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Abstract 

Purpose 

Non-preference-based measures cannot be used to directly obtain utilities but can be converted to preference-

based measures through mapping. The only mapping algorithm for estimating Child Health Utility-9D 

(CHU9D) utilities from Strengths and Difficulties Questionnaire (SDQ) responses has limitations. This study 

aimed to develop a more accurate algorithm. 

Methods 

We used a large sample of children (n= 6,898), with negligible missing data, from the Longitudinal Study of 

Australian Children. Exploratory factor analysis (EFA) and Spearman’s rank correlation coefficients were used 
to assess conceptual overlap between SDQ and CHU9D. Direct mapping (involving seven regression methods) 

and response mapping (involving one regression method) approaches were considered. The final model was 

selected by ranking the performance of each method by averaging the following across ten-fold cross-validation 

iterations: mean absolute error (MAE), mean squared error (MSE), and MAE and MSE for two subsamples 

where predicted utility values were <0.50 (poor health) or >0.90 (healthy). External validation was conducted 

using data from the Child and Adolescent Mental Health Services study. 

Results 

SDQ and CHU9D were moderately correlated (ρ=-0.52, p<0.001). EFA demonstrated that all CHU9D domains 

were associated with four SDQ subscales. The best-performing model was the Generalised Linear Model with 

SDQ items and gender as predictors (full sample MAE: 0.1149; MSE: 0.0227). The new algorithm performed 

well in the external validation. 

Conclusions 

The proposed mapping algorithm can produce robust estimates of CHU9D utilities from SDQ data for economic 

evaluations. Further research is warranted to assess the applicability of the algorithm among children with 

severe health problems. 

Keywords: CHU9D; SDQ; mapping; utility 
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Introduction 

Cost-utility analysis (CUA) is increasingly being used to make decisions regarding resource allocation[1]. In 
CUAs health outcomes are usually measured in terms of gain in Quality-adjusted life-years (QALYs)[1], 
although they can also be measured in terms of Disability Adjusted Life Years (DALYs) and Health-Adjusted 
Life Years (HALYs). Economic evaluation guidelines from regulatory and reimbursement agencies recommend 
the estimation of QALYs when evaluating healthcare technologies and services[2-4]. Using QALY as the health 
outcome measure is preferred for a number of reasons. First, QALYs combine both duration in a health state and 
quality of life, measured using preference weights (or utilities) associated with that health state, in a single 
metric[5,6]. Second, availability of willingness-to-pay thresholds, such as incremental cost per QALY gained, 
makes it possible for the decision makers to decide whether an intervention should be funded[7]. Last, it is 
possible to compare QALYs across different treatments and diseases and rank them in terms of their 
effectiveness and cost-effectiveness[8]. Consequently, it is easier for policy-makers to make funding decisions. 

Estimation of QALYs is based on health state utility values1 that reflect the preferences or desirability expressed 
by an individual for a particular health state[10,11]. These utilities are obtained by administering a multi-
attribute utility instrument2 (MAUI), such as the EuroQol five-dimensions (EQ-5D)[12,13], Short-Form 6D (SF-
6D)[14,15] or other generic preference-based measures (PBMs) to patients to describe their health state. Health 
states are then valued using pre-existing scoring algorithm obtained from techniques such as time trade-off[16] 
and standard gamble[17]. 

MAUIs may not be sensitive enough to distinguish between clinical severity levels[18,19]. They are not always 
included in surveys or clinical studies. Instead, non-PBMs are collected[1]. Non-PBMs do not have a 
preference-based algorithm and thus cannot be used to estimate utilities. However, they can be mapped3 to 
PBMs, thus allowing the estimation of utility values[20]. Guidelines from regulatory and reimbursement 
agencies recognise mapping as a technique to estimate utilities[21-23]. A review by Kearns et al. found that 
mapping algorithms were used in around a quarter of the health technology appraisals for the National Institute 
for Health and Care Excellence (NICE) in the United Kingdom[24]. 

The present study is concerned with predicting the Child Health Utility 9D (CHU9D) utility values from the 
Strengths and Difficulties Questionnaire (SDQ). Only one such mapping algorithm exists. It was developed by 
Furber et al. using an Australian sample[25]. However, the published version of the algorithm was developed 
using an older version of the CHU9D instrument[26] and thus can no longer be used.4 Nevertheless, the sample 
was small (N=200) and from a narrow population - children receiving mental health services. It also only 
considered the ordinary least squares (OLS) method when developing the mapping algorithm, which may not 
accommodate the potential features of the utility scores’ distribution such as multimodality, skewness, and a 
high proportion equalling one[27]. Finally, it used proxy-reported data based on caregivers’ responses to the 
SDQ and CHU9D. 

This study aimed to develop a new and more accurate mapping algorithm for estimating CHU9D utilities from 
SDQ, using a larger survey of Australian children and applying a variety of mapping approaches. It also used 
self-reported SDQ and CHU9D data, which may measure Health-related Quality of Life (HRQoL) better than 
proxy-reported data[28]. 

 

                                                           
1 Utilities are measured on a cardinal scale, anchored at 0 (death) and 1 (full health)[5,9,1]. Utilities less than 
zero are possible if a health state is considered to be worse than death[1]. 
2 MAUIs are a health-related quality of life questionnaires which are associated with an algorithm to convert 
responses to the included questions into utilities. 
3 Mapping is the process of establishing a statistical relationship between a non-PBM and a PBM using 
regression techniques. 
4 It can certainly be updated using the new version of the CHU9D instrument but to our best knowledge such an 
updated algorithm is not publicly available. In this study we obtained a subsample of the original data used in 
Furber et al. from the lead author and updated their algorithm to be used as a comparator of our new algorithm 
in the external validation. 
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Methodology 

Data 

This study used the Longitudinal Study of Australian Children (LSAC) dataset. This is a nationally 
representative survey of the Australian children involving biennial data collection, through 2004 (Wave 1) to 
2014 (Wave 6)[29]. Wave 1 of the LSAC was initiated by collecting data for a birth (B) cohort (i.e. <1 year of 
age, n= 5,107) and a kindergarten (K) cohort (i.e. 4-5 years of age, n= 4,983). In Wave 6 in 2014 CHU9D and 
SDQ questionnaires were administered to the children. Thus, the Wave 6 of the LSAC from both B (10-11 years 
old) and K (14-15 years old) cohorts was used to map SDQ onto CHU9D. In total, the sample size was 7,301 
(B-cohort, N= 3,764 and K-cohort, N= 3,537). 

The amount of missing data was small relative to the large sample size, and thus unlikely to cause significant 
bias[30,31]. There were 370 (0.06%) missing values for the SDQ and 400 (0.05%) missing values for the 
CHU9D in the whole sample (N= 7,301). Thus, no statistical measures, such as multiple imputations, were 
applied to address the missing data problem. The final sample consisted of 6,898 children. 

External validation was conducted using Child and Adolescent Mental Health Service (CAMHS) dataset 
(N=103)[25]. The full sample of the CAMHS dataset (N=200) was previously used to develop a mapping 
algorithm between SDQ and CHU9D by Furber et al. (2014). Unfortunately, only a subset of the data could be 
obtained for our external validation. 

 

Estimation and validation samples 

A ten-fold cross-validation approach was used to assess the predictive performance of the models[32]. This 
involved dividing the original sample from the LSAC dataset into ten equal-sized sub-samples using a random 
number generator. In each iteration, nine of the ten groups (90% of the dataset) were allocated to the 'estimation 
sample' and the remaining group (10% of the dataset) was used as the 'validation sample'. This process was 
repeated ten times in order to ensure that each of the ten subgroups was used in both estimation and validation 
iterations. 

 

Source and target measures 

Source measure: Strengths and difficulties questionnaire (SDQ) 
The SDQ was designed to describe HRQoL (over the past six months) of children and adolescents aged 2 
through 17 years old[30]. It includes 25 items within five subscales (emotional symptoms, conduct problems, 
hyperactivity, peer problems, and pro-social). Each item allows a response from 1 to 3 representing the presence 
or lack of problems in terms of "not true", "somewhat true" or "certainly true". Individual subscales range 
between 0 and 10, with higher scores indicating poorer functioning or poorer HRQoL. The total score is 
obtained by adding scores from four subscales as per SDQ guidelines[33]. The total SDQ score ranges from 0 to 
40 with a higher score associated with poorer HRQoL. Descriptive information about each SDQ subscale and 
item is presented in the electronic supplementary materials (ESM_1, Table 1). 

 

Target measure: Child Health Utility 9D (CHU9D) 
The CHU9D is a MAUI specifically designed to estimate utilities experienced by children and adolescents[34]. 
It includes nine domains (worried, sad, pain, tired, annoyed, schoolwork/homework, sleep, daily routine, and 
activities). Each domain allows a response from 1 (no problems) to 5 (severe problems) and is assessed as of 
'today'. In comparison to other MAUIs that can be used to measure utilities in young populations, the CHU9D 
does not involve the adaptation of an existing adult instrument because it was developed with the young 
population since its inception[35]. Descriptive information about each CHU9D domain is presented in ESM_1, 
Table 2. 

Utilities were estimated by applying an Australian adolescent-specific (11-17 years) scoring algorithm to the 
CHU9D responses in both LSAC and external validation datasets[26]. These utilities can range between -0.1059 
to 1. The target measure (CHU9D utilities or individual domains) was predicted using different source measures 
(SDQ total scores, domains or items). 
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Statistical analysis 
All statistical analyses were carried out in STATA 15.1[36]. This study follows the Mapping onto Preference-

Based Measures Reporting Standards (MAPS) checklist[37] (see ESM_1, Table 3).  

Exploratory data analysis 
The precision of the mapping approaches relies on the extent of overlapping between the source and target 
measures[6,38,39]. The correlation between total SDQ scores and the CHU9D utilities was evaluated using 
Spearman’s correlation coefficient, with an associated 95% confidence interval (CI) computed using 1,000 
bootstrap iterations. The visual relationship between the measures was explored using a scatterplot. 
Additionally, Kernel density plots were drawn to visually assess the distribution of those measures. 

The inclusion of square or cube forms of predictors were considered to account for any non-linear relationships 
with the CHU9D utilities. They were however not included in the final models due to multicollinearity. 
Variance inflation factor in excess of 10 was considered as an indication of multicollinearity[40]. 

Exploratory factor analysis (EFA) was conducted to understand if the SDQ subscales and CHU9D domains 
could be described by the same latent constructs or factors. Kaiser-Meyer-Olkin (KMO) test measure was used 
to determine sampling adequacy for EFA[41]. Bartlett test for sphericity was used to test the null hypothesis that 
variances between variables were equal[42]. Variances of the factors and correlations of a domain or a subscale 
with a factor were examined using “eigenvalues” and “factor loadings”. Factors were oblique-rotated to allow 
for possible correlation between domains or subscales. Factors were retained when eigenvalues exceeded 
one[43]. Factor loadings exceeding 0.3 were considered “meaningful” in suggesting that SDQ subscales and 
CHU9D domains were capturing the same underlying construct[44]. 

Modelling approaches – direct mapping 
We adopted direct and indirect approaches to mapping. The direct mapping approach involved directly 
regressing CHU9D utilities on the SDQ total, subscales, or item scores. Predicted utilities greater than 1 were 
rounded to 1.  

Four sets of predictor were considered: 

Predictor set 1 
Total SDQ score and Gender 

 
Predictor set 2 
SDQ subscales score and Gender 

 

Predictor set 3 
SDQ items (categorical) and Gender 

 

Predictor set 4 
SDQ items (continuous) and Gender 

 
SDQ subscales include emotional symptoms, conduct problems, hyperactivity, peer problems, and pro-social 
behaviours; SDQ subscales score except ‘pro-social’ were added to derive Total SDQ score; and SDQ item 
includes 25 SDQ items (detailed in ESM_1, Table 1). Gender (Female= 1) was also included in all models. The 
exclusion of the ‘pro-social’ subscale was initially considered because it was very weakly correlated with 
utilities. However, including this variable in the OLS model slightly improved the adjusted R2 (from 0.3458 to 
0.3493) and overall mean squared error (MSE) of the model (from 0.1545 to 0.1540). It was thus included as 
one of the predictors in Predictor set 2. 

In Predictor set 1 the SDQ total scores were included as continuous independent variables. In Predictor set 2 all 
SDQ subscales scores were included as continuous independent variables. In Predictor set 3 all SDQ items were 
included as categorical independent variables. In Predictor set 4 SDQ items were included as continuous 
independent variables. Among individual characteristics, only gender was included as an independent variable 
to ensure the generalisability of the mapping algorithm. Age was also considered but not included in the final 
predictor sets as it was not statistically significant. 

We considered several regression methods as there was no consensus in the literature regarding which 
regression method would best accommodate the unusual distribution of the utility values. The methods included: 
ordinary least squares (OLS), generalised linear model (GLM), extended estimating equations (EEE), zero-one-
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inflated beta regression (ZOIB), Tobit model, censored least absolute deviation (CLAD) and finite mixture 
model (FMM). 

OLS[45] was used as it is the most commonly used method in mapping literature[6]. GLM[46,47] was used to 
predict disutilities (i.e.,1-utilities)5 as it has two distinct advantages over the OLS: (i) it accommodates the 
nonlinear relationship between predictors and the dependent variable (through the link function) and potential 
heteroscedasticity (through the variance function or family distribution); and (ii) it provides consistent estimates 
even if the variance function is incorrectly specified (given the link function is correctly specified). The 
modified Parks test (MPT)[48] was used to identify the family distribution based on lowest χ2 value. The 
Pregibon Link Test[49], the Pearson Correlation test[50] and the modified Hosmer-Lemeshow test[51] were 
used to determine an appropriate link function. A link function is deemed to fit well when all three tests yield 
insignificant p-values[52]. We found the family distribution as Poisson and the link function as a power function 
with power at 0.75) for predictor sets 1, 2 and 4 and power at 0.50 for predictor set 3 to be appropriate for the 
GLMs. EEE is a flexible version of GLM. It directly estimates the family distribution (represented by the value 
of the 𝜃2 parameter) and link function (represented by the value of the λ parameter)[53]. The 𝜃2 and λ values in 
the EEE models were found to be consistent with the family and link function parameter values determined in 
the GLM. Thus the use of EEE was helpful in confirming the appropriate family and link functions. The 
ZOIB[54] was used as it was deemed appropriate for modelling proportional dependent variable containing 0’s 
and/or 1’s. The Tobit model [55-57] was used to predict utilities in the presence of censoring. The CLAD[58], a 
median based model, was used to deal with observed utilities with ceiling effects, heteroscedasticity, and 
skewness[59]. The FMM[60] was used to deal with the multimodal and skewed distribution of CHU9D 
utilities[61,62]. FMM was expected to capture the unobserved heterogeneity of effects for individuals who 
belong to different classes or components[63,60].  
 

Modelling approaches – indirect mapping 
An indirect or 'response' mapping approach estimates the predicted probabilities for each level of the CHU9D 
domains and converts them into utilities using the corresponding Australian algorithm[64] through the 'Expected 
value approach' technique[65]. Multinomial logistic regression (MLOGIT)[66] was applied over Ordinal logit 
regression (OLOGIT) as the Brant test6 found that the ‘parallel odds assumption’ (one of the main assumptions 
of the OLOGIT) did not hold true for all CHU9D domains. Gender (Female =1) was also included. The same set 
of predictors used in the direct mapping approach were considered. 

Four predicted probabilities were estimated, as each CHU9D domain has five levels, using Equation 1: 𝑃𝑟(𝐶𝐻𝑈9𝐷 𝑑𝑜𝑚𝑎𝑖𝑛𝑖 = 𝑚|𝑍𝑖 = 𝑧) = 𝑒𝑥𝑝 (𝑧𝑚𝑖)1 + ∑ 𝑒𝑥𝑝𝑀𝑚=2 (𝑧𝑚𝑖) 
Equation 1 

where m = 2, 3, ………, M for each level of CHU9D domains (worried, sad, pain, tired, annoyed, 

schoolwork/homework, sleep, daily routine, and activities), and 𝑍 represents covariates. 

Probabilities for the reference category were estimated using Equation 2: 𝑃𝑟(𝐶𝐻𝑈9𝐷 𝑑𝑜𝑚𝑎𝑖𝑛𝑖 = 1|𝑍𝑖 = 𝑧) = 11 + ∑ 𝑒𝑥𝑝𝑀𝑚=2 (𝑧𝑚𝑖) 
Equation 2 

Measures of predictive accuracy 
The application of each regression method was combined with each predictor set, which resulted in 32 candidate 
models. Predictive accuracy of the models was compared by averaging the following measures across ten-fold 
cross-validation iterations: i) Mean Absolute Error (MAE)7, ii) MSE8, iii) MAE/MSE using a subsample where 
observed utility scores were greater than 0.90 (representing the healthy group of children), and iv) MAE/MSE 
using a subsample where observed utility scores were less than 0.50 (representing the group of children with 
poor HRQoL). Ten-fold cross-validation method was used to assess goodness-of-fit and to avoid the risk of 

                                                           
5 For GLM and EEE the disutility was used as the outcome variable to avoid non-negative values. 
6 Brant test was used to check proportional odds assumption to determine the ordered nature of CHU9D 
domains. Parallel assumption or proportional odds assumption is an assumption of an ordered logit model. This 
assumption assumes that coefficients between different categories of the dependent variable are equal. 
7 The MAE was calculated as mean of the absolute values of the difference between the observed and predicted 
CHU9D utilities. 
8 The MSE were computed as the mean squared differences between the predicted and observed CHU9D 
utilities. 
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over-fitting[67]. MAEs and MSEs are commonly used as measures of predictive accuracy. Two subsamples 
were chosen because predicted utilities are prone to underestimating the lower utilities (around observed utility 
<0.5) and overestimating in the upper extreme (around observed utility >0.9). 

Models were ranked according to each of the above criteria resulting in a number of rankings. These were then 
averaged to produce the overall ranking. The lower the overall ranking, the better the performance of the model. 

A similar ranking procedure was adopted during sensitivity analyses. Sensitivity analyses were conducted to test 
the robustness surrounding the choice of the best performing model by ranking models based on average results 
from cross-validation using: i) only MAE; ii) only MSE; and iii) MAE/MSE across different ranges of observed 
utilities (that is, MAE/MSE for utility range <0.2, 0.2 to 0.4, 0.4-0.6, 0.6-0.8, and 0.8-1). 

 

Final algorithm 
The final mapping algorithm was suggested based on the best performing model using the entire sample. 

STATA and Excel tools were produced to enable future mapping exercise from the SDQ to the CHU9D. Robust 

standard errors were also reported. 

 

External validation 
One of the key differences between the sample used in this study and Furber et al. is that the latter (a) was based 
on patients receiving mental health services, namely CAMHS and; (b) it used an older version of the CHU9D 
tariffs to calculate utilities[26], while this study utilised the latest version of the CHU9D tariffs[64]. We 
conducted external validation of our proposed mapping algorithm using a subsample of the CAMHS dataset 
provided by the lead author of Furber et al. First, we applied the latest version of CHU9D tariffs to obtain 
observed CHU9D utilities in the CAMHS dataset. Then, we estimated an OLS regression with SDQ subscales 
as predictors and obtained coefficients to be used as new or modified mapping algorithm for Furber et al. 
Finally, we used our proposed algorithm in the CAMHS dataset and compared the findings in terms of mean, 
MAEs, MSEs, and their 95% CIs. 
 

Results 
Descriptive statistics 

Table 1 presents the socio-demographic characteristics of the LSAC and external validation samples. Children 
in LSAC were comparatively healthier than those in CAMHS [CHU9D utilities over 0.90: 36.9% versus 13.6%; 
SDQ total score: 9.94 versus 20.31; subscale scores (hyperactivity: 3.71 versus 4.64; emotional symptom: 2.91 
versus 5.38; peer problems: 1.68 versus 5.84; and conduct problems: 1.63 versus 4.45)]. Samples were similar in 
terms of mean age and gender distribution. 

   <TABLE 1 HERE> 

 

  

Fig.1 illustrates the Kernel density plot of the observed CHU9D utilities and the SDQ total scores. These plots 
along with the Shapiro Wilks test for normality rejected the null hypothesis of normally distributed CHU9D 
utilities (p<0.001). 

  

   <FIGURE 1 HERE> 

A moderately strong statistically significant correlation between the observed utilities and the total SDQ was 
observed (Spearman's rho (ρ) = -0.52; 95% CI: -0.54 to -0.50; p<0.001). Such a correlation was also observed in 
the scatterplot of utilities and total SDQ scores. The highest correlation existed between the utilities and SDQ 
subscale “emotional symptoms” (ρ=-0.51, p<0.001) (see ESM_1, Fig. 1 and Table 4). 

The sample adequacy test prior to EFA found the sample to be appropriate for factor analysis (KMO: 0.88) 
[41,68]. The Bartlett test for sphericity rejected the null hypothesis that variances between variables were equal 
(χ2 = 34020.69, p<0.001). Consequently, the sample was determined to be fit for factor analysis. EFA resulted in 
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one key factor with meaningful loadings on all SDQ subscales except pro-social subscale, as well as all nine 
CHU9D domains. This overlap in the same factor suggests that all nine CHU9D domains possibly capture the 
similar latent construct as the four SDQ subscales. These results provided evidence that there is adequate 
conceptual overlap such that the mapping algorithm would be valid. Results of the EFA are provided in ESM_1, 
Table 5, Table 6 and Fig. 2. 

  

Predictive accuracy results based on cross-validation 

Table 2 presents predictive accuracy results. The direct approach using GLM 3 (i.e. GLM method using 
predictor set 3) was considered the best regression method based on the overall ranking. The rank of the best 
performing model did not change during the sensitivity analysis demonstrating the robustness of the results. 
Results from sensitivity analyses are presented in ESM_1, Table 7. 
   <TABLE 2 HERE> 

MAEs ranged from 0.1151 (MLOGIT 3) to 0.1222 (ZOIB 1). MSEs ranged from 0.0230 (GLM 3 and EEE 3) to 

0.0256 (MLOGIT 1). This is equivalent to percentage errors of up to 10%9 and 2%10, respectively, of the overall 

CHU9D range. The difference between the mean of the predicted utilities and the mean of the observed utilities 

was zero to three decimal places for all OLS, GLM, and EEE regression methods using any of the four predictor 

sets. Thus, on average, they were able to exactly predict the mean CHU9D utilities for the LSAC population. 

The distribution of the predicted utilities indicates that all models overpredicted at the lower extreme and 
underpredicted at the upper extreme of the observed utilities (see ESM_1, Fig. 3). This was anticipated given the 
unusual distribution of the observed utilities. However, the prediction seemed to improve when categorical 
items (Predictor set 3) instead of total SDQ or SDQ subscales were used as explanatory variables. The models 
performed best when the observed utilities ranged between 0.6 to 0.8 as a high number of predicted utilities will 
overlap with the observed utilities. 
 

 
Mapping function 

GLM 3 was considered the best performing model based on the overall ranking (see ESM_1, Fig. 4). 

Coefficients from GLM 3 are presented in Table 3. Separate STATA and Excel tools to implement the 

algorithm are provided in ESM_2 and ESM_3. 

 

    <TABLE 3 HERE> 

External validation 

The mean (95% CIs) observed CHU9D utility value in the CAMHS dataset was 0.6161 (0.5727 to 0.6597). The 
mean (95% CIs) utility value after applying our algorithm in the CAMHS dataset was 0.6346 (0.6066 to 
0.6627). Although the mean observed CHU9D utility value and the one resulting from using our algorithm were 
not identical, they were similar. Some discrepancy was expected since the CAMHS and LSAC samples are 
considerably different from each other. The resulting mean (95% CIs) MAE using our algorithm in the CAMHS 
dataset was lower [0.1522 (95% CI: 0.1294, 0.1750)] than the one using Furber et al.’s procedure in the same 
dataset [0.1578 (95% CI: 0.1376, 0.1780)]. The corresponding MSEs were similar 0.0366 (95% CI: 0.0275, 
0.0457) and 0.0355 (95% CI: 0.0277, 0.0432), respectively. 
 
 

                                                           
9 Formula: % 𝐸𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 𝐺𝑀𝐴𝐸 = 100 ∗ 𝑀𝐴𝐸(𝑀𝑎𝑥(𝐶𝐻𝑈9𝐷 𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠)−𝑀𝑖𝑛(𝐶𝐻𝑈9𝐷 𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠))  
10 Formula: % 𝐸𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 𝐺𝑀𝑆𝐸 = 100 ∗ 𝑀𝑆𝐸(𝑀𝑎𝑥(𝐶𝐻𝑈9𝐷 𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠)−𝑀𝑖𝑛(𝐶𝐻𝑈9𝐷 𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠))  
Note: (𝑀𝑎𝑥(𝐶𝐻𝑈9𝐷 𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠)=1 and (𝑀𝑖𝑛(𝐶𝐻𝑈9𝐷 𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠)= -0.1059 
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Discussion and conclusion 
This study aimed to propose a mapping algorithm to predict CHU9D health state utilities from SDQ. We 
considered a variety of mapping approaches, each having its own advantages. The ranking system adopted in 
this study avoids decision-making based on a single criterion. Robustness of ranking was further assessed 
through sensitivity analyses. The best performing mapping algorithm was able to accurately predict the mean 
observed utility, with better predictions observed at utilities between 0.6 and 0.8. STATA and Excel tools were 
produced to enable the use of the algorithm in future economic evaluations. 

The predicted utility values after applying the best performing model from this study (GLM 3) to the full sample 
resulted in the mean utility of 0.7976 (SD= 0.12), ranging from 0.2000 to 0.9600. Using the modified version of 
the previous algorithm11 in our study sample resulted in predicted utility values with the mean of 0.8190 (SD= 
0.07), ranging from 0.5500 to 0.9500[25]. This suggests that the new algorithm outperformed the previous one 
in predicting the observed mean (i.e. 0.7976) and range prediction for this dataset. Both algorithms did not 
perform well in predicting the upper end of the utility distribution but the proposed mapping algorithm is an 
improvement in this regard. The GLM 3 model also outperformed the modified version of the mapping 
algorithm from Furber et al. in the prediction of mean CHU9D utilities when respondents were split by their 
self-reported global health measure (see Fig. 2). A figure showing the predicted utilities from the best model 
compared to observed utilities across the self-reported global health measure is presented in ESM_1, Fig. 5. 

   <FIGURE 2 HERE> 

 

The predictive performance of the preferred GLM 3 model (full sample MAE: 0.1146 and MSE: 0.0225) is 
within the ranges reported by previous mapping studies (MAE: 0.0011 to 0.1900 and MSE: 0.007 to 0.040)[6]. 
GLMs were also found to outperform other models in other mapping studies[69-71]. GLMs bear many 
advantages when dealing with highly skewed data and have been proven to be particularly successful in 
modelling healthcare costs which share similar features with the health utilities[72]. It is therefore somewhat 
surprising that GLMs have not been more widely considered in mapping studies. 

The models that were close to win include Tobit, MLOGIT, and CLAD. However, their high ranks were largely 
due to their superior performance on the upper tail of the distribution (see Table 2). The censoring mechanism 
within Tobit and CLAD naturally led to small prediction errors at the top end which was unfortunately offset by 
their rather poor performance on the lower end. One of the key conditions for using response mapping is that 
enough responses are needed at all levels in each dimension[20]. MLOGIT’s superior performance at the top 
end and poor performance on the lower end suggested this condition might have not been fulfilled. 

These three models were closely followed by OLS which performed relatively well on the lower end but not so 
well on the upper tail. The models ranked lowest are ZOIB, EEE, and FMM. It is interesting that they are the 
“flexible” models but the potential over-fitting problem may have caused them to perform well on some regions 
and not so well on the others. For example, EEE had very good performance based on the full sample MAE or 
MSE but was among the worst on both ends.  

The EEE model has been rarely explored in the mapping literature. This might be due to the fact that the authors 
of EEE recommended using a fairly large sample size (N=5000)[53]. To our knowledge, only one mapping 
study used EEE[73]but its sample size was only 772. It used two-fold cross-validation which suggested EEE to 
be the best performing model for one of its two mapping exercises. Our results did not support this, largely due 
to that we factored in the performance of the model in different regions of the utility distribution. It is also worth 
mentioning that EEE does not necessarily outperform a carefully selected GLM whose link and variance 
functions are chosen via multiple robust tests[72]. But EEE can be estimated as the starting point for selecting 
the optimal GLM. 

The key strengths of this study are as follows. First, this study used a sample from a much larger (n=6,898) and 
more diverse population. Second, it considered both direct and indirect approaches for the mapping. Within the 
direct mapping, we looked beyond OLS and compared a range of econometric methods for selecting the best 
performing model. Using only OLS may not accommodate the potential features of the utility scores’ 
distribution: such as multimodality, skewness, and a high proportion of utilities equalling one[22]. Moreover, 
unlike many other studies, we also factored in the performance of a model on the upper and lower tails of the 

                                                           
11We used new CHU9D tariff to obtain observed CHU9D variable in the CAMHS dataset, ran an OLS 
regression with SDQ subscales as predictors and obtained coefficients to be used as new or modified mapping 
algorithm for Furber et al. 
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utility distribution in order to select one that can also predict well for children with very good and poor HRQOL 
which is important for economic evaluation. Third, this study used self-reported SDQ and CHU9D data which 
may measure HRQoL better than proxy-reported data[28]. Fourth, this study performed an external validation of 
the mapping algorithm by assessing the predictive performance of the algorithm using an external dataset. Our 
mapping algorithm also captured wider values at extremes (0.3000 to 0.9400 as against 0.3900 to 0.9000 using 
CAMHS dataset). These results indicate that the proposed algorithm may perform better even among children 
utilising mental health services compared to Furber et al. We conclude that our mapping algorithm predicted 
well both in-sample and out-of-sample. 

One of the potential limitations of the models was that they did not capture lower utilities. The finding may raise 
concerns about the applicability of the proposed algorithm to children with severe health conditions. Although 
this limitation occurs frequently in mapping models[6,74,75], the poor performance in this study was probably 
due to very few observations at lower extreme. Future studies could attempt to derive more robust estimations 
for this particular sub-group of children, although it may prove difficult given the small number of children 
reporting poor health on CHU9D. Researchers willing to adopt this mapping algorithm should carry out 
sensitivity analyses in economic evaluations surrounding the results obtained by applying the algorithm. 
Moreover, the recommended algorithm based on the GLM 3 model did not perform well in capturing extremely 
high utilities (>0.96). Finally, only a relatively small dataset was available for the external validation.  

In conclusion, the proposed mapping algorithm is a better predictor of CHU9D utilities. Further research is 
warranted to assess the performance of the proposed mapping algorithm in a larger sample consisting of 
children and adolescents with more severe health conditions. 
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Tables 

Table 1: Respondent Characteristics 

Variables 
Sample statistics 

N = 6,898 

Validation dataset 

N = 103 

CHU9D health state utility value (observed)  
Mean (SD) 0.7976 (0.19) 0.6160 (0.22) 
Range -0.1059, 1 0.0560, 1 
Utilities <0, n (%) 2 (0.03%) 0 (0.00%) 
Utilities =1, n (%) 961 (13.93%) 1 (1.00%) 
Utilities >0.9, n (%) 2,546 (36.90%) 14 (13.60%) 
Utilities <0.5, n (%) 619 (8.97%) 36 (34.95%) 

SDQ total score   
Mean (SD) 9.9400 (5.85) 20.3100 (5.14) 
Range 0-32 9-32 

SDQ subscales, Mean (SD) Range: 1-10 0-10 
Pro-social 7.8300 (1.72) 6.8000 (2.40) 
Hyperactivity 3.7100 (2.32) 4.6400 (1.64) 
Emotional symptoms 2.9100 (2.28) 5.3800 (2.61) 
Peer problems 1.6800 (1.68) 5.8400 (1.60) 
Conduct problems 1.6300 (1.58) 4.4500 (2.09) 

Age (years)   
Mean (SD) 12.35 (2.05) 12.03 (3.14) 
Range 10-15 5-17 

Age categories, n (%)   
10-11 (B-Cohort) 3,567 (50.90%) NA 
14-15 (K-Cohort) 3,331 (49.09%) NA 

Female, n (%) 3,386 (49.08%) 54 (52.43%) 
General health measure (self-reported), n (%)   

Excellent 3,271 (47.63%) NA 
Very good 2,604 (37.92%) NA 
Good 808 (11.77%) NA 
Fair 147 (2.14%) NA 
Poor 37 (0.54%) NA 

CHU9D: Child Health Utility-9D; NA: Not available; SD: Standard deviation; B-Cohort (or infant cohort) 
includes children born between March 2003 to February 2004; K-Cohort (or child cohort) includes children born 
between March 1999 to February 2000 
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Table 2: Predictive performance of models during ten-fold cross-validation 

Models Mean Min Max MAE MSE 
MAE 

<0.5 

MSE 

 <0.5 

MAE 

>0.9 

MSE 

>0.9 
Rankinga 

Observed 0.7957 -0.1059 1        

Predictor set 1 

OLS 0.7975 0.4297 0.9963 0.1213 0.0249 0.3017 0.1057 0.1173 0.0212 30 

GLM 0.7975 0.3808 0.9667 0.1210 0.0248 0.2976 0.1044 0.1173 0.0209 28 

EEE 0.7975 0.3386 0.9742 0.1210 0.0248 0.2975 0.1046 0.1176 0.0209 29 

ZOIB 0.7924 0.3914 0.9406 0.1222 0.0248 0.2983 0.1049 0.1249 0.0219 31 

Tobitb 0.8124 0.4037 1 0.1199 0.0253 0.3020 0.1073 0.1025 0.0185 23 

CLADb 0.8200 0.4584 1 0.1198 0.0254 0.3266 0.1211 0.0993 0.0165 25 

FMM 0.8047 0.5006 0.9677 0.1221 0.0253 0.3323 0.1233 0.1173 0.0194 32 

MLOGIT 0.8169 0.3607 0.9347 0.1206 0.0256 0.3211 0.1211 0.1046 0.0163 26 

Predictor set 2 

OLS 0.7975 0.4062 0.9939 0.1181 0.0238 0.2866 0.0972 0.1130 0.0202 21 

GLM 0.7975 0.3557 0.9653 0.1178 0.0236 0.2825 0.0962 0.1132 0.0199 16 

EEE 0.7974 0.2823 0.9702 0.1176 0.0236 0.2811 0.0960 0.1134 0.0198 15 

ZOIB 0.7925 0.3701 0.9404 0.1192 0.0238 0.2852 0.0974 0.1210 0.0209 24 

Tobitb 0.8122 0.3817 1 0.1169 0.0241 0.2863 0.0985 0.0988 0.0177 12 

CLADb 0.8158 0.4146 1 0.1169 0.0241 0.3063 0.1090 0.0971 0.0163 14 

FMM 0.8049 0.4815 0.9675 0.1191 0.0242 0.3202 0.1156 0.1135 0.0185 27 

MLOGIT 0.8168 0.3412 0.9375 0.1176 0.0243 0.3061 0.1122 0.1009 0.0155 19 

Predictor set 3 

OLS 0.7977 0.3831 0.9962 0.1163 0.0232 0.2758 0.0919 0.1109 0.0198 7 

GLMc 0.7977 0.3204 0.9598 0.1156 0.0230 0.2689 0.0900 0.1100 0.0191 1 

EEE 0.7982 0.2473 0.9704 0.1155 0.0230 0.2983 0.1049 0.1249 0.0219 18 

ZOIB 0.7934 0.3591 0.9507 0.1171 0.0231 0.2768 0.0934 0.1177 0.0201 11 

Tobitb 0.8119 0.3750 1 0.1154 0.0236 0.2766 0.0936 0.0973 0.0174 2 

CLADb 0.8142 0.3583 1 0.1161 0.0240 0.2797 0.0967 0.0983 0.0173 8 

FMM 0.8055 0.4961 0.9762 0.1175 0.0237 0.3156 0.1127 0.1107 0.0180 20 

MLOGIT 0.8169 0.3099 0.9538 0.1151 0.0234 0.2991 0.1066 0.0969 0.0149 4 

Predictor set 4 

OLS 0.7976 0.3870 0.9849 0.1166 0.0232 0.2763 0.0920 0.1115 0.0198 9 

GLM 0.7976 0.3420 0.9615 0.1163 0.0231 0.2733 0.0915 0.1116 0.0194 5 

EEE 0.7976 0.2780 0.9661 0.1162 0.0231 0.2852 0.0974 0.1210 0.0209 17 

ZOIB 0.7931 0.3489 0.9402 0.1176 0.0232 0.2757 0.0929 0.1189 0.0203 13 

Tobitb 0.8121 0.3657 1 0.1159 0.0236 0.2768 0.0938 0.0975 0.0173 3 

CLADb 0.8141 0.3813 1 0.1160 0.0237 0.2809 0.0963 0.0971 0.0169 6 

FMM 0.8053 0.4719 0.9611 0.1178 0.0237 0.3135 0.1115 0.1121 0.0181 22 

MLOGIT 0.8169 0.3239 0.9399 0.1162 0.0237 0.2984 0.1079 0.0992 0.0151 10 

Acronyms: CLAD: Censored Least Absolute Deviation; EEE: Extended Estimating Equations; FMM: Finite 

Mixture Model; GLM: Generalised Linear Model; MAE: Mean Absolute Error; MLOGIT: Multinomial Logistic 

Regression; MSE: Mean Squared Error; OLS: Ordinary Least Squares; ZOIB: Zero-One-Inflated Beta binomial 

 

Explanatory variables for: Predictor set 1: Total SDQs and gender; Predictor set 2: SDQs subscales (social, 
hyperactivity, emotional, peer, conductive) and gender; Predictor set 3: Individual SDQ items (categorical) and 
gender; and Predictor set 4: Individual SDQ items (continuous) and gender. 
 
The best-ranked model is highlighted in bold 
aSome ranks were rearranged (based on lowest possible overall MSE values) when their overall rankings were 

equal 
bResults were truncated to 1 whenever the predicted utilities exceeded 1. 
cSummary statistics of GLM 3 using full sample- Mean (SD): 0.7976 (0.12); Min :0.2000; Max: 0.9600.   
  
Total predicted latent utilities exceeding one for TOBIT models during cross-validation: Tobit 1: 142; Tobit2: 
164; Tobit 3: 157; Tobit 4: 257. Total predicted latent utilities exceeding one for CLAD models during cross-
validation: CLAD 1: 51; CLAD 2: 56; CLAD 3: 73; CLAD 4: 50. 
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Table 3: Coefficients and standard errors from the best performing model 

Predictor variables Coefficients Robust Standard errors 

SDQ1_2 -0.0498 0.0299 
SDQ1_3 -0.0563 0.0298 
SDQ2_2 0.0102 0.0051 
SDQ2_3 -0.0011 0.0072 
SDQ3_2 0.0381 0.0047 
SDQ3_3 0.0671 0.0080 
SDQ4_2 0.0055 0.0077 
SDQ4_3 0.0020 0.0078 
SDQ5_2 0.0064 0.0048 
SDQ5_3 0.0127 0.0083 
SDQ6_2 0.0280 0.0053 
SDQ6_3 0.0192 0.0098 
SDQ7_2 0.0057 0.0124 
SDQ7_3 -0.0064 0.0127 
SDQ8_2 0.0602 0.0048 
SDQ8_3 0.0964 0.0070 
SDQ9_2 -0.0154 0.0170 
SDQ9_3 -0.0158 0.0171 
SDQ10_2 0.0068 0.0050 
SDQ10_3 0.0037 0.0079 
SDQ11_2 -0.0193 0.0193 
SDQ11_3 -0.0337 0.0181 
SDQ12_2 0.0023 0.0090 
SDQ12_3 -0.0191 0.0232 
SDQ13_2 0.0649 0.0059 
SDQ13_3 0.1137 0.0108 
SDQ14_2 -0.0207 0.0111 
SDQ14_3 -0.0365 0.0114 
SDQ15_2 0.0233 0.0050 
SDQ15_3 0.0287 0.0074 
SDQ16_2 0.0273 0.0048 
SDQ16_3 0.0353 0.0068 
SDQ17_2 -0.0103 0.0169 
SDQ17_3 -0.0125 0.0164 
SDQ18_2 0.0230 0.0054 
SDQ18_3 0.0157 0.0088 
SDQ19_2 0.0257 0.0064 
SDQ19_3 0.0138 0.0104 
SDQ20_2 0.0052 0.0069 
SDQ20_3 -0.0074 0.0076 
SDQ21_2 0.0094 0.0110 
SDQ21_3 -0.0115 0.0116 
SDQ22_2 0.0129 0.0091 
SDQ22_3 0.0009 0.0238 
SDQ23_2 0.0139 0.0045 
SDQ23_3 0.0070 0.0090 
SDQ24_2 0.0266 0.0048 
SDQ24_3 0.0451 0.0081 
SDQ25_2 -0.0251 0.0078 
SDQ25_3 -0.0510 0.0088 
Female 0.0249 0.0044 
Constant 0.4291 0.0444 

SDQ= Strength and Difficulties Questionnaire. 
The Best model was GLM 3 that included categorical SDQ items and gender (Female==1) as predictors. 
Disutility (=1-Utility) was used as the dependent variable. Poisson family and a power (1/2) link function were 
selected based on tests. 
 
 


