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Abstract: We report the first single diamond cubic phase in a liquid crystal. This skeletal 

structure with Fd3;¯m space group is formed by self-assembly of bolaamphiphiles with 

swallow-tailed lateral chains. It consists of bundles of π-conjugated p-terphenyl rods fused 

into an infinite network by hydrogen-bonded spheres at tetrahedral four-way junctions. We 

also present a quantitative model relating molecular architecture with space-filling 

requirements of six possible bicontinuous cubic phases, i.e. single- and double-network 

versions gyroid, diamond and “plumbers nightmare”. 

 

Among the most intriguing self-assembled nano- and mesoscale soft matter structures are the 

cubic phases formed by lyotropic and thermotropic liquid crystals (LCs), by block 

copolymers1 , 2  and by nano-particle arrays.3 , 4 , 5 Two classes of cubic phases can be 

distinguished, the “bicontinuous” and the “micellar” types.6,7 The micellar phases represent 

periodic arrays of spheres on a cubic lattice, whereas the bicontinuous phases are more 

complex and usually formed by two networks divided by a minimal surfaces with constant 

mean curvature. Depending on the symmetry, the double gyroid (DG, Ia3;¯d, Q230), the 

double diamond (DD; Pn3;¯m, Q224) and the body centered plumbers nightmare (“double 

primitive”) cubic phases; DP; Im3;¯m, Q229) with valencies of the junctions being ν = 3, 4 and 

6, respectively, can be distinguished (Fig. 1a-c). 
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Figure 1. a-c) The three double network cubic phases with their infinite minimal surfaces 
(green) separating the two networks and d-f) the corresponding single networks8  with 
abbreviations and corresponding space groups. The space groups in a-c) refer to structures 
where the two networks are identical (brown = blue); were they different (alternating double 
networks), the space group would be the same as in the corresponding single networks. 
 

In contrast to these double network structures, there is also a structure formed by three 

networks9 and the corresponding structures composed of only one network (SG = I4132, Q214; 

SD = Fd3;¯m, Q227; and SP = Pm3;¯m, Q221 see Fig. 1d-f). The latter three are extremely rare 

and only known as solid-state structures, whereas they are considered as metastable in soft 

matter. They are of special interest for their extraordinary photonic properties;10,11 e.g. the 

single gyroid (Fig. 1d) and the single diamond (Fig. 1e) were found responsible for the 

structural color of biophotonic structures in butterfly wing scales and some beetle shells.12,13 

Due to their unique photonic properties they are of special interest for metamaterials and other 

photonic applications.11, 14  Solid state single network structures have been produced by 

holographic lithography or by selective deposition using a double network template,14,15,16 but 

no direct formation of a single network in a strict bottom-up self-assembly process has been 

reported so far. Only the so-called alternating double network DG structure in which the two 

networks are different and which therefore has the same space groups I4132 as the related 

single network structure has been reported for ABC triblock copolymers.14,17 Neither a related 

alternating DD structure, nor the SD structure (Fig. 1e), both with Fd3;¯m symmetry, have yet 

been reported in self-assembled soft matter. 

 

Figure 2: Self-assembly of polyphilic rods into coaxial bundles and liquid crystalline 
networks. 
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Here we report the first example of a liquid crystalline (LC) single diamond network phase 

with space group Fd3;¯m, self-assembled from bottom up and belonging to the so-called 

coaxial rod-bundle phases.18, 19, 20, 21 These phases were found for π-conjugated rod-like 

molecules with sticky ends (e.g. glycerols) and bulky alkyl or perfluoroalkyl chains attached 

to one of the sides (Fig. 2, left). The π-conjugated rods form bundles (Fig. 2, middle) which 

are interconnected by two-, three- or four-way junctions. Whereas two-way junctions lead to 

infinite chains (columns) which organize on a hexagonal lattice,21 three- or four-way junctions 

give rise to the DG network (Ia3;¯d, Fig. 2, right)18,20 and the DD network (Pn3;¯m),19 

respectively. In all cases the lateral chains fill the space between the columns or networks. In 

the double network structures the number of consecutive bundles between the junctions is 

limited to integer numbers, either two18,19 or only one.20 In order to obtain new types of rod 

bundle phases compounds 1/14 - 1/22 with swallow tailed lateral alkyl chain, shown in the 

formula in Tab. 1, have been synthesized as described in the Supporting Information (Scheme 

S1). The observed phase sequences and transition temperatures are collated in Table 1. 

 

Table 1: Molecular structure and phase transition temperatures of compounds 1/n. [a] 

 

 

 

1/n 
T/°C 

[ǻH/kJmol-1]  
acub /nm 
(T/°C) 

1/12 Cr 82 [8.1] p2 118 [2.3] Ia3; d̄ 143 [1.3] Iso 7.73 (130) 
1/14 Cr 104 [30.8] LamSm 108 [2.2] Ia3; d̄ 161 [1.3] Iso 7.71 (130) 
1/16 Cr 78 [18.6] LamSm 114 [4.0] Ia3; d̄ 160 [2.1] Iso 7.71 (120) 
1/18 Cr 65 [12.8] LamSm 104 [3.4]Fd3;¯m 136 [0.7] Iso 6.39 (110) 
1/20 Cr 54 [42.9] Fd3;¯m 160 [2.7] Iso 6.32 (150) 
1/22 Cr 61 [51.7] Fd3; Ēm 172 [3.9] Iso 6.32 (160) 

 
[a] determined by DSC second heating scan, 10 Kmin-1. Abbreviations: Cr = crystalline solid, 
Fd3;¯m = SD cubic phase with Fd3;¯m symmetry; Id3; d̄ = DG cubic phase with Id3; d̄ 
symmetry; p2 = honeycomb LC phase with p2 lattice; 22 LamSm = lamellar phase with 
coplanar bundles and periodicity in the layers;23 Iso = isotropic liquid; for DSCs, see Fig. S1, 
Tables with XRD data, see Tables S1 and S2. 
 

On cooling from the isotropic liquid state a sudden increase in viscosity, associated with a 

transition enthalpy of 2.2-4.0 kJ mol-1 is observed for all 1/n compounds, though the samples 

remain optically isotropic. This is a first indication of the formation of a cubic phase. For 

compounds 1/12-1/18 this cubic phase is replaced by an additional birefringent LC phase on 

further cooling, whereas the long chain compounds 1/20 and 1/22 crystallize; herein the focus 

is exclusively on the cubic phases. The LC nature of the isotropic mesophases was confirmed 
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by the diffuse scattering in the WAXS region with a maximum around d = 0.46–0.47 nm (see 

insets in Fig. 3 and Fig. S4d). This indicates that the individual molecules do not have fixed 

positions and therefore only a mean distance is recorded. 

For compounds 1/12-1/16 the SAXS pattern can be indexed to a cubic phase with space group 

Ia3; d̄ and acub around 7.6 nm, being in line with a DG structure formed by bundles of rods, 

with junctions one molecular length apart (see Figs. 3, S2, S3 and Table S1).20 As the length 

of the side-chains is increased in compounds 1/18-1/22, the SAXS pattern changes. The series 

of sharp reflections with 1/d-values in the ratio √3: √8: √11: √12: √16: √19…etc. can again be 

indexed to a cubic phase, but this time with space group Fd3;¯m and with the lattice 

parameter acub = 6.39 nm (see Figs. 3, S4 and Table S2). From 1/18 to 1/22 (Table 1) acub 

remains almost unchanged, in agreement with the proposed network structure with fixed inter-

junction distance; any increase in molecular volume can be compensated by a reduction in the 

average number of molecules in a bundle. Electron density (ED) maps, constructed from 

diffraction intensities, are shown in Fig. 4. The method of selecting the correct phase 

combination is described in Section 2.3 of SI. Note that correct selection was facilitated here 

by being able to compare ED histograms of members of a homologous series of compounds 

(here 1/18 and 1/22), i.e. applying a version of the isomorphous replacement technique.24 In 

Fig. 4 the green isoelectron surface encloses the high ED space, filled mainly by the aromatic 

cores and the glycerol groups, while the low density region (orange/red) contains the 

branched alkyl chains. The ED maps clearly show a single network with tetrahedral four-way 

junctions, as expected for a single diamond net (Fig. 4a). The low ED (red to orange) between 

the networks confirms the absence of a second intercalated network (Fig. 4b). 
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Figure 3: Representative SAXS patterns with indexation; top: Ia3; d̄ phase (DG) of 1/16 and 
bottom: Fd3;¯m phase (SD) of 1/20), the insets show the corresponding WAXS (see also Fig. 
S4d). 
 

As the distance between the junctions in a SD structure is (31/2 acub)/4 ≈ 2.77 nm,25 which is 

only slightly larger than the measured molecular length between the ends of the glycerol 

groups (Lmol = 2.50 nm),20,22 it follows that a network segment contains a single molecular 

bundle. That the distance between junctions is slightly longer than the molecular length is due 

to the relatively large size of the spheres formed by 4x10=40 glycerol units 

Furthermore, the total number of molecules in a unit cell ncell is calculated according to 

Vcell/Vmol = acub
3/Vmol where Vmol is molecular volume (for calculation see SI). For 1/18 we 

obtain ncell ≈ 157. Considering that a unit cell contains 16 network segments, each bundle 

contains about 10 (9.8) molecules (Table S4). This value is close to the value of about 12 

molecules side-by-side in a bundle that was reported for the DG and DD type skeletal cubic 

phases, including the DG phase of compounds 1/12-1/16 (Table S3).18,19,20,21 Similar values 

were also obtained for 1/20 and 1/22 (see Table S4). Thus, the formation of a cubic phase 

with a single diamond network consisting of single bundle segments is confirmed. 

 

 
Figure 4: Reconstructed ED maps a) with the isoelectron surface enclosing (a) the high and 
(b) the high (green) and low (red) ED areas of the single diamond network (phase 
combination 0ππ000πππ0) of the Fd3;¯m phase of compound 1/18. 
 

In the series of compounds 1/n, as n is increased DG is replaced by SD, which is in line with 

the increased internetwork space made available after removing one of the networks. But why 

is a SD structure formed instead of the SG, or DD? To explain this we have calculated the 

theoretical dV/dr distribution curves for the DG, SG, DD, SD, DP and SP phases (Fig. 5). 

Here V(r) is that part of the unit cell volume that is within a distance r of the closest network 

segment.9,19 This dV/dr curve should match the radial distribution of side chain volume of the 

molecule for efficient space filling. For comparison between different phases, it is assumed 

that in all phases the length of the segment is the same and equal to 1. Fig. 5 shows clearly 

how for the double network phases DG, DD and DP, dV/dr increases with increasing r and 

(a) (b) 
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then decreases abruptly close to the minimum surface, where the side chains originating from 

the two interpenetrating networks clash. At the same time, for single network phases, while 

the first part is exactly the same as in the corresponding double network phases, in the second 

part the decrease in dV/dr happens much more gradually. For the DG structure, the dV/dr 

value drops from maximum to 0 between r = 0.6 and 0.722. This converts to 1.7 – 2.0 nm for 

the series of compounds discussed here, the limit that seems to be reached for side-chains in 

compound 1/16 whose extended length is only 2.3 nm. In contrast, the dV/dr curve for the SD 

structure is smoother and extends to larger r distances; it starts to decrease already after r = 

0.4 (~1.1 nm) but drops to 0 only at r = 0.943 (~2.6 nm), allowing the accommodation of 

longer chains. As it happens, the extended chain length of 1/18, the first member to adopt the 

SD phase, is exactly 2.6 nm. In contrast, for SG structure the dV/dr curve extends much 

further, to rmax = 1.299 (~3.6 nm), a distance unreachable by the side-chains of any of the 

compounds in the current series. Going the other way, toward shorter side-chains, by the same 

logic one would expect to see the DD beside DG. Indeed, a DD phase has been reported for 

the shortest-chain member of another series of bolaamphiphiles beside the DG phase formed 

by the corresponding longer homologues.19 Overall, the dV/dr curves in Fig. 5 suggest a phase 

sequence DP  DD  SP  DG  SD  SG with increasing length of the side chains 

 

Figure 5: Radial distribution of volume functions dV/dr for DG, SG, DD, SD, DP and SP 
phases, where segment volume V(r) is the volume in the unit cell that are closest to a network 
segment and within a distance r. The curves show the increase in occupied volume as the 
radius (r) of the network segments increases. For comparison between different phases the 
lengths of the network segments for all phases are normalized to be 1. The areas under the 
curves are the unit cell volumes (Vcell) divided by the number of network segment per unit cell 
(ncell, see Tables S3,S4), and the molecular volume multiplied by the number of molecules per 
bundle. The molecular cross sectional area profile A(r) should match with dV/dr of the 
considered phase for efficient space filling. 

 

Even after adding the core radius of 0.45 nm to the 2.6 nm all-trans length of the 1/18, side-

chain, significant entropically unfavorable stretching is required for it to reach the distant 
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space around r = 2.5 nm. This manifests itself in the lowest-ED spheres (red) with reduced 

chain packing density in the alkyl chain continuum (Fig. 4b). The fact that the isotropization 

temperature Ti of the SD phase increases from 130 °C for 1/18 to 172 °C for 1/22 (Table 1) is 

in agreement with the stabilization of the phase in compounds with longer chains that can 

more easily fill the depleted distant spots in the aliphatic continuum. Noteworthy, recent 

coarse-grain simulations suggested a sequence SP – SD – DG upon increasing side chain 

volume,26 which is different from the experimentally observed sequence in 1/n and the 

prediction of the dV/dr model.  

 

 

Figure 6: Models showing a) the micellar Fd3;¯m cubic phase27,28 and b) the new SD 
bicontinuous cubic phase of compounds 1/18-1/22. 

 

The Fd3;¯m phase reported here (Fig. 6b) has a different structure than the previously 

reported Fd3;¯m type cubic phase in lyotropic lipid systems27  and polymers,28  which 

represent the Laves C15 phase (MgCu2-type) composed of two types of micelles (Fig. 6a). 

Moreover, this SD phase (Fig. 6b), as well as the DG and DD cubic rod-bundle phases (Fig. 

2)18,19 are considered to constitute a new class of cubic phases, being bicontinuous with 

respect to the network embedded in the continuum of lateral chains, but micellar if only the 

segregated polar spheres at the junctions are considered (Fig. 6b). Based on this design 

concept new types of single network and even more complex cubic phases can be expected in 

the future.10 
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