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ABSTRACT: Galactose Oxidase (GOase) has been used for the scalable selective C-6’ oxidation of lactose, a waste material from 

the dairy industry. Generation of the 6’-oxo lactose was achieved with full conversion in batch mode at mg scale, but further scale-

up to gram quantities proved challenging because of requirements for high enzyme concentrations and limitation in oxygen co-

substrate availability. To overcome these issues, a continuous flow system was developed for the bio-oxidation of lactose yielding 
multi gram quantities of product. Using the variant GOase F2, terminal selective oxidations were also observed on a range of oli-

goglucosides such as maltose. The carbohydrate dialdehydes that were obtained by this highly selective oxidation were chemically 
further functionalized establishing the biooxidation as a route to valorise cheap carbohydrates, including waste materials, for building 

blocks of polymers.  

KEYWORDS: Galactose Oxidase, Continous flow, Carbohydrate 
dialdehydes, Glucosides, Polymer.  

Carbohydrates provide the greatest biomass on Earth and as such 
are prime candidates for renewable materials.1–3 However, chemi-
cal functionalisation of carbohydrates is challenging and often re-
quires multi-step syntheses even for simple transformations.4 A 
particularly attractive class of functional group interconversions are 
the selective oxidation of hydroxy groups in carbohydrates, intro-
ducing bio-orthogonal groups such as aldehydes and ketones that 
can then be further modified and conjugated. For example, the 

TEMPO-mediated oxidation of sugars with various oxidants has 
become one of the most popular reagents for oxidation of the pri-
mary hydroxy groups in polysaccharides (Figure 1).5–7 Neverthe-
less, TEMPO-mediated oxidation is often non-selective, leading to 
mixtures of products at varying oxidation states. 

Therefore, enzymatic oxidations of carbohydrates have been inves-
tigated extensively.8,9 These biotransformations have the advantage 
of being in water and at ambient temperature whilst also achieving 
chemo- and regioselectivity without protecting groups. Galactose 
Oxidase (GOase) is one of the most studied biocatalysts with re-
spect to the enzymatic oxidation of carbohydrates.9–11 GOase is a 
copper dependent oxidase that can selectively oxidize the 6-OH po-

sition of terminal (non-reducing) D-galactose to the corresponding 
aldehyde whilst only requiring molecular oxygen as a co-substrate. 
GOase has been utilized for the synthesis of organic building 
blocks as well as a constituent of cascades for the synthesis of com-
plex glycans.12,13 Typically GOases are strictly stereospecific with 
the axial orientation of the C4-hydoxyl being vital for activity; this 
is highlighted by the 106-fold reduction in activity towards glucose. 
Although activity of GOase is well understood, there are very few 
reports of applications of this oxidase in truly scalable processes. 

Flow chemistry for the synthesis of biologically relevant molecules 
has seen an increased use in recent years.14–16 Benefits that are often 

cited include better control of reaction conditions, ease of scalabil-
ity and increased rate of reactions.17 The use of flow in biocatalysis 
has also become increasingly popular, taking advantage of the abil-
ity to recycle reagents or overcome limitations from substrate inhi-
bition.18–20 

Several reports have discussed oxygen availability for oxidase en-
zymes proving to be a limiting factor when scaling up a pro-
cess.21,22 The ambient concentration of O2 in aqueous systems is 
~0.25 mM, however reports have estimated the KMO for GOase var-
iants to range between 0.5 – 5 mM.23–25 Furthermore, oxygen trans-

fer limitations become more apparent on scale, underlining the lim-
its of batch reactors for oxygen-dependent biotransformations.26 As 
it was clear that oxygen availability could play a major role, we 
have investigated the use of a continuous flow reactor to improve 
the efficiency of oxygen-dependent biocatalysts.21 

 

Figure 1: TEMPO-mediated chemical oxidation of  C6-hydroxyl 
of lactose 1 leads to the triacid 2; galactose oxidase generates 3 

(shown as dialdehyde). 
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To demonstrate the scale-up reaction of GOase we investigated the 
oxidation of lactose 1 using M1, a variant developed by Arnold and 
colleagues that has improved expression in E. coli making it a more 
suitable biocatalyst.27,28 Lactose 1 was chosen as the model sub-
strate as it is a common waste material from the dairy industry and 

is responsible for the high biological oxygen demand and chemical 
oxygen demand of whey.29 Therefore, it has been recognised as a 
suitable target for valourisation of waste material and the resulting 
dialdehyde 3 provides a potentially interesting substrate for indus-
trial applications in bio-based materials.1 For this reaction to be 
useful, quantitative oxidation is required, since separation of start-
ing lactose 1 from product 3 is very challenging and costly.  

In the first instance reactions were performed at 1 mL scale, and  
full conversion was achieved at up to 50 mM lactose 1 with 2 mg 
mL-1 GOase M1 (Supporting Information). When increasing the 
substrate loading to 100 mM it became apparent that the efficiency 
of the oxidation reduced considerably. Increase of the GOase con-

centration to 3 mg mL-1 (keeping the substrate loading at 50mM) 
led to the partial over-oxidation of lactose to the corresponding car-
boxylic acid (Supporting Information). Though this is also a high 
value product for chemical synthesis, it was important to control 
the reaction to give homogeneous aldehyde. NMR analysis of the 
enzyme reaction mixture showed that under aqueous conditions the 
aldehyde 3 fully converts to the geminal diol with no aldehyde ob-
served in any NMR spectra (Supporting Information).  

Next, the efficiency of the oxidation on a larger scale was investi-
gated. At 50 mM lactose 1 concentration, >99% conversion was 
achieved using 2.5 mg mL-1 purified GOase M1 on a 100 mL scale 
after 60 h incubation at 25 °C. The reaction was carried out in a 500 

mL baffled flask (250 rpm). Whilst this gram scale oxidation at 50 
mM was successful, the productivity (250 mg L-1 h-1) and effi-
ciency (6 gprod genz

-1) could not be improved using this standard re-
search laboratory equipment and was considered not to be suffi-
cient for larger scale. 

Given that oxygen limitation appeared to be an issue, a previously 
described multi-point injection flow reactor (MPIR, Figure 2) was 
investigated. This set-up allows for above-ambient oxygen concen-
trations through in situ H2O2 degradation using catalase.21 Initial 
studies began with the GOase M1 catalysed oxidation of lactose. 
The batch reactions had used GOase at a concentration of 2.5 mg 
mL-1. As we believed the reaction to be oxygen limited, our initial 
conditions employed GOase at lower concentration of 1 mg mL-1, 

the lactose at 100 mM and H2O2 at 100 mM final concentration, to 
test how well the reaction would work with increased oxygen sup-
ply (Figure 2; for full reactor details, refer to Supporting Infor-
mation).  

Table 1. Metrics for batch vs flow processes of enzymatic lac-
tose oxidation 

 Batch Flow Fold Improvment 

Space time yielda 
0.25 56 224 

Efficiencyb 
6 42 7 

aSpace time yield in units of g L-1 h-1 bProductivity in units of gproduct 
genzyme

-1 

 

 

 

Figure 2: Schematic representation of MPIR for continuous 

bio-oxidation of lactose. F.R = Flow Rate; tres = residence time. 
For concentrations refer to Figure 3.  

Pleasingly, the desired product was produced at steady state with a 
65% conversion. Applying a trajectory analysis recently described 
by Woodley and coworkers allowed us to fully optimise the pro-
cess.22 Biocatalyst concentrations ranging from 0.25-2.5 mg mL-1 
highlighted the need for only 0.5 mg mL-1 biocatalyst, with conver-
sion always in the range of 65-70%. Increasing the H2O2 concen-

tration to two molar equivalents (200 mM final conc.) proved es-
sential, obtaining a steady state conversion of >90%, and underlin-
ing the need for the MPIR to obtain the necessary [O2] (Figure 3, 
for full details of trajectory analysis see Supporting Information). 
To validate the effectiveness of this process, the reaction was run 
continuously for 20 h. Once the reaction had reached steady state 
the product was collected to afford a final, isolated yield of 2.10 g 
(85%) of 3. This represents a space time yield of 56.7 g L-1 h-1 (167 

mmol L-1 h-1), which when compared to the batch reaction (0.25 g 
L-1 h-1 (0.74 mmol L-1 h-1)) demonstrates a 224-fold increase in 
productivity gained by using in situ O2 generation in the flow reac-
tor. More importantly perhaps is the amount of enzyme used: the 
batch reaction required a GOase concentration of 2.5 mg mL-1, 
whereas the flow reactor used 20% of this at 0.5 mg mL-1, demon-
strating a seven-fold improvement in efficiency of 42 gprod genz

-1 
with respect to the batch process (Table 1). 

  

 

 



 

 

 

 

Figure 3: 1H NMR assay used to determine 6-oxo-lactose conver-
sion. Conversion was determined by integrating proton signals for 
Gal C4 and Gal C1 (S.S: flow steady state). 

The application of galactose oxidase has generally been limited to 
terminal galactosides, but expansion to other sugars, in particular 
glucosides would be very desirable, given that glycosides are found 
in many natural polysaccharides.30,31 We had previously shown that 

mutants of galactose oxidase, in particular mutant F2, can be used 
at analytical scale for the oxidation of a broader range of terminal 
sugars. However, the scale-up of these reaction had not been 
demonstrated. Several target glucosides (4-9, Table 2) were se-
lected to investigate the effect of linkage and oligo length on the 
oxidation. In analytical scale batch reactions, GOase F2 was incu-
bated individually with Glc-α-OMe 4, Glc-β-OMe 5, Maltose 6, 
Cellobiose 7, Maltotriose 8 and Cellotriose 9 for 16 h (Table 2). 

Analysis of the 1H NMR spectra showed that GOase F2 displayed 
activity against all glucosides tested with varied conversion. For 
comparison, GOase M1 showed no activity towards any of the 
tested glucosides. As with lactose, the respective geminal diols (10-

15) were observed by HRMS and 1H NMR analysis (Supporting 
Information). 

Following on from the glucoside screening, maltose (6) was chosen 
as the substrate to investigate further as it is a grain based renewa-
ble feedstock. In batch, only 15% conversion was observed with 
100 mM maltose at 1 mg mL-1 enzyme concentration after 24 h. 
Applying the optimised conditions for lactose in flow for maltose, 
at 100 mM substrate concentration steady state conversion was ob-

served at 55% within 2 h (see Supporting Information). The lower 
activity of the F2 variant limited the reaction and further enzyme 
engineering will be required to further optimise the reaction. How-
ever these results demonstrate the benefits the MPIR can offer 
across GOase variants for carbohydratre functionalisation. 

The synthetic potential for carbohydrate-based polymers is well 
documented.1,32,33 To demonstrate the potential bio-material appli-
cations of the resulting lactodialdehyde 3 (in equilibrium with the 
ring-closed form of 3, but shown here to be in the open form for 
clarity) as a precursor for a potential biomaterial, the use of bis-
hydroxylamines as linkers was investigated for the production of 
lactose-based polymers (Figure 4).34,35  

 

Table 2: Oxidations of Glucosides with GOase F2 

 

Conditions: glucoside (20 mM), GOase F2 (1 mg mL-1), HRP (0.1 
mg mL-1), catalase (0.1 mg mL-1), 25 °C, 250 rpm, 16 h; conver-
sions determined by 1H-NMR. 

The reaction product was therefore analysed by MALDI-ToF (Fig-
ure 4B). Mass spec analysis clearly showed the presence of the 
monomer in addition to the dimer, trimer and tetramer. After leav-
ing the reaction to proceed for 24 h, a film-like precipitate was ob-
served (Figure 4C) suggesting successful formation of higher pol-
ymeric material. Comparison of the infra red spectra of the dialde-
hyde and the film showed a shift in the characteristic signals, with 
a signal at 1637 cm-1 in the product likely attributable to the for-

mation of the oxime functional groups (see supporting infor-
mation). 1H NMR analysis was challenging as the resulting oxime 
has E/Z isomers in the ring closed form at the anomeric position, a 
problem previously reported by Feizi and colleagues.35 In addition, 
efforts to obtain 1H NMR spectra were hindered by the insolubility 
of the product in multiple deuterated solvents. 
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Figure 4: A. Generation of lactose based-oxime polymers using di-
hydroxlamine linkers B. MALDI-ToF analysis of soluble aliquot 
from condensation reaction C. Polymerisazation reaction that was 
left overnight lead to generation of a film-like precipitate. 

In summary, we have described a biocatalytic process which has 

been applied in the regioselective oxidation of several saccharides 
including lactose and maltose using engineered GOase variants. 
Using standard lab ‘batch’ equipment, this process suffered from 
lack of availability of molecular oxygen to the reaction. Utilizing a 
continuous flow reactor we were able to overcome this issue to 
achieve efficient bio-oxidations to produce 6-oxo-lactose, in multi-
gram quantities. The same system was then also used with the var-
iant F2 and maltose. It is envisaged that with further engineering of 

GOase, alongside improvements in reactor design, this would pro-
vide a reliable and scalable method for selective terminal carbohy-
drate functionalisation. Finally, proof-of-concept studies have 
demonstrated that polymerisation of the oxidised lactose product is 
possible, offer opportunitities for new sugar-based polymer mate-
rials in future.  
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