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Abstract—The graph spectral processing is gaining increasing
interest in the computer vision society because of its ability to
characterize the shape. However, the graph spectral methods are
usually high computational cost and one solution to simplify the
problem is to automatically divide the graph into several sub-
graphs. Therefore, we utilize a graph spectral domain feature
representation based on the shape silhouette and we introduce
a fully automatic divisive hierarchical clustering method based
on the shape skeleton for static hand gesture recognition. In
particular, we establish the ability of the Fiedler vector for
partitioning 3D shapes. Several rules are applied to achieve a
stable graph segmentation. The generated sub-graphs are used
for matching purposes. Supporting results based on several
datasets demonstrate the performance of the proposed method
compared to the state-of-the-art methods by increment 0.3% and
3.8% for two datasets.

Index Terms—Hand gesture recognition, Graph spectral fea-
tures, Graph partitioning, Fiedler vector, Shape matching.

I. INTRODUCTION

The graph spectral domain provides an appropriate math-

ematical representation of non-uniform structures such as

networks, transportation, map colouring and communications.

Therefore, recent years have seen a trend of using the spectral

domain to characterize the geometric structure of the data,

which helps to match and cluster it. In this paper, we are

interested in using the graph spectral domain for static hand

gesture recognition for several reasons such as, 1) the global

shape of the hand is characterized in the graph eigenvectors

and eigenvalues. 2) The ability to reduce the number of nodes

and keep the proprieties of the shape intake. 3) Since the graph

spectral bases rely on the relative measurements between the

nodes, they are invariant to the rotation angle.

A human hand is able to form arbitrary and complex

shapes because of the wide range of degree of freedom.

A great achievement has been witnessed for hand gesture

recognition and the problem has been addressed from different

perspectives such as Finger-Earth Mover’s Distance (FEMD),

dynamic time warping, Superpixel Earth Mover’s Distance

(SP-EMD) and depth features [1]–[4] respectively. In addition,

utilizing graphs for hand gesture recognition is limited by

using the node domain only as shown in [5]–[8] respectively.

The main issue in the existing studies is the ability to detect

the shape in various angles. In addition, depth information in

the available literature is only used to segment the hand from

the background.

In this paper, we use a 3D hand representation to form a

hand skeleton and the hand silhouette description for static

hand gesture recognition. Our proposed method contains two

parts: firstly we use the 2D hand representation mainly to

reveal the sequence and locations of the fingers (i.e., the

concave and convex along the boundaries). Secondly, we

propose a graph spectral partitioning method for matching

purposes. We apply a recursive partitioning method using

Fiedler vector, which divides the graph into two sub-graphs by

cutting a small number of edges between components [9], [10].

This vital property can be used to segment and match specific

shapes such as the human hands, biological cells, and chemical

compositions because these type of shapes have an area of

weakness in their structure as in the knuckle where the finger

joins the hand. We adapt the conditional connectivity proposed

in [11] to strength and weakness the nodes link in the palm and

fingers respectively. Therefore, the graph can split these parts

easily and determine their numbers and locations. In order to

overcome the instability of the division, partition procedures

must be subject to certain rules. The performance evaluation

on three public datasets of static hand gesture demonstrates

the strength of our proposed method. The main contributions

of this paper are:

• Proposing an automatic hierarchical recursive partitioning

method based on the Fiedler vector.

• Utilizing graph spectral domain features for hand gesture

recognition.

This paper is structured as follows: the proposed method is

presented in Section II. Then, Section III will evaluate and

discuss the performance of the proposed method based on

different classifiers and parameters. Finally, the work will be

concluded in Section IV.

II. THE PROPOSED METHOD

The overview of the proposed method is shown in Fig. 1.

First, we split the hand’s depth map by assuming the hand is

the closest object to the camera scene. Second, we formulate

a 3D skeleton representation and its 2D silhouette map. Next,

we adapt a combination of skeleton and silhouette features

using graph spectral domain. At the end, these features are

classified using machine learning technique. Details of each

step are provided in the next subsections.
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Fig. 1. After extracting the region of interest, the proposed method contains two branches. First, graph generation over the hand silhouette to understand
the topology of the hand. Second, extracting the skeleton from the 3D hand representation to be partitioned by the graph spectral domain. A combination of
silhouette and skeleton features are classified using KNN. The character in each box refer to the corresponding subsection in Section II.

A. Depth map

In order to generate a 3D skeleton of the hand, we use

a Kinect sensor to capture the depth map at resolution 480

× 640. First, we search for the closest point to the camera

scene at depth (x, y, dnearest). Using this point as a centre,

we segment the region of interest, which takes the form of

cubic of (20, 20, τ ), where τ = 80mm is the depth range

used in our experiments to segment the hand as shown in Fig.

1.

B. Skeleton and silhouette representation

Since the hands are facing the camera in the available

datasets, we form a 2D silhouette representation using an edge

detector filter on top of the segmented area as shown in Fig. 1.

The resulting 2D closed path consists of random pixels, which

are used to generate a new set of pixels (N1) to form a new

down-sampled path, P̂ , as follows (as in the top sub figure

of Fig. 1):

P̂ (k) = P

({

nk

N1

})

, (1)

where k = 0, 1, ..., N1−1 is the new node index and {} is the

rounding to the nearest integer.

In order to generate a 3D skeleton with a fixed number of

nodes, we use an unsupervised algorithm known us Growing

Neural Gas (GNG) [12]. The input data of the GNG is the

segmented depth region. Based on the Euclidean distance

between pixels, GNG gradually produces new nodes (N2)
inside the shape. By the end of the training, GNG sufficiently

covers the area inside the shape as shown in Fig. 1.

C. Silhouette based graph generation and feature extraction

Undirected graph G = {V, E ,A}, where V is the set of N1

vertices (defined by the nodes in P̂ ), E is the set of edges and

A is the adjacency matrix with edge weights. We consider G as

a fully connected graph, which means each vertex has (N1−1)

connected edges. We define the weight, Ai,j corresponding to

an edge, ei,j connecting vertices i and j is as follows:

Ai,j =
|ei,j |

1
N1

∑N1−1
i=0

∑N1−1
j=0 |e(i,j)|

, (2)

which is the Euclidean distance e(i,j) between the vertices, i
and j, normalized with the average edge length for a node.

The non-normalized graph Laplacian matrix, L, is defined

as

L = D−A, (3)

where D is the diagonal matrix of vertex degrees, whose

diagonal components are computed as follows:

D(i,i) =
N−1
∑

j=0

A(i,j), i = 0, 1, ..., N1 − 1. (4)

As the shapes form non-regular graphs, we consider the

symmetric normalized Laplacian matrix, (L), computed as

follows:

L = D
−

1

2LD
−

1

2 . (5)

A complete set of orthonormal eigenvectors U of L and

their associated real eigenvalues λℓ for ℓ = 0, ..., N1 − 1 are

calculated.

The graph eigenvectors carry a notion of frequency: low

frequencies and high frequencies according to their associated

eigenvalues and it is proportional to the degree of the vertices

[13]. This concept allows to detect the concave and convex

of the fingers along the boundary can be detected by the

graph bases. Therefore, we test individual eigenvector for the

purpose of matching. Fig. 2 shows the accuracy rate of each

eigenvector and it is clear that the matching score is high in

the low frequencies. We divide the bases into three areas: low,

middle and high frequencies.

In order to provide robust features to detect different hand
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Fig. 2. The accuracy rate of individual eigenvector.

gestures, we propose using the graph frequency where the

input signal S(N1,3) is a matrix containing (x, y, r), and

r =
√

x2
i + y2i i = 0, . . . , N1 − 1. Therefore, the graph

frequency response is

F(N1,3) = U(N1,N1)S(N1,3) (6)

Since we are only interested in the first third of the eigenvec-

tors as shown in Fig. 2, a threshold is applied on F to remove

the noise (i.e., middle and high frequency). The total length

of the features will be:

F(N1,3)
threshold
−−−−−→ F(N1/3,3)

concatenating
−−−−−−−→ F(1,N1)

D. Skeleton based partitioning and graph features

Using Fiedler vector for partitioning is not a new concept

in graph partitioning because it provides the minimum cutting

ratio according to the optimization formulae (7) [9].

λk = min
uT

Lu

uTu
. (7)

However, we adapt new rules to achieve a fully stable recursive

hierarchical partitioning, which leads to automatically identify

the meaningful parts of the structure. In other words, there

is no need for human intention to determine the number of

required clusters.

For graph partitioning, the main differences in terms of

graph generation is that we use the non-normalized Laplacian

version (3) and conditional connectivity [11]. Conditional

connectivity means using the smallest distance to link all nodes

as one group. As a result, the limbs node always has one

connected node and the other nodes in fingers have weak

connectivities compared to the nodes in the palm area. This

type of connectivity makes finger segmentation an easy task

to be implemented. Repeating the procedure will end up with

efficient segmentation quality. In this paper, the process is

repeated five times because the human hand has maximum

five fingers. The segmentation process is subject to certain

conditions, which are:

1) The minimum number of nodes in each group = 2.

ng1 ≥ 2 & ng2 ≥ 2 (8)

2) In order to split two graphs (g1, g2), the difference in

number of nodes between them > N2/3, where N2 the

total number of nodes in the skeleton representation.

|ng1 − ng2 | > N2/3 (9)

where ng1 and ng2 are the number of nodes in the new

generated sub-graphs. These rules are applied to avoid frag-

mentation in the palm area, where there are no extended

fingers. Also, the segmentation process will be neglected inside

the fingers. Fig. 3 shows five levels of segmentation with its

corresponding number of nodes at each level. From the number

of nodes at the bottom of Fig. 3, we can see the failure of the

partitioning process at level six and stop at level five because

the proposed rules stop the division process.

At the end, we compute a set of features including:

1) Number of clusters

2) Number of nodes that connected to only one node.

3) Fiedler value at each node by the end of segmentation.

The feature length = N2 + 2.

The total feature length = N1 +N2 + 2.

E. Machine learning

Several experiments are contacted to select the optimal

classifier including testing Nearest Neighbour (KNN), Multi

class support vector machine with cubic kernal (CSVM),

Classification tree (CT), Discriminative Analysis (DA), Neural

network (NN) as will be shown in Section III.

III. PERFORMANCE EVALUATION

All the experiments were implemented using MATLAB

R2018b on a PC with Intel processor, CPU@3.6GHz and

RAM 16GB. 10-fold cross validation scheme is used to train

and test all the datasets. In order to reduce the complexity, few

numbers of nodes are used to generate the silhouette N1 = 24
and N2 = 50 to form the skeleton. The datasets, which were

used to evaluate the proposed method, includes:

1) NTU dataset [1] contains 10 subjects × 10 hand ges-

tures × 10 different orientations = 1000 colour and its

corresponding depth images. NTU dataset includes the

subject poses with various hand orientation, scale and

articulation.

2) The second dataset [14] contains 120 samples for 11

classes, which are implemented by 4 people. The dataset

provides RGB images and its corresponding depth im-

age. It also provides a confidence depth map for each

sample.

3) The third dataset [3] contains 100 samples for 10 classes,

which are implemented by 5 people. The dataset pro-

vides RGB images and its corresponding depth image.

Only the depth information of each gesture is used for

evaluation in this paper.



Hand representation

Total number of nodes

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Fig. 3. Segmentation procedure of our proposed graph partitioning with its
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Initially, different classifiers are tested as shown in Table I.

KNN, NN and CSVM show the highest accuracy rate com-

pared to other classifiers. We select KNN with K=1 to evaluate

our method because it is fast and accurate.

The proposed features demonstrate a high recognition rate

for d1, d2 and d3 by mean accuracy rate achieved to 99.7%,

93.7 and 99.4% respectively as shown in the confusion matri-

ces Fig. 4. From the confusion matrices, we note that the error

usually occurs with gestures, which have the same number

of extended fingers. However, gestures, which have the same

number of extended fingers, can be distinguished by silhouette

representation. In order to provide an idea about the accuracy

d1

100 0 0 0 0 0 0 0 0 0

0 100 0 0 0 0 0 0 0 0

0 0 100 0 0 0 0 0 0 0

0 0 1 99 0 0 0 0 0 0

0 0 0 0 100 0 0 0 0 0

0 0 0 0 0 99 0 1 0 0

0 0 0 0 0 0 100 0 0 0

0 0 0 0 0 0 0 100 0 0

1 0 0 0 0 0 0 0 99 0

0 0 0 0 0 0 0 0 0 100

1 2 3 4 5 6 7 8 9 10

Predict

1

2

3

4

5

6

7

8

9

10

A
c
tu

a
l

d2

115 1 2 0 1 1 0 0 0 0 0

0 110 2 1 1 0 0 2 0 0 4

0 0 115 0 0 2 1 0 0 0 2

0 1 0 108 3 0 5 0 0 0 3

0 0 0 4 108 3 2 0 0 3 0

0 0 0 1 4 111 1 0 1 1 1

0 0 0 2 1 0 116 0 0 0 1

1 0 0 0 1 0 0 113 3 1 1

0 0 0 0 0 2 1 1 116 0 0

0 0 0 2 2 1 0 0 1 114 0

0 0 0 3 3 2 0 0 1 0 111

1 2 3 4 5 6 7 8 9 10 11

Predict

1

2

3

4

5

6

7

8

9

10

11

A
c
tu

a
l

d3

100 0 0 0 0 0 0 0 0 0

0 100 0 0 0 0 0 0 0 0

0 1 97 1 0 0 1 0 0 0

1 1 0 98 0 0 0 0 0 0

0 0 0 0 100 0 0 0 0 0

0 0 0 0 0 100 0 0 0 0

1 1 0 0 1 0 97 0 0 0

0 0 0 0 0 0 0 100 0 0

0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 100

1 2 3 4 5 6 7 8 9 10

Predict

1

2

3

4

5

6

7

8

9

10

A
c
tu

a
l

Fig. 4. The confusion matrices of d1, d2 and d3.



TABLE I
THE ACCURACY RATES (%) OF DIFFERENT CLASSIFIERS FOR THE THREE

DATASETS.

KNN CSVM CT DA NN

d1 99.7 99.1 91.3 98.8 99.4

d2 93.7 91.4 86.8 90.1 94.3

d3 99.4 95 88.1 95.1 99.6

TABLE II
THE ACCURACY RATES (%) OF THE SILHOUETTE, SKELETON AND

COMBINATION OF SILHOUETTE AND SKELETON REPRESENTATION.

Silhouette Skeleton Both

d1 99.2 75 99.7

d2 92.9 53 93.7

d3 97.8 71 99.4

TABLE III
THE AVERAGE TIME TO PERFORM DIFFERENT STEPS OF THE PROPOSED

METHOD.

Step Performance average time (ms)

Hand segmentation 119.977

GNG 3175.127

Partitioning 177.427

Graph generation (silhouette) 0.548

Feature extraction 0.104

Classification 1.437

Full time system ≈ 3.4 seconds

TABLE IV
COMPARISON OF PROPOSED METHOD WITH OTHER EXISTING METHODS IN

TERMS OF THE ACCURACY RATES (%).

Proposed method Existing methods

d1 99.7 100 [4]

d2 93.7 89.9 [14]

d3 99.4 99.1 [3]

rate of both procedures, Table II shows a detail accuracy of

the skeleton and silhouette representation. We can see that the

silhouette-based graph features provide an efficient matching

score compared to the skeleton-based representation.

The average processing time for the individual step is

shown in Table III. Except for GNG training time, all other

actions are in real time. The total required time is only above

three seconds and can be improved with other alternative

programs. The training time of the GNG depends on the

several parameters such as the required number of nodes,

number of iterations, etc.

To evaluate our proposed method performance, we compare

the proposed method with the best existing matching score of

the three datasets. Table IV shows that our method performs

better than the existing works in d2 and d3.

IV. CONCLUSIONS

This paper has presented a novel method for static hand ges-

ture recognition based on the graph spectral feature representa-

tion. Both silhouette and skeleton maps have been analysed for

matching purposes. The global hand shape details have been

detected using the graph based feature of the hand silhouette.

The fingers have been segmented from the palm using an

automatic hierarchical recursive partitioning method based on

the Fiedler vector. A combination of spectral features were

classified using KNN. The performance evaluation shows that

the proposed method exceed the state-of-the-art performance

by 0.3% and 3.8% for two datasets. In the future, we are

planning to extend our proposed method for general 3D shape

recognition.
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