM modell building
is detailed as follows.

where Wy, 4,

Step 1. Initialization:

(a) Initialize the hyparameters ¢, s; and 1";1, the
max dimension n of the high-dimension feature
space and set the initial dimension k = 0.

Step 2. Forward regression vectors selection:

(a) Set k=k+1, calculate a; ; (i =1,--- ,k) and b;
(j=1,---,N) using (12) and (13).

(b) Calculate the net contributions of all candidate
regressors using (14).

(c) Select the regressor with the maximum net con-
tribution save as k** feature.

(d) If kK = m step, move to Step 3. Otherwise, return
to 2(a).

Step 3. calculate the linear parameters:

(a) Calculate the weights using (15).

4. BATTERY SOC ESTIMATION USING UKF
METHOD

The UKF method is proved more accurate for SOC estima-
tion than the EKF method. The UKF estimate SOC using
the sample distribution instead of the Jacobian matrix in
the EKF. As discussed above, the state-space model of the
Li-ion battery is formulated as follows

Xp=Xp_1—n-At-iy/Qn + sk

1 _
Zy, :Zwm,jexp{fi(ukfucj)TFj Yup — ucj)}+og
=1
(16)
where X}, and Zj is the SOC and the terminal voltage at
the time instant k, ug = [ix, Xk]-.

According to the model, the SOC estimation of Li-ion
batteries using the UKF method is implement as

Step 1 Initialization. Initialize the initial states X, and
the states covariance matrix Fy.

Step 2 Unscented Transformation.

1) Calculate the sigma points according the prior
distribution.

X;cl—h 1=0
Xk—-1,i = X,‘j,l—k( (L+)\)P1?_1)z‘, i=1,---,L (17)
Xiy—(\J(LANPE)i, =L+, 2L
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2) Calculate the weights to estimate the mean and
covariance of the posteriori distribution

™ =ML+ )
A= N(LA+N+(1-a+8)
A =D = \2L+ ) i=1,---,2L

(18)

Step 3 Prediction. Update the predicted state and the
corresponding covariance based on Equ. (1).

2L
Xipeor = 3™ fxuor,i. k) (19)
=0
2L A
P ZZ Cl(‘c)(f(kaLu ir) = Xp|p—1)- 90
=0 (20)

(f(Xt—1.4 ik)—XkuH)T

Step 4 Correction (Estimation). Using the prediction
error to compensate the SOC based on Equ. (1).

2L
Lyl = chm)h(Xk|k—1, iK)

(21)
1=0
2L ) R ~ . T
Pz’k:Z (h(Xklkfl,ik;)_Z]q‘kfl)(h(XMkfhik_ZkUC*l)
=0
(22)
2L ~ . - T
Pk :ZCEC)(f(Xk—l,m i) = Xl (X oo 80e) = Z 1)
=0
(23)
K= Pzz,kPZ_Ji (24)
Xk = Xk|k*1 + Kk(Zk - ZAk\k*l) (25)

where L = 3, A = a?(L +t) — L indicates the distribution
of the sigma samples where a € [1072,1].

5. EXPERIMENTAL RESULTS

A 5-Ah LiFePo4 battery was tested in a 25°Ctemperature
chamber. The terminal voltage and current are recorded
every second with the 0.02% measurement error of the full
scale range (FSR) at low power applications and 0.05%
measurement error of the FSR at high power applications.
Both the Hybrid Pulse Power Characterization (HPPC)
and the Federal Urban Drive Schedule (FUDS) test pro-
cedures were implement. The test data are discussed in
detail in Zhang et al. [2015].

Based on a number of simulation experiments, the regu-
lation parameter in (5) is chosen as ¢ = 8.8, the width
I'; is rounded at 0.4 and s; is initialized considering all
training samples. In order to reduce the computationla
complexity, the measurement equation is retrained using
a smaller data set which has only 10 samples. Firstly, the S-
LSSVM model is evaluated by comparing with the general
LS-SVM model (Meng et al. [2016]) and the SVM model
(Suykens and Vandewalle [1999]). The LS-SVM method is
built using the RBF kernel function which is tuned by k-
fold cross validation. A SVM model is also optimized using
the cross-validation. And the regulation parameter in the
two method is set as 0.1.

259

The average time to implement the S-LSSVM method
which is 0.0203 is evidently less than the other two meth-
ods in the same computer. This is because the selection
operation reduces the algorithm complexity. The detailed
simulation results are illustrated in Fig 2 to 7. The abso-
lute errors represent the differences between the measured
values and model outputs.
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Fig. 2. Training results of the HPPC discharging process
using different methods
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using different methods
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HPPC Validation

Actual voltage

>
e of LSSVM
8 S-LSSVM
S .l SvM
©
<
E 1o
°
15 . . . . . . .
25 3 3.5 4 4.5 5 55 6 6.5
Time /s x10*
2 HPPC Validation Error
LSSVM
% 151 S-LSSVM |
s SVM
w L 4
° 10
=]
2 s
3
< \
0 f

Time /s x10*
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using different methods
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Noting the graphs in Fig 2-4, the training absolute errors
produced by all the three methods are around zero, while
for the spikes in the curves, the SVM method gives the
worst results and the absolute error reaches 0.4. The
absolute errors of the S-LSSVM method are slightly bigger
than the traditional LS-SVM. Analysing Fig 5-7, the
validation results show that the S-LSSVM and the SVM
model overcome the overfitting problem suffered by the

LS-SVM model. The absolute errors of the model produced
by the proposed method on the validation data are within
the same level as on the training data, while the absolute
errors of the LS-SVM model are even greater than 1.
It is further shown that the LS-SVM model is poor in
sparseness. The generalization capability of the proposed
model is better than the others as it is shown that the
validation accuracy of the S-LSSVM model is much better
than the other methods. Accordingly, the S-LSSVM model
is most accurate one compared to the other models.

Then, the batteries SOC is estimated using UKF algorithm
where the measurement noise covariance is 3e — 1, t = 0,
L =3, a =1 and § = 0. The simulation results are
illustrated in Figures 8 -10. The estimated SOC matches
the actual measurements very well. For the HPPC test,
the absolute error ranges from —0.06% to +0.08% as
shown in Fig 8 and the absolute error ranges from —0.02%
to +1.2% as shown in Fig 9. Particularly, the absolute
error ranges from —0.02% to +0.06% when the SOC is
between 10% and 90% as shown in Fig 9 which is better
than [—2%,+2%] in the literature (Meng et al. [2016]).
Similarly, the absolute error is range from —0.01% to
+0.02% for the FUDS test data, while the errors are
between —0.79% and 0.94% as reported in (Meng et al.
[2016]). When compared to the results reported in (Antén
et al. [2013]), the absolute error using the Ampere hour
counting method and the EKF method are within +15%
and 5% respectively on average. Thus, the SOC estimation
results of the proposed method in this paper is more
accurate.
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Fig. 8. The estimated SOC of the HPPC discharging
process using the UKF

6. CONCLUSION AND FUTURE WORKS

A sparse LS-SVM model has been built for online esti-
mation of battery SOC the Li-ion. The developed model
is applied to both the HPPC and the FUDS test data
sets. The experimental results confirm that the method
proposed by the authors not only produces accurate esti-
mations for classification problems but also for modelling
problems. The battery model produced by the sparse LS-
SVM method is shown to outperform two other methods.
Furthermore, the computing time is much less then the
other method which leads to real-time estimation poten-
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Fig. 9. The estimated SOC of the HPPC charging process
using the UKF
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Fig. 10. The estimated SOC of the FUDS process using
the UKF

tials. Future work will focus on online parameter optimiza-
tion.

Once the battery model is built, the UKF algorithm
is applied to battery SOC estimation. It is shown that
for both the HPPC and the FUDS test data sets, the
estimated SOC values match well with the actual SOC
with a 1077 mean square error for HPPC data set and
10~ mean square error of the FUDS test data.
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