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Abstract—Smart meters enable improvements in electricity
distribution system efficiency at some cost in customer privacy.
Users with home batteries can mitigate this privacy loss by
applying charging policies that mask their underlying energy
use. A battery charging policy is proposed and shown to
provide universal privacy guarantees subject to a constraint
on energy cost. The guarantee bounds our strategy’s maximal
information leakage from the user to the utility provider under
general stochastic models of user energy consumption. The
policy construction adapts coding strategies for non-probabilistic
permuting channels to this privacy problem.

I. INTRODUCTION

Smart meters (SMs) provide advanced monitoring of con-

sumer energy usage, thereby enabling optimized management

and control of electricity distribution systems [1]. Unfortu-

nately, the data collected by SMs can reveal information about

consumers’ activities. For instance, an individual’s energy

usage pattern may leak information about the times at which

they run individual appliances [2]. Two approaches have

been proposed to tackle the privacy threat posed by such

information leakage. One strategy involves manipulating user

data before sending it to the utility provider (UP) [3]; this

approach improves privacy at the cost of reduced operational

insight for the UP. The other strategy employs rechargeable

batteries at each consumer site to try to decouple energy

usage from energy requests [4]; allowing devices to run off

of either the battery or the UP and allowing the battery to

charge at times of both activity and inactivity improves privacy

at the cost of introducing individual batteries and, potentially,

increasing consumer costs (e.g., if energy is requested when

it best conceals the consumers’ usage without regard to the

energy bill). This paper investigates the latter approach.

Understanding the privacy implications of any strategy

requires an appropriate privacy metric. A variety of metrics

are used to study privacy in energy distribution systems.

These include statistical distance metrics [4], differential pri-

vacy [5], distortion metrics [6], and information metrics like

mutual information, which can be applied under a variety

of assumptions on users’ energy, including i.i.d. [7], [4],

[8], [9], [10], stationary [11], [12], and first-order time-

homogeneous Markov random processes [13]; see [14] for

a comprehensive review. Alternative privacy metrics such as

maximal leakage [15] have operational descriptions and relate

to information measures like Sibson mutual information; its

generalization, maximal α-leakage [16], establishes additional

relationships to Arimoto mutual information, mutual informa-

tion, and Renyi entropy [15], [16]. Many of these measures

can be understood as measures of an adversary’s ability to gain

insight into an unknown random variable X by observing Y ,

with measures differing only in the loss functions they use to

quantify that insight [16].

We here use mutual information to measure privacy both be-

cause its interpretation in terms of an adversary that minimizes

log-loss with respect to an evolving soft-decision model [16]

is well-matched to the evolving nature of energy distribution

over time and because mutual information provides a useful

bridge to adjacent fields such as hypothesis testing [17],

estimation [18], and learning [19].

Since user energy consumption may be non-stationary, we

seek privacy guarantees that apply across general random pro-

cess models of energy consumption. Moreover, given that no

battery can store unlimited energy, we impose finite capacity

bounds on batteries. We therefore model the energy manage-

ment unit (EMU) as a deterministic finite-state channel. We

then adapt the Ahlswede-Kaspi coding strategy proposed for

permuting channels [20] to the SM privacy setting. This work

generalizes the battery policy proposed in [21] by including

the price of the energy requested from the grid and minimizing

information leakage subject to a bound on the resulting energy

bill.

We denote vectors by bold letters, e.g. x, and random

variables by uppercase letters, e.g. X . The operator σ(·)
denotes the sum over vector elements, e.g. σ(x) =

∑

i xi.

Intervals on the integers are denoted by double brackets, e.g.

Ja, bK = {a, a+1, . . . , b−1, b}. The n-fold cartersian product

of the interval is denoted by Ja, bKn = Ja, bK × . . . × Ja, bK.

Given a vector x of size n and a set of indices A ⊆ J1, nK, we

denote by xA the vector xA = {xi : i ∈ A}. The support of

the probability distribution PX is denoted by supp(PX), and

the positive part operator is (a)
+
= max(0, a).

II. ENERGY MANAGEMENT SYSTEM WITH A FINITE

BATTERY MODEL

Figure 1 depicts an energy management system and the

random processes therein. The privacy guarantee is defined in

terms of the information leakage from the user to the provider,

and the task of the EMU is to choose a battery policy that

minimizes the leakage while satisfying the operation and cost

constraints. Formal definitions follow.

We model user energy consumption as a discrete-time

random process Xn on alphabet Xn = J0, αKn. The random
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Fig. 1. Energy Management System with Finite Battery Model

variable Xi describes the energy consumed by the user at time

step i with i = 0, 1, ..., n − 1. For exposition simplicity we

assume X ⊆ Z; the results generalize to arbitrary discrete

alphabets. We use PXn ∈ PXn to denote the energy consump-

tion pattern distribution, where PXn is a fixed family of such

distributions. Since user energy consumption profiles tend to

exhibit non-stationarities [4], PXn may contain non-stationary

random processes.

The EMU maps consumption sequence Xn ∈ Xn to a

request sequence Y n ∈ Yn using a battery policy PY n|Xn

that is not allowed to vary with Xn; random variable Yi

describes the energy requested from the UP at time step

i = 0, 1, ..., n−1. We again focus on integer random variables

(Y ⊆ Z) for simplicity. We require Y ⊇ X so that the UP can

satisfy the user’s energy consumption even when no battery

is available. We allow Y to contain negative values to model

scenarios where users can sell energy back to the grid.

To be considered feasible, battery policy PY n|Xn must

create a request sequence that meets the energy demands of

the user and does not request energy it cannot use or store. Let

β denote the finite capacity of a given battery (in energy units)

and Si denote the amount of energy stored in that battery, the

“energy state,” at time i. Then Si takes values in S = J0, βK
and is governed by the charging dynamics

Si = s0 +
i−1∑

k=0

Yk −
i−1∑

k=0

Xk, (1)

where s0 ∈ S is the initial battery state. A power outage

occurs when Si + Yi −Xi < 0; energy is wasted when

Si + Yi −Xi > β. Under this model, the battery resembles a

box, energy units resemble balls that can be inserted (stored)

and removed (consumed), and the set Yn(s0,x) of feasible

requests, defined formally below, contains all sequences of

insertions and removals allowed by the box. This feasibility

constraint resembles [20][Eq. 2.4] from the work of Ahlswede

and Kaspi; this link is studied in [21].

Definition 1: Given a battery with initial state s0 ∈ S
and capacity β, the set of feasible energy requests for energy

consumption sequence x ∈ Xn is

Yn(s0,x)
∆
= {y ∈ Yn : si ∈ J0, βK ∀ i ∈ J0, nK}. (2)

The set of feasible battery policies is

Ω(s0)
∆
={PY n|Xn:supp(PY n|Xn=x)⊆Yn(s0,x) ∀ x∈Xn}. (3)

Our aim in feasible policy design is to minimize privacy

subject to a constraint on policy cost. Towards this end,

we next define our measures of information leakage (where

privacy is high when information leakage is low) and cost.

We measure a battery policy’s information leakage by its

worst-case performance.

Definition 2: The information leakage of policy PY n|Xn is

Ī(PY n|Xn) = max
PXn∈PXn

1

n
I(Xn;Y n). (4)

We measure the cost of a policy PY n|Xn as the difference

between the user’s energy bill under that policy and the user’s

energy bill under the feasible battery policy that minimizes the

energy bill. (Under this definition, cost can be negative only

for infeasible policies.) To calculate energy bills, we model

the energy market price as a deterministic sequence, m ∈ R
n

.

Under this definition, the cost of an energy request sequence

y is m
T
y. We assume that the market price is constant over

each of K blocks of time. The price and duration of the k-th

block, k = 0, 1, . . . ,K−1, are mk and lk, respectively, giving

m = (m0, . . . ,m0
︸ ︷︷ ︸

l0

,m1, . . . ,m1
︸ ︷︷ ︸

l1

, . . . ,mK−1, . . . ,mK−1
︸ ︷︷ ︸

lK−1

). (5)

Definition 3: Consider an EMU with battery capacity β,

initial state s0 ∈ S , and market price m. The system cost of

energy consumption sequence x ∈ Xn under battery policy

PY n|Xn is

g(Y n,x) = EPY n|Xn=x

[mTY n −m
T
y
∗(x)], (6)

where y
∗(x) = argmin

y∈Yn(s0,x) m
T
y. For any ∆ ≥ 0, the

set of feasible ∆-affordable battery policies is

Γ(∆)
∆
=

{
PY n|Xn ∈ Ω(s0) : g(Y

n,x) ≤ ∆ ∀ x ∈ Xn
}
. (7)

Finally, the privacy-cost function defines the optimal trade-

off between privacy and cost achievable by feasible battery

policies.

Definition 4: Given an EMU with battery capacity β, initial

state s0 and market price m, the privacy cost function is

defined, for each ∆ ≥ 0, as

I(∆)
∆
= min

PY n|Xn∈Γ(∆)
Ī(PY n|Xn). (8)

To bound I(∆), we adapt techniques developed by

Ahlswede and Kaspi [20] from channel capacity to privacy-

cost. While the resulting solution employs a non-causal battery

policy, detailed analysis of [20] shows that knowing just β+1
time steps ahead suffices to achieve optimality, where β is the

battery capacity. Thus, we envision practical implementations

that rely on consumption predictions. This approach also

provides insight on what prediction capabilities are needed.
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III. GEOMETRY OF THE FEASIBLE SETS

A. Shared Output Sequences

Lemma 1 characterizes a necessary and sufficient condition

under which a set A of input pairs (s0,x) share a common

feasible output sequence yA. Such shared output sequences are

good for privacy since a UP that sees yA cannot distinguish

which input pair (s0,x) ∈ A caused it. Conversly, when two

inputs (s0,x), (ŝ0, x̂) share no feasible output yA, the EMU

cannot hide from the UP which pair caused the request. The

following measure of distance is useful for that analysis.

Definition 5: The distance between two input pairs

(s0,x), (ŝ0, x̂) ∈ S × Xn is defined as

dn

(

(s0,x),(ŝ0,x̂)
)

= max
i∈J0,n−1K

∣
∣
∣

(
s0−σ(xi)

)
−
(
ŝ0−σ(x̂i)

)
∣
∣
∣. (9)

Lemma 1 shows that the distance between input pairs

determines the existence of a shared feasible output y. The

result emphasizes the central role that battery capacity β plays

in privacy.

Lemma 1: Let A denote a subset of the input pair alphabet

S × Xn. The following two statements are equivalent.

a) The distance between every two pairs (s0,x), (ŝ0, x̂) ∈ A
is less than or equal to the capacity of the battery, i.e.

dn

(

(s0,x), (ŝ0, x̂)
)

≤ β for all (s0,x), (ŝ0, x̂) ∈ A. (10)

b) All sequences in A share a feasible request yA, i.e.

yA ∈
⋂

(s0,x)∈A

Yn(s0,x). (11)

Proof: Let the sequence yA be such that for all i:

σ(yi
A) = − min

(s0,x)∈A
(s0 − σ(xi)). (12)

Thus, for any (ŝ0, x̂) ∈ A, the battery state at time i+ 1 is

si+1 =(ŝ0−σ(x̂i))− min
(s0,x)∈A

(s0−σ(xi)). (13)

Now dn
(
(s0,x), (ŝ0, x̂)

)
≤ β implies that si+1 ∈ J0, βK for

all i, so yA is a feasible sequence. The converse follows since

for any sequence y and any two input pairs (s0,x), (ŝ0, x̂) ∈
A such that dn

(
(s0,x), (ŝ0, x̂)

)
> β, the absolute difference

between the corresponding battery states at some time step i
satisfies

∣
∣si+1 − ŝi+1

∣
∣ =

∣
∣(s0 − σ(xi))− (ŝ0 − σ(x̂i))

∣
∣ > β. (14)

Thus si+1 and ŝi+1 cannot both belong to S = J0, βK. �

B. Cardinality bounds

Building on Lemma 1, Theorem 1 gives an upper bound on

the number of distinguishable input pairs (s0,x
n) ∈ S0×Xn,

where S0 ⊆ S is the set of possible initial battery states. The

result is derived by building a covering {Ai} of S0 ×X such

that all input pairs in each Ai share a common feasible request

yi. The result shows that the minimal time λ
∆
= ⌊(β + 1)/α⌋

needed to fully discharge a battery of capacity β under max-

imal consumption α
∆
= maxX is a central parameter in the

construction of privacy preserving battery policies. The proof

is inspired by the code construction presented by Ahlswede

and Kaspi [20, Proposition 1].

Theorem 1: Let the input alphabet be S0 × Xn, with S0

and S0 denoting the maximum and minimum values of S0,

respectively. There exists a set of request sequences Vn(S0) ⊆
Yn such that

log
∣
∣Vn(S0)

∣
∣ ≤

⌈

n−
⌊
(β + S0 − S0)/α

⌋

λ

⌉

. (15)

Moreover, for every input pair (s0,x) ∈ S0×Xn, at least one

sequence v ∈ Vn(S0) is feasible, that is

Yn(s0,x) ∩ Vn(S0) 6= ∅. (16)

Proof: At time step i, the value of s0−σ(xi) for any input

pair (s0,x) ∈ S0 ×X i with X = J0, αK is bounded by

S0 − iα ≤ s0 − σ(xi) ≤ S0. (17)

At time step l =
⌊
(β + S0 − S0)/α

⌋
, the distance between

any two input pairs (s0,x), (ŝ0, x̂) ∈ S0 ×X l is bounded by

dl

(

(s0,x), (ŝ0, x̂)
)

≤ S0 − (S0 − lα) ≤ β. (18)

Therefore, Lemma 1 guarantees the existence of a request y0

that is feasible for every input pair in S0 × X l. Following a

similar reasoning, consider the set of possible input pairs dur-

ing the subsequent λ times steps, i.e. S×X λ with S = J0, βK.

Define a cover of the input alphabet, S × X λ ⊆ (A1

⋃
A2),

with subsets given by

A1 =
{
(s0,x) ∈ S × X λ : s0 − σ(x) ∈ J0, βK

}
, (19)

and

A2 =
{
(s0,x) ∈ S × X λ : s0 − σ(x) ∈ J−λα,−1K

}
. (20)

Note A1

⋃
A2 contains all sequences in S×X λ as (17) implies

that s0 − σ(x) ∈ J−λα, βK. The distance between any two

input pairs in Ai with i = 1, 2 is bounded by β. Therefore,

by Lemma 1, there exists a shared feasible sequence yi for

all pairs in Ai. Setting κ = ⌈(n− l)/λ⌉ and

Vn(S0)={y0}×{y1,y2} × ...× {y1,y2}
︸ ︷︷ ︸

κ

(21)

completes the proof. �

To map input pairs (s0,x) to energy request in Vn(S0) it

suffices to forecast, at the start of each block of length λ,

whether the battery will deplete during the current block, i.e.

s0 − σ(xλ) ≶ 0. In [22], it is shown that the upper bound

in Theorem 1 is tight. The construction of the set of request

sequences given by (21) describes the forecasting capabilities

required to implement optimal battery policies.
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C. Impact of the Output Alphabet on Information Leakage

Lemma 2 shows that the privacy cost function I(∆) does

not vary when the EMU operates with a constrained output

alphabet Yc. This result is consistent with prior results reported

for privacy based on hypothesis testing [23, Theorem 1] and

multi-user scenarios [24, Theorem 2].

Lemma 2: Define output alphabet Yn
c = J−β/l, β/l + αKn

where l = mink lk and lk is the length of the k-th market

price period as defined in (5). Let I(∆) and Ic(∆) represent

the privacy-cost functions under output alphabets Yn and Yn
c

for any output alphabet Yn ⊃ Yn
c . Then

Ic(∆) = I(∆). (22)

Proof: Let Γ(∆) and Γc(∆) denote the set of feasible ∆-

affordable battery policies under output alphabets Yn and Yn
c .

It follows from [22] that a function F : Yn → Yn
c exists such

that if PY n|Xn ∈ Γ(∆) then F ◦ PY n|Xn ∈ Γc(∆). Noting

that the function F induces the Markov chain

Xn → Y n → F (Y n) (23)

yields I(Xn;Fn(Y
n)) ≤ I(Xn;Y n) by the data pro-

cessing inequality. The converse follows by noting that

Γc(∆) ⊆ Γ(∆). �

We note that the proof for the existence of the function F
presented in [22] requires forecasting of l time steps ahead.

IV. UNIVERSAL PRIVACY BOUNDS

In the following, we bound the information leakage given

in Definition 4. We first study the case for which only the

feasibility constraint is imposed.

Theorem 2: The privacy cost function I(∞) is bounded by

I(∞) ≤
1

n

⌈
n− ⌊β/α⌋

λ

⌉

. (24)

Proof: Theorem 1 shows the existence of a set Vn({s0})
with cardinality bounded by

log|Vn({s0})|≤

⌈
n−⌊(β+s0−s0)/α⌋

λ

⌉

=

⌈
n−⌊β/α⌋

λ

⌉

, (25)

such that the intersection Vn({s0}) ∩ Y(s0,x) is not empty

for every input pair (s0,x). Letting the output Y n take values

in Vn({s0}) ∩ Y(s0,x) completes the proof. �

Theorem 3 presents our main result, where we bound the

information leakage for arbitrary cost constraints ∆. The proof

proceeds by constructing a battery policy that combines two

components for every request sequence. One of the compo-

nents guarantees the feasibility constraint, while the other

guarantees the cost constraint.

Theorem 3: Consider an EMU with battery capacity β,

initial state s0, market price m, and output alphabet Yn

satisfying Yn
c ⊆ Yn with Yn

c defined in Lemma 2, then

I(∆) ≤ I(∞) + IΓ(∆), (26)

where

IΓ(∆) = min
P

Ŝγ |Ŝω
∈Γω(∆)

max
P

Ŝω
∈P

Ŝω

1

n
I(Ŝγ − Ŝω; Ŝω). (27)

Here Ŝω and Ŝγ are random processes in J0, βKK with joint

distribution determined by

Γω(∆) =
{

PŜγ |Ŝω
: E(Ŝγδ) ≤ ∆− βσ((δ)+)

}

, (28)

where δ ∈ Z
K

denotes the vector of market price differences,

with entries given by δ0 = −m0, δk = mk−1 −mk for k =
1, 2, . . . ,K − 1 and δK = mK−1.

Proof: We prove the result for Yn = Z
n

; Lemma 2

generalizes the proof for every Yn satisfying Yn
c ⊆ Yn. The

proof follows by dividing the optimization process into two

steps. In the first step, we present a battery policy ω such that

the resulting request sequence V n
ω satisfies the power outage

and energy waste constraints, i.e., ω ∈ Ω(s0) as defined in

(3). These policies are discussed on Theorem 2. In the second

step, we define a random vector V n
γ such that Y n = V n

ω +V n
γ

also satisfies the cost constraints. Specifically, we set

V n
γ =

∑

t∈T

(

(et − et+1)(Sγ − Sω)t

)

, (29)

where T denotes the ordered set of time steps at which a

market transition takes place, i.e., T = {0, l0, l0+l1, . . . , n−1}.

This implies that

g(Y n,x)= E[(Sγ)T δ +m
T
x−m

T
y
∗(x)] (30)

= E[(Sγ)T δ] + βσ((δ)+), (31)

where (30) follows by (29) and the battery charging dynamics

(1) and (31) follow by noting that Yn = Z
n

. Selecting the

transformation γ determining (Sγ)T from the set described in

(28) yields

I(Xn;Y n) ≤ I(Xn;V n
ω ) + I(Xn;V n

γ |V n
ω ) (32)

= I(Xn;V n
ω ) +H(V n

γ |V n
ω )−H(V n

γ |V n
ω , Xn, Sω) (33)

= I(Xn;V n
ω ) +H(Sγ − Sω|V

n
ω )−H(Sγ − Sω|Sω) (34)

≤ I(Xn;V n
ω ) + I(Sγ − Sω;Sω), (35)

where (33) follows as Xn and V n
ω determine Sω by the battery

charging dynamics (1); (34) follows by (29) and noting that

Sγ − Sω is independent of V n
ω and Xn given Sω . Thus

nI(∆) = min
PY n|Xn∈Γ(∆)

max
PXn

I(Xn;Y n) (36)

≤ min
γ∈Γω(∆)

min
ω∈Ω(s0)

max
PXn

(

I(Xn;V n
ω ) + I(Sγ − Sω;Sω)

)

(37)

≤ min
ω∈Ω(s0)

max
PXn

I(Xn;V n
ω )+ min

γ∈Γω(∆)
max
PSω

I(Sγ−Sω;Sω). (38)

This completes the proof. �

While direct computation of the information leakage in (8)

relies on finding an n-dimensional joint distribution satisfiying

Γ(∆), the bound presented in (26) relies on a K-dimensional

distribution and the simplified version of Γ(∆) defined in (28).

This significantly eases the computation of the information

leakage as described in Section V. Note also that (27) implies

that IΓ(0) ≤ |Sω| = K/n log2(β+1) and IΓ(∆) = 0 for any
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Fig. 2. Upper and lower bounds on the privacy cost function as a function
of the privacy budget.

∆ ≥ ∆max with ∆max = β‖δ‖1−βm0. Interestingly, a time-

sharing argument presented in [22] yields

I(∆)≤
1

n

⌈
n−⌊β/α⌋

λ

⌉

+

(

1−
∆

∆max

)+
K

n
log2(β+1). (39)

V. NUMERICAL RESULTS

In this section, we numerically assess the upper bounds on

the privacy cost described in Theorem 2 and Theorem 3. For

comparison purposes, we also include the lower bounds on the

privacy cost given in [22]. We model the market price after

the UK Economy 7 tariff, where users are charged an off-

peak price of 0.071 £/kWh within a 7 hour block and a peak

price of 0.152 £/kWh otherwise [25]. We assume the user has

an LG Chem RESU 6.5 battery with a capacity of 4.2 kWh

and a peak power of 4.2 kW. For simplicity we match the

users’ maximum power consumption to the peak power of the

battery, i.e., 4.2 kW [14]. The SM sends the UP integrated

energy readings every 30 min following UK specifications for

SMs [14]. Thus, we set the time elapsed between time steps i
and i+1 to 30 min. Defining 2.1 kWh as 1 unit of energy yields

the following parameters in our system model: battery capacity

β = 4.2 kWh/2.1 kWh = 2; maximum consumption between

time steps α = 4.2 kW × 0.5 h/2.1 kWh = 1; market lengths

l0 = 7 h/0.5 h = 14 and l1 = 17 h/0.5 h = 34; corresponding

market prices of m0 = 0.152 £/ kWh× 2.1 kWh = 0.3192 £

and m1 = 0.071£/ kWh × 2.1 kWh = 0.1791 £ per unit of

energy.

Figure 2 depicts the bounds on the privacy cost I(∆) for

different values of the system cost ∆ and initial battery state

s0 = 0 during a one day period, i.e. n = 24 h/0.5 h =
48. Following (39), when the user does not wish to increase

the system cost for privacy, the privacy cost is bounded by

I(0) = 0.4 bits. For large values of the system cost ∆ the

cost constraint is always satisfied, i.e. IΓ(∆) = 0, and the

privacy leakage is governed by the feasibility constraints.
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[10] J. Gómez-Vilardebó and D. Gündüz, “Privacy of smart meter systems

with an alternative energy source,” in Proc. IEEE Int. Symp. Inf. Theory,
Istanbul, Turkey, Jul. 2013, pp. 2572 –2576.

[11] S. R. Rajagopalan, L. Sankar, S. Mohajer, and H. V. Poor, “Smart meter
privacy: A utility-privacy framework,” in Proc. IEEE Int. Conf. Smart

Grid Commun., Brussels, Belgium, Oct. 2011, pp. 190–195.
[12] L. Sankar, S. Raj Rajagopalan, S. Mohajer, and H. V. Poor, “Smart meter

privacy: A theoretical framework,” IEEE Trans. Smart Grid, vol. 4, no. 2,
pp. 837–846, Jun. 2013.
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