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Abstract. Recent results on crossed-beam energy transfer are presented. Wave-

length tuning was used to vary the amount of energy transfer between two beams in a

quasi-stationary plasma with carefully controlled conditions. The amount of transfer

agreed well with calculations assuming linear ion acoustic waves with amplitudes up to

δn/n ≈ 0.015. Increasing the initial probe intensity to access larger ion acoustic wave

amplitudes for otherwise fixed conditions yields evidence of saturation. The ability to

manipulate a beam’s polarization, which results from the anisotropic nature of the in-

teraction, is revisited; an example is provided to demonstrate how polarization effects

in a multibeam situation can dramatically enhance the expected amount of energy

transfer.

1. Introduction

Stimulated Brillouin scattering (SBS), one of the most common three-wave laser–

plasma instabilities, occurs when an electromagnetic wave “pump” decays into a second

frequency-downshifted electromagnetic wave “probe” and an ion acoustic wave (IAW).

The decay is resonant when the following holds:

ω0 − ω1 = (k0 − k1) · V + |k0 − k1|cs, (1)

where ω is frequency; k is wavenumber; subscripts 0 and 1 refer to the pump and probe,

respectively; V is the plasma flow velocity; and cs is the sound speed. The use of

a stationary plasma (|V | = 0) makes clear that the formula satisfies conservation of

both energy [~ω0 = ~(ω1 + ωIAW ), where ωIAW = kIAW cs is the IAW frequency] and
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momentum [~k0 = ~(k1 + kIAW )]. In the absence of a plasma flow velocity, a frequency

difference between the two electromagnetic waves is required such that the resulting

beat frequency matches the finite ion acoustic wave frequency. Another straightforward

limit occurs when the plasma flow velocity projected along the direction of the beat

wave is equal to the sound speed; in this moving frame, the electromagnetic wave

frequencies are Doppler shifted such that their beat frequency resonantly drives the

finite frequency IAW in the same manner. A combination of flow velocity and frequency-

shifted electromagnetic waves can similarly satisfy this formula.

When the instability grows from the thermal density modulations present in

any finite-temperature plasma (i.e., noise), it is typically referred to as SBS,

and direct backscatter tends to dominate the overall scattered light because the

ponderomotive force driving the IAW density modulation is strongest for oppositely

directed electromagnetic waves. When the instability is seeded by an electromagnetic

wave with an amplitude much larger than that of the thermal noise, as first described by

Randall et al.[1], it has come to be referred to as crossed-beam energy transfer (CBET).

CBET can result in scattered light at a wider range of angles, dictated by the direction

of the electromagnetic seed.

In direct-drive inertial confinement fusion (ICF)[2], targets are typically driven

symmetrically with frequency-degenerate laser beams. CBET occurs when rays from

the outer edge of a given beam refract through the corona and bypass the target without

being absorbed. When these rays overlap other incident beams in a location where

the target’s exhaust velocity renders frequency-degenerate interactions resonant (close

to the Mach 1 surface), energy is transferred from the incoming to the outgoing rays,

introducing drive asymmetries as well as reducing the laser ablation pressure and capsule

drive [Fig. 1(a)]. This has been observed on the basis of scattered-light and implosion-

velocity measurements[3, 4, 5, 6, 7].

In indirect-drive ICF[8] at the National Ignition Facility (NIF), CBET usually refers

to the transfer of energy between the 96 full energy beams overlapping in each laser

entrance hole of a hohlraum target[9, 10, 11, 12, 13]. Since the flows in the entrance

region are typically much less than the sound speed, CBET is usually controlled by

introducing a frequency difference between different cones of incident beams in order

to tailor the distribution of laser intensity within the hohlraum interior [Fig. 1(b)].

Recently, however, an additional form of CBET was observed in hohlraums; specular

reflections and/or backscatter from one cone of beams was shown to be reamplified by

a different set of beams [Fig. 1(c)], which complicated the understanding and diagnosis

of scattered light from such targets[14]. This latter process resembles the direct-drive

version of CBET.

In all cases, a proper accounting of CBET is vital for predictive modeling of ICF

implosions. Here, we review the model that is used to calculate CBET in indirect-drive

experiments at the NIF along with a recent experiment showing excellent agreement with

the theory. We then present additional data in which the incident probe-beam energy

was increased in order to access larger IAW amplitudes, which resulted in deviation
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(a)   Direct-drive (b)   Indirect-drive 
(forward)

(c)   Indirect-drive 
(backward)

Figure 1. Illustrations of ways that crossed-beam energy transfer (CBET) can occur

in ICF targets, showing just two beams. (a) In direct-drive, edge rays from each beam

can bypass the target and be amplified by other incident beams in the expanding corona

surrounding the capsule. (b) In indirect-drive, CBET occurs between incident beams

in the laser entrance hole region and is primarily controlled by frequency detuning the

lasers. (c) A different type of CBET was recently observed in indirect-drive hohlraums,

where it was found that specular reflections could seed CBET in the plasma expanding

from the hohlraum wall.

from linear theory and evidence of IAW saturation. The data indicate that IAW’s

are saturated at the δn/n ≈ 0.015 level for the laser and plasma parameters of the

experiment. The ability to manipulate a probe beam’s polarization using CBET will

then be reviewed, along with an example showing the complexity that arises from such

polarization effects in a multibeam configuration such as those typical in ICF research.

2. CBET Linear Theory

In this section, the essential features of the model presented by Michel et al. (Ref.

[15] and references therein) are summarized. The pump and probe are described

by normalized laser vector potentials a = eA/(mec
2) ≈ 8.55 × 10−10(Iλ2µm)

1/2,

where I is the laser intensity (W/cm2) and λµm is the laser wavelength in microns.

The effect of an electromagnetic pump beam on a probe beam in a plasma can be

described by a refractive index perturbation δη. Interacting with the pump over

some length L, a component (specified later) of the probe laser is modified by the

operator exp(ik1δηL/η0), where η0 =
√

1− ne/nc is the unperturbed plasma’s refractive

index – given electron density ne and critical density nc. Using a kinetic model, the

refractive index perturbation is given by δη = 1
2
K∗|π0|2sin(ψ/2)tan(ψ/2), where K =

χe(1+χi)/(1+χe+χi); the electron and ion (α = e, i) susceptibilities in thermodynamic

equilibrium are χα = −1
2
(kbλDα

)−2Z ′[vb/(
√
2vTα

)]; kb = k0 − k1 is the beat wave’s

wavenumber; λDα
= vTα

/ωpα is the Debye length; vTα
= (Tα/mα)

1/2 is each particle’s

thermal velocity with Tα andmα its temperature and mass; ωpα = (4πnαq
2
α/mα)

1/2 gives

the electron and ion plasma frequencies; Z is the plasma dispersion function; vb = ωb/kb
is the beat wave’s phase velocity; ωb = ω0 − ω1 is the beat wave’s frequency; and
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|π0|2 = |a0p|2 cos2 ψ + |a0s|2 is the pump amplitude projected into the plane of the

probe’s polarization, where the p-component is in the plane defined by the pump and

probe k vectors and the s-component is orthogonal to that plane, and ψ is the crossing

angle between the two beams.

The model assumes the following: the interaction has reached steady state, which

occurs on ion acoustic time scales; the spatial variations of the ion acoustic wave are

assumed small compared to the beat wave wavelength; and the variations of the pump

and probe envelopes along the interaction bisector are small compared to the laser

wavelength.

It is crucial to note two key features of the model in order to understand polarization

effects in CBET as well as the experimental results that will be presented: the first key

point is that, for arbitrary polarizations, the interaction is generally anisotropic —

only the component of the probe’s polarization that is parallel to π0 is affected by the

pump–plasma system (i.e., modified by the operator given above); any orthogonal probe

polarization component is unaffected by the system [Fig. 2(a)] .

The second key point is that δη is complex. The imaginary component is typically

assumed to govern CBET because it modifies the amplitude of the probe beam and

peaks at the ion acoustic resonance, as expected. The fact that there is an associated

real component — directly related to the imaginary component by the Kramers-Kronig

relations — is true of many systems with frequency-dependent optical resonances

(e.g., electric susceptibility, magnetic susceptibility, electrical conductivity, and thermal

conductivity) and widely applicable in all areas of physics. A modification of the

plasma’s real refractive index (only in the direction of the pump polarization) implies

that the probe encounters birefringence. Since the real component describes the out-of-

phase response of the system, it can be nonzero even for cases in which the imaginary

component disappears and CBET may be assumed to be negligible. An example will

be provided later to show how this real component could dramatically alter CBET in a

multibeam interaction. The solid lines shown in Fig. 2(b) are an example of the real and

imaginary components calculated with this model for the parameters of an experiment

to be discussed in the next section.

3. Experimental Results

3.1. Setup

Several experiments were conducted recently at Lawrence Livermore National

Laboratory’s Jupiter Laser Facility using the Janus laser. Many of the results have

been presented in prior publications[16, 17]. A long (≈ 3 ns square), high-intensity

pump pulse was focused onto a gas jet equipped with a 3-mm-diam outlet emitting

methane gas. A phase plate was used to give the pump beam a flattop but speckled

600-µm-diam focal spot. The pump energy for the shots shown in Fig. 2(b) was 292±8

J, giving an expected average intensity of I = (3.6 ± 0.2) × 1013 W/cm2 at the time
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(a) Experimental Setup (b) Results

Figure 2. Refractive index of a pump-plasma system. (a) An experiment was

conducted in which a weak probe beam, with polarization oriented at 45◦, interacted

with a horizontally-polarized pump. Only the probe’s horizontal component sees

the refractive index perturbation induced by the pump-plasma system. The probe

polarization subsequent to the interaction is used to infer the magnitude of the

refractive index perturbation. (b) Linear theory calculations are plotted with three

sets of data points for parameters listed in the table below. There is good agreement

for the weaker injected probe beams, but clear deviation at the highest probe energy,

indicating nonlinearity.

of the interaction. The peak of an ≈ 250-ps Gaussian probe beam was timed to arrive

≈ 1.3 ns after the rising edge of the pump. It was focused using a 200-µm-diam phase

plate and crossed the pump at an angle of 27◦ away from copropagation.

To measure the refractive index perturbation induced by the pump–plasma system,

the pump polarization was horizontal (p-polarized) whereas the probe polarization was

oriented at 45◦ using a polarizer. This meant there were nearly equal probe polarization

components interacting and not interacting with the pump. Separating the probe

polarization into constituent components along the s- and p-polarization directions

relative to the two-beam interaction, as well as 45◦ relative to those axes, provides

a measurement of both the probe amplification (i.e., energy transfer) and any phase

delay induced by the real refractive index component. The polarimetry diagnostic and

the formulas for extracting these values from the data are shown in Fig. 2(a). For

a gain measurement only, it is sufficient to make a single measurement of the s- and

p-polarization components. Conversely, for pure phase delays and no energy transfer (in

the case of frequency-degenerate beams), it is sufficient to make a single measurement

along the axes rotated 45◦.

Both beams used the first harmonic of a Nd:YLF laser source (λ ≈ 1053 nm),

but independent front ends allowed us to measure CBET as a function of wavelength

detuning between the two beams (here, a range of −3 ≤ ∆λ ≤ 3 Åwas used).
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Figure 3. Diagnostics for density and electron temperature (a) The blueshifted

electron feature was collected at 90◦ and recorded on an S1 streak camera using a

5-ns sweep. It was analyzed at the time of the probe interaction, shown as a dashed

line relative to the pump pulse shape, recorded on a fast diode/oscilloscope. (b) A

Nomarski interferometer used an ultrashort Ti:sapphire diagnostic beam — incident

perpendicular to the channel and co-timed with the probe — to measure density

gradients in the Thomson volume and along the length of the pump–probe interaction.

Plasma density and electron temperature were measured with Thomson scattering

and interferometry. The Thomson scattering diagnostic collected scattered light from

the pump beam in a 90◦ (vertical) geometry relative to the pump propagation. The

blueshifted electron plasma wave feature was recorded on a streak camera with an S1

photocathode, set to a 5-ns sweep speed. An example of the data is shown in Fig.

3(a). Since a high-density, low-Mach-number nozzle was used in conjunction with the

large-diameter pump beam, the diagnostic collected light from a volume spanning 600

µm in the vertical direction, encompassing a wide range of densities. It was necessary to

include a range of electron densities spanning ≈ (1−1.4)×1019 cm−3 to fit the Thomson

data at the time of interaction (shown as the dashed line relative to the Thomson data

as well as the pump pulse shape as recorded on a fast diode and oscilloscope) on each

shot.

The interferometry data, which used an ultrashort Ti:sapphire beam incident on

the channel perpendicular to the pump beam and imaged onto a CCD camera using

a Nomarski configuration, further constrained the density throughout the interaction.

An example of the chord-integrated density-length product is shown in Fig. 3(b). It
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showed that the highest densities in the Thomson volume were actually below the center

of the two-beam interaction (≈ 1.5 mm above the nozzle, which is visible at y = 0 mm

in the image). Furthermore, the density decreased on either side along the ≈ 1.2-

mm interaction length such that the path-integrated density was ≈ 88% of the peak

density measured by Thomson scattering. These considerations were factored into the

parameters listed in the Table 1.

While this platform aimed to isolate CBET from hydrodynamic uncertainties,

nevertheless a flow velocity resulted from the cylindrical plasma channel expansion

following formation by the pump beam. Varying the interferometry beam timing

relative to channel formation clearly showed this expansion; it is also the reason why

the channels were so much larger than the pump-beam diameter at the time of the

interaction [Fig. 3(b)]. By Doppler shifting the ion acoustic wave by different amounts

in different portions of the crossing volume, this flow effectively broadened the resonant

peak. Flow velocity and ion temperature (not measured) were imported to the linear

theory calculation from a three-dimensional simulation of the experiment using the

radiative-hydrodynamic code HYDRA[18].

3.2. Results

Experimental results for three different data sets were shown in Fig. 2(b). The most

extensive data set (already published in Ref. [17]) used an incident probe beam with 27

mJ of energy. For that data set, several shots were repeated with the Wollaston prism in

the polarimetry diagnostic rotated 45◦ to measure the real refractive index perturbation

component in addition to the amplification. Agreement with linear theory was found to

be excellent for both the real and imaginary components.

While most of the parameters used in the linear theory calculation were consistent

with experimental measurements and the HYDRA simulation, the average ion charge

state was an exception. To match the resonant peak location, the plasma was assumed

to consist of 30% carbon, rather than the 20% that might be expected when using

methane gas. In Ref. [17], it was conjectured that this might have resulted from ion

species separation in the expanding plasma channel. Recent efforts to confirm this

experimentally, using simultaneous ion and electron feature Thomson scattering and

a gas jet mixture of hydrogen and argon, failed to observe the predicted effect. It is

Parameter Theory Input Measured Value HYDRA Sim.

ne/nc 0.0104 0.011± 0.001 0.009

Te (eV) 220 224± 4 ≈ 231

Ti/Te 0.115 — ≈ 0.09

Vflow (m/s) 1.4× 104 — ≈ 1.4× 104

I0 (W/cm2) ≈ 3.2× 1013 ≈ (3.6± 0.2)× 1013 ≈ 3.6× 1013

Z 2.5 — 2.0

Table 1. Plasma parameters
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perhaps more likely that the discrepancy arises from a simple error in measuring the two

laser wavelengths. When measured, they were found to differ from the nominal laser

wavelengths; a correction was applied, but this correction shifted the experimental data

away from the linear theory. Better agreement would be obtained by assuming that

the correction should have been made in the opposite direction. Figure 2(b), however,

retains the possibly incorrect wavelength axis for the data and the slightly higher carbon

concentration. Note also that accounting for a factor of cos(ψ) that was missing in the

calculations of Ref. [17] better reconciles the pump intensity used in the linear theory

calculation here with that expected from measurements, as shown in Table 1.

Here we present additional amplification data in which the incident probe energy

was increased to ≈ 64 mJ and ≈ 250 mJ. These additional data sets lack error bars for

simplicity, but they are comparable to those on the low energy imaginary component

data. The average incident probe intensities were I ≈ (3.4, 8.1, 32) × 1011 W/cm2,

approximately half of which gets amplified by CBET due to the 45◦ probe polarization.

The fact that the data points deviate from the linear theory calculation, especially on

the positive wavelength shift side of the wavelength tuning curve, is a clear indication

of nonlinearity.

3.3. Discussion

The most straightforward explanation for nonlinearity is pump depletion, where the

energy transfer significantly impacts the pump amplitude and leads to reduced gain.

However, the maximum gain for the highest energy data was GI = 1.27 such that the

output average probe intensity was I = 1
2
Iinit.exp(1.27) ≈ 5.3 × 1012 W/cm2, which

is only ≈ 16% of the pump intensity. Therefore, pump depletion cannot explain the

much-reduced gain.

Saturation of ion acoustic wave amplitudes could also explain the deviation from

linearity as well as the fact that it is more prominent for positive wavelength shifts.

Figure 4(a) shows the expected average IAW amplitude, δn/n = −1
2
Kk2b c

2ω−2
pe a0 ·a∗

1, as

a function of distance interacting with the pump beam when the probe was redshifted to

the point of maximum gain for each of the three incident probe energies. In the limit of

negligible pump depletion, the IAW amplitude is linear with a1 such that the amplifying

seed drives larger waves. In the case of a 27-mJ injected probe beam, the average IAW

amplitude is expected to have been ≈ 0.004 at the beginning of the interaction region,

growing to ≈ 0.01 by the end of the interaction region. For a 250-mJ incident probe,

IAW amplitudes would be expected to span ≈ 0.012 to 0.032 if linear theory remained

valid. The deviation from linear theory suggests, however, that these larger amplitudes

were not accessed. An additional curve is shown for the equivalent trajectory on the

opposite side of the wavelength-tuning curve (maximum probe extinction). In this case,

IAW amplitudes get smaller with the probe intensity; therefore, nonlinearity is expected

to be much less evident.

The effect of speckles must also be taken into account. As discussed in Ref.
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Figure 4. Expected ion acoustic wave (IAW) amplitudes. (a) Average IAW

amplitudes were calculated for each of the data sets shown in Fig. 1(b), if linear

theory remained valid. They increased over the probe propagation length if the probe

was amplified and decreased if the probe was extinguished. (b) The use of speckled

beams creates a distribution of IAW amplitudes, and most of the energy transfer is

mediated by IAW’s that are larger than the expected plane-wave value; consequently,

IAW saturation will impact CBET between speckled beams at lower average intensities

than CBET between plane-wave beams.

[19], the intensity distribution present in any speckled beam results in a distribution

of beat-wave amplitudes between two speckled beams. The probability function for

the local intensity of a speckled laser beam is[20] P (u) = e−u, where u = I/ 〈I〉
is the local intensity divided by the average. The local energy exchange between

two beams is proportional to the intensity product, ∆W ∝ I0I1. If correlations

between the speckle patterns of the two beams can be neglected over the length

of the CBET interaction region, the probability distribution for energy exchange is

given by the product distribution for the random variables I0 and I1, PW (∆W ) =
∫

∞

0
P (u1)P (∆W/u1)

1
u1

du1 = 2K0(2
√
∆W ), where Kν(x) is the modified Bessel function

of the second kind of order ν. Similarly, the density perturbation is proportional to the

square root of the intensity product, δn ∝
√
I0I1. Since a single beam’s probability

distribution for the square root of intensity is Psr(u) = 2ue−u2

, that of the product is

Pδn(δn) = 4
∫

∞

0
δn
u
e−(u2+δn2/u2)du = 4δnK0(2δn). Here, the plasma wave amplitude is

effectively normalized to the amplitude that would be expected for plane waves having

the same average intensity, δn = (δn/n)speckle/(δn/n)plane wave. The fraction of laser

energy exchanged in regions where the local exchange is less than some ∆Wmax is

fW (∆Wmax) =
〈∆W 〉∆W<∆Wmax

〈∆W 〉 =

∫ ∆Wmax

0
∆WPW (∆W )d∆W

∫

∞

0
∆WPW (∆W )d∆W

= 1− 2∆WmaxK0(2
√

∆Wmax)− 2
√

∆Wmax(1 + ∆Wmax)K1(2
√

∆Wmax).

(2)
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The fraction of laser energy can also be written in terms of the maximum density

perturbation because
√
∆Wmax ∝ δnmax:

fW (δnmax) = 1− 2δn2
maxK0(2δnmax)− 2δnmax(1 + δn2

max)K1(2δnmax). (3)

The results of this analysis are plotted in Fig. 4(b). The probability distribution of

the IAW amplitudes (normalized to the amplitude of the plane-wave case) is shown along

with its cumulative sum. This shows that, e.g., ≈ 70% of the IAW’s have an amplitude

less than the average plane-wave case, whereas ≈ 30% have an amplitude larger than

the plane-wave case and ≈ 5% of the IAW’s are more than a factor of 2 larger than the

plane-wave case. The cumulative fraction of energy transferred by IAW’s less than a

certain amplitude is also shown, which makes it clear that a disproportionate amount

of energy transfer occurs in the relatively small number of intense interactions (e.g.,

> 30% of the energy is tranferred by IAW’s with amplitudes at least 2× larger than the

expected plane-wave value). Therefore, nonlinearity will impact speckled beams earlier

than plane-wave beams when IAW amplitudes are near the saturation threshold.

Examining the data shown in Fig. 1(b) more closely, along with the trajectories

shown in Fig. 4(a), suggests that IAW amplitudes may be clamped at the δn/n ≈ 1 to

2% level. The modest reduction in gain at the IAW resonance peak for the 64-mJ injected

probe could be explained by saturation in IAW’s driven by the highest-intensity speckles

late in the interaction. Furthermore, even average-amplitude IAW’s were expected to

exceed such a level for the 250-mJ data; therefore the clamp would impact that data

more severely.

To confirm this analysis, CBET simulations were performed using the numerical

code VAMPIRE [21]. VAMPIRE is a fully 3-D propagation model that solves the

coupled mode equations for CBET in steady-state, using linear kinetic theory for the

IAW response. Laser intensity distributions in plasma are computed from the position

of stochastically distributed geometrical optics rays using a modified tesselation-based

estimator. The model reproduces intensity distributions of phase-plate-smoothed beams

down to speckle radii of approximately twice the real speckle radius. It also accounts

for laser refraction, the finite f/number of interacting beams, inverse Bremsstrahlung

absorption, and CBET per polarization component (although the real refractive index

component is neglected). The negligible effect of pump depletion was confirmed by

observing no significant difference between simulations that did or did not include pump

depletion.

Results from simulations that clamped IAW amplitudes at δn/n = 1.5% are

compared to the data in Fig. 5. Note that the wavelength axis for the data has been

shifted to account for the possible errors discussed above, which facilitates a comparison

of the peak gain in both data and simulations. The simulations matched all of the

data quite well, with the clamp having no effect for the lowest-energy incident probe,

a marginal effect for the mid-level case, and a dramatic effect on the highest-energy

incident beam, especially on the positive wavelength shift side (probe amplification), as

expected. The fact that such a large amount of data, with fairly different conditions in
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Figure 5. The experimental data were compared to simulations using VAMPIRE.

Including an IAW clamp of δn/n = 1.5% yielded good agreement with all data sets,

suggesting IAW’s were saturated at that level.

each case, was fit very well with a single clamp makes a compelling case that the clamp

is a realistic way of accounting for the IAW saturation.

Previous attempts to explain IAW saturation have invoked frequency detuning due

to kinetic nonlinear frequency shifts associated with trapped ions[22, 10], increased

Landau damping and/or frequency detuning due to ion heating[23, 24], nonlinear

damping associated with mode coupling to higher harmonics[25, 26, 27], and the two-

ion-wave decay instability[28, 29, 30]. The possible influence of these effects will be

considered in turn.

Frequency detuning from a kinetic nonlinear frequency shift does not seem to be

a plausible explanation for the saturation observed in this experiment. The magnitude

of the expected shift for the IAW amplitudes in question is expected to be quite small,

especially when including the contribution of trapped electrons as well as the trapped

ions[31]. The expected frequency shifts are unlikely to compete with the broad resonance

observed in this experiment due to the ion Landau damping provided by the hydrogen

ions[32].

Similarly, the already high ion Landau damping makes the interaction relatively

insensitive to ion temperature such that ion heating should not substantially alter the

gain. Also, if ion heating caused a shift in the resonance peak location, it would have

resulted in higher gain at larger frequency shifts between the pump and probe, which

was not observed.

The body of work on nonlinear damping associated with mode coupling is primarily

concerned with understanding the interplay between various instabilities. If another

instability drives a different IAW in the same volume of plasma, it could interfere with

the primary wave mediating CBET. However, this two-beam configuration limits the

number of plasma waves that are driven in the plasma, and to our knowledge no other
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plasma waves should be present. The pump remains the most energetic and intense

beam in the plasma, so there is no reason additional instabilities should be driven by

increasing the seed energy, unless they arise from decay of the primary IAW associated

with CBET.

Historically, the low apparent threshold for ion wave saturation observed in this

experiment would have ruled out the two-ion-wave decay instability according to fluid

theory, which says that the threshold should be proportional to the daughter waves’

damping rates, δn/nthr > 4(νIAW,1νIAW,2/ω
2
IAW,0)

1/2[30]. However, it was recently

noted that ions trapped by the primary wave can reduce the linear Landau damping

rate for both the primary wave and the daughter waves since they have similar

phase velocities[33]. In that work, Chapman et al. found, using 2D + 2V Vlasov

simulations, that the two-ion-wave decay threshold was exceeded for IAW amplitudes

of δn/nthr = 0.011 for a set of parameters for which previous estimates would have

suggested a threshold of δn/nthr = 0.04 to 0.09. The authors also discussed a similar

decay instability that they referred to as the “off-axis instability”, which was accessible

due to the multidimensional nature of the simulation. No threshold was identified for

this transverse instability. These instabilities could plausibly explain the IAW saturation

that we observed in the experiment.

Earlier work by Kirkwood et al. also employed frequency detuning in a quasi-

stationary plasma to measure CBET[34]. Although it was noted that gain stayed

constant with increasing probe intensities, suggesting that IAW’s remained linear up

to an amplitude of ≈ 1%, a seemingly conflicting statement was made that the linear

gain calculation was off by 20×. Recently, this work was revisited and the results

appeared to be much more consistent with linear theory[35]. More recent efforts to use

CBET to generate a high fluence beam reached similar conclusions as to the linearity

of low amplitude IAW’s[36].

4. Polarization Effects

As outlined in Ref. [15] and demonstrated in Refs. [16, 17], CBET is very sensitive to

the polarization of the interacting beams and can, in turn, strongly modify each beam’s

polarization. The data for the 27-mJ probe amplification at the positive and negative ion

acoustic resonance peaks are shown in Fig. 6(a). When the probe is blueshifted relative

to the pump, its horizontal polarization is extinguished such that the pump–plasma

system acts like a polarizer that passes only the vertical polarization (middle row)[17].

This effectively “rotates” the probe polarization, which becomes more orthogonal to the

pump as the extinction increases. Conversely, the probe rotates into alignment with the

pump when it is redshifted and amplified (bottom row).

Data from a different experiment are reproduced in Fig. 6(b). While the setup of

that experiment was very similar, one difference was that no phase plate was used in

focusing the probe (which is evident in the different focal-spot distribution). The pump

and plasma parameters were also different, as well as the incident probe polarization,
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Figure 6. Polarization manipulation due to CBET. (a) Resonant energy transfer at

the negative (positive) ion acoustic wave peak extinguished (amplified) the probe and

made the probe polarization more orthogonal (parallel) to the pump polarization. (b)

Non-resonant interactions were used to convert an elliptically polarized incident probe

into a nearly ideal circularly polarized beam without any energy transfer, which was

verified by using an additional quarter wave plate to restore a linear polarization.

which was elliptical with a phase delay of ≈ 38◦ between the horizontal and vertical

components. Wavelength tuning was not employed in that experiment, but the pump

intensity and plasma density were adjusted to control the birefringence resulting from

the nonzero real refractive index modulation. After tuning the pump–plasma system to

add a phase delay of ≈ 52◦, the probe became nearly ideally circularly polarized (middle

row). The fact that the probe was circular (rather than unpolarized, e.g.) was confirmed

by repeating the shot with an additional quartz quarter wave plate in the diagnostic to

add another 90◦ phase delay and recover a linear polarization (bottom row)[16].

These examples illustrate how a pump–plasma system can be used to give a

probe beam any arbitrary polarization through amplitude and/or phase changes. Such

polarization effects can become particularly complex when considering an environment

containing multiple beams in which each beam serves as both pump and probe relative

to all other beams present. An example is provided in Fig. 7, where each subfigure has

curves showing the total normalized vector potential, as well as the s- and p-components,

for each of the three beams. In this calculation, up to three beams intersect in the same

plane such that the crossing angle is 27◦ between beams 1 and 2 as well as beams 2

and 3, but 54◦ between beams 1 and 3. Relative to the intersection plane, beam 1 is
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Figure 7. CBET between up to three beams for beam/plasma parameters listed

in the text. (a) Beams 1 and 2 alone see no interaction due to their orthogonal

polarizations. (b) Beams 2 and 3 alone induce ellipticity in one another but no energy

transfer because they are off-resonant (frequency-degenerate). (c) Beams 1 and 3

alone exchange a modest amount of energy because they have different frequencies

and a small shared polarization component, but energy transfer saturates when the

polarizations become orthogonal. (d) When all three beams interact, there is a much

more dramatic reduction of beam 1 and associated amplification of beam 3, which

results from beam 2 acting as a mediator that rotates the beam 1 polarization and

thereby funnels more energy into a resonant interaction with beam 3.

s-polarized, beam 2 is p-polarized, and beam 3 is 10◦ away from p-polarized. Beam 1

has a wavelength of λ = 1053 nm, whereas λ = 1053.285 nm for beams 2 and 3. All

three beam intensities are I = 5 × 1013 W/cm2, and they interact over a distance of

4 mm in a fully ionized helium plasma with ne = 5 × 1019 cm−3, Te = 200 eV, and

Ti/Te = 0.1.

Figure 7(a) shows that nothing happens when only beams 1 and 2 are present

because their polarizations are orthogonal. Figure 7(b) shows a similar case in which

only beams 2 and 3 are present. Although their polarizations are nearly aligned, their

frequencies are also the same, so there is no energy transfer. They do, however, induce

ellipticity in one another as a result of the non-zero real refractive index modulation

and their slightly misaligned polarizations. These first two cases describe situations in

which the two beams would typically be considered “noninteracting.”

Figure 7(c) shows that when beams 1 and 3 are present, there is polarization
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rotation due to induced phase delay as well as energy transfer due to the imaginary

component of the refractive index perturbation. Essentially, the beams transfer energy

until they reach a state in which the remaining polarizations are orthogonal. The fact

that beam 3 (1) is amplified (extinguished) only modestly is due to the fact that the

polarizations are nearly orthogonal at the outset.

Now consider the case when all three beams are present [Fig. 7(d)]. Initially, only

a small fraction of beam 1 is transferred to beam 3 as in case (c), but by inducing

a phase delay in beam 1, beam 2 acts as a mediator that funnels more energy into

a resonant interaction with beam 3. This leads to a much more dramatic extinction

of beam 1 and associated amplification of beam 3, and all the while the amplitude of

beam 2 remains approximately constant. This illustrates that polarization effects can

have a dramatic influence on CBET in a multiple-beam configuration, and that even

off-resonant interactions can have a large impact on resonant energy transfer.

5. Conclusions

Various forms of crossed-beam energy transfer occur in both direct- and indirect-drive

ICF, so a proper accounting of CBET is necessary to accurately model ICF implosions.

Recent pump–probe experiments in a quasi-stationary plasma using wavelength tuning

to control CBET have been performed to validate the linear theory calculations that

are used. These experiments have shown that linear theory appears to be valid for an

isolated two-beam interaction with IAW amplitudes up to δn/n ≈ 1.5% (which are larger

than those expected in ICF experiments[23]), but IAW saturation seems to occur beyond

this level. The saturation appears to be consistent with recent work using 2D + 2V

Vlasov simulations to investigate the two-ion-wave decay instability[33]. Polarization

effects of CBET were also reviewed in detail, and it was shown that polarization can

have surprising consequences in a multibeam configuration.
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